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Abstract

We decompose the complete multigraph K (v, A) into copies of a graph
H; (i = 1,2,3). Each H; is a near triangle in that it is connected and has
3 vertices. In several case, the decompositions are completed using classical
combinatorial sequences due to Langford and Skolem.

1 Introduction

A graph design is a decomposition of a graph X into copies of a graph H. For
a complete and excellent survey of such decompositions see Adams, Bryant and
Buchannan [1]. In this note we decompose X = K (v, A), the complete multi-
graph on v vertices with A\ edges between each pair of vertices, into copies of a
graph H which is nearly a triangle. In Sections 2, 3, and 4, in fact, we consider
three slightly different graphs H,, Ha and H3, each of which is connected and
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has 3 vertices and each has one or more double edges. We will refer to the corre-
sponding designs as H;(v,A) for ¢ = 1,2,3. The three graphs H; are shown in
Figure 1. As is usual in design theory, we refer to each copy of H; as a block of

H,-(v,)\).
L. A A
H]_ H2 H3
Figure 1

In [5), the authors defined a triangle-like decomposition called a loop design,
with blocks (a, b, c, a), a block on 3 vertices containing the edges {a, b}, {b,c},
{c,a} and the loop {a,a}. In the present case, the H; are different from graphs
in [5], and they are different also from the small graphs listed in Chapter 24 of
[4] and in [1]. The multigraphs H; (i = 1,2, 3) which we consider here are the
smallest multigraphs on three vertices which have not yet been considered in the
literature and continue results from [5] and [4]. A Stanton graph of order k, Sy,
is a graph on k vertices where, for each i = 1, ..., k(k — 1) /2, there is exactly one
edge of multiplicity i. There exists a Stanton graph of six edges on three vertices,
and the graphs H; considered here have 3, 4, or 5 edges; thus, the graph designs
here are also different from those considered in [3]. Recently Saad El-Zanati [7]
along with his co-authors proved that the necessary conditions are sufficient for
the Stanton graph decomposition.

The work done in this paper is particularly interesting because of the new ap-
plications of certain well-known combinatorial sequences. Using these and other
techniques, we have complete results for H, and Hy decomposition in Sections
2 and 3 respectively. The decomposition problem for H3, considered in Section
4, has several surprises and proved especially difficult and still not completely
solved.

We first present several results which will be needed later beginning with
Skolem and Langford sequences. A Skolem sequence of order n is a sequence
$ = (81,52,...,52n) of 2n integers satisfying the conditions (1) for every k €
{1,2,...,n} there exist exactly two elements s; and s;j in Ssuchthats; = s; =k,
and (2) if s; = s; = k, with ¢ < j, then j — i = k. Skolem sequences are also
written as collections of ordered pairs {(a;, ;) : 1 < i < n, b; — a; = i}, with
U {as, b} = {1,2,..., 2n}, and thus the differences 1, ..., n occur exactly once.
See Chapter VI.53 of [4].

Somewhat more generally, a Langford sequence of order n and defect d is a
sequence L = {y1,¥2, ..., ¥2n} of 2n integers satisfying the conditions: (1) for
every k € {d,d + 1,...,d + n — 1} there exist exactly two elements y;,y; € L,
and Q)ify; =y; = kwithi< j, thenj—-i=k.

A sequence (Langford or Skolem) is called hooked if it contains 2n4-1 entries
and the 2n entry is a place holder only.

Lemma 1 (The S-L Lemma, p. 613 of [4]) (a) A Langford sequence of order n
and defect d exists if and only if (1) n > 2d — 1, and (2) n = 0,3 (mod 4) for



evend orn = 0,1 (mod 4) and d is odd. A hooked Langford sequence of order
n and defect d exists ifand only if (1) n(n —2d+1)+2 > 0and (2) n = 2,3
(mod 4) and d is odd, or n = 1, 2 (mod 4) and d is even. (b) A Skolem sequence
of order t exists if and only if t = 0,1 (mod 4). A hooked Skolem sequence of
order t exists if and only ift = 2,3 (mod 4).

A pair-wise balanced design, a PBD(v, K), is a pair (V, B) where V is a set
of v points, B is a collection of blocks, and K is the set of block sizes. Each pair
of points of a PBD meet in exactly one block. The following lemma is adapted
from Table 3.23, p. 249, in [4].

Lemma 2 (The PBD Lemma) (a) There exists a PBD(v, K) for K = {4,5} and
any v = 0,1 (mod 4), except for v = 8,9,12. (b) There exists a PBD(v, K)
for K = {3,4,6} for all v = 0,1 (mod 3). (c) There exists a PBD(v, K) for
K = {4,6,7,9} and any v = 0,1 (mod 3) except v = 10,12, 15,18, 19, 24,27.
(d) There exists a PBD(v, K) for K = {8,9} for any v = 0,1 (mod 8), with
several hundred possible exceptions less than 1680. (e) There exist PBD(v, K)
for K = {3,4,5} for all v except v =6,8.

We will need a structure theorem of H. Agrawal.

Lemma 3 [2] (Agrawal’s Lemma) In every binary equi-replicate design of con-
stant block size k (hence bk = vr and b = mv), the treatments in each block can
be rearranged such that in the k by b array, formed with blocks as columns, every
treatment occurs in each row exactly m times.

A path design, P(v, k, A) is a decomposition of K (v, A) into paths of length
k — 1. The ordered path block (a, b, ¢) contains the edges {a, b} amd {b,c}, and
the path block (a, b, ¢} is identified with the block {c, b, a). It is well-known that
there exists a P(v, 3, 2) for every v > 3.

Lemma 4 (Path Lemma) For every v > 3, there exists a P(v, 3, 2).

Proof: For v = 3, use blocks (1,2,3), (2,3,1), and (3,1,2). Suppose X =
P(v, 3, 2) exists for some v > 3. Then we create a P(v + 1, 3, 2) by adding the
following blocks to those of X: {(i,v + 1,7+ 1), forz = 1,2,...,v — 1, and the
block (v, v + 1, 1). The result follows by induction on v. O

2 Hj(v,)\) Designs

In this section we will decompose K (v, A) into copies of H; (see Figure 1) and
we denote by {(a, b, c) the ordered block with three vertices a, b, and ¢ and the
- edges {a, b}, {a, b} and {b,c}.

We seek necessary conditions first. Since each block contains 3 edges, we
require Av(v — 1) = 0 (mod 3). Since each pair will evidently occur at least
twice, it is necessary that A > 2.
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2.1 Thecase A =2

The necessary condition, when A = 2, is that v = 3¢ or 3t + 1. Whenever A = 2,
if a, b are the first two elements in a block, the pair of edges for a, b occur in that
same block. Thus, if a, b occur together in some other block, they must later occur
in the 1st and 3rd positions. Similarly, if b, ¢ occur in the 2nd and 3rd positions
in a block, they must occur together once more in the 2nd and 3rd positions in a
second block so that their edges occur exactly twice.

Example 1 The blocks (1,2,3), (2,3,1), and (3,1, 2) show that there exists an
H,(3,3). The blocks (1,2, 3) and (1, 3, 2) give an H;(3, 2).

For v = 6t 4+ 1 or 6¢ - 3 there exists a BIBD(v, 3, 1). For any BIBD(v, 3, 1),
by identifying each block {p, g, 7} with the three blocks of the H, (3, 3), one may
create an H (v, 3), and similarly an H, (v, 2). Therefore, there exists an H; (v, A)
if v = 6t 4+ 1 or 6t 4 3. for any A > 2. This gives us a required H;(19, 2) design
in order to apply Lemma 2(c).

Example 2 The blocks (3,2,1), (4,1,2), (2,4,3), and (1,3, 4) givean H,(4,2).
It follows that there exists an Hy(v,2) ifv = 12t + 1 or 12t + 4 since there exists
BIBD(v,4,1) for these parameters.

Example 3 The design H,(6,2) is cyclically generated mod 5 by the starter
blocks (1,3, 00) and (1,2, c0).

The examples and comments just above suffice to apply Lemma 2(b) to prove
Theorem 1 below but we give further examples interesting in their own right
which can be used to apply Lemma 2(c).

Example 4 An H,(7,2). Use the starter blocks (4,2, 1) and (4,1, 2) and develop
mod 7.

Example 5 An H,(9,2). There are T2 edges and 24 blocks. Since 24 is not a
multiple of 9, the role of each vertex in the block cannot be uniform. Recall that
the first vertex has degree 2, the second has degree 3 and the last has degree 1.
The points are {0,0,1, ..., 7} and the blocks are:

(I) (00,1 +14,5+ ) and (00,5 + i,1 + 1) for i € {0,1,2,3}, and

(2) (4+4,1+44,24+1) and (3+14,1+4,2+1) fori € {0,1,..,7}, with all
sums modulo 8.

Suppose now that v > 27 and v = 3t or 3t + 1. Let P denote a PBD on v
points with block sizes from K = {4,6,7,9} and suppose b is any block of the
PBD. Identify, arbitrarily, the points of block b with the points in the example just
above with |b| points. Form the blocks as in the above example using the points of
b. Do this for each block of P. The set of blocks thus formed gives an H (v, 2).
This shows that all H; (v, 2) exist for v = 3t or 3t+1 with the possible exceptions
from the list in the PBD Lemma. We now proceed to construct the other designs.
We observe that, since H;(6t + 1,2) and H; (6t + 3,2) exist (see the comment
after Lemma 1), we only need to construct designs for v = 10, 12, 18, and 24.



Example 6 An H,(10,2) on points {(i,j) :i=0,1and j =0,1,2,3,4}.
Difference sets to be developed mod(5, *):

{(0,1),(0,0), (1,00}, {(1,1),(1,0), (0,00}, {(0,3),(1,1),(0,0)},
{(1,4),(0,0),(1,1)}, {(0,3),(0,0), (1,2)}, and {(1,0),(1,2), (0,0)}.

This is isomorphic to the following H,(10,2).

2 3 45 17 8 9 10 6|4 5 1 2 3
1 2 3 4 506 7 8 9 1047 8 9 10 6}
6 7 8 9 101 2 3 4 5|1 2 3 4 5
10 6 7 8 4 5 1 2 7 8 9 10
1 2 3 4 5)1 2 3 4 58 9 10 6 7
7 8 9 10 68 9 10 6 71 2 3 4 5

S

Example 7 An H1(12,2). Use the starter
(7,6,1), and develop mod 11.

Example 8 An H,(18,2). Use the starter blocks (3,1, 00), (4,1,00}, (5,1,9),
(6,1,9), (7,1,2), (8,1, 2) and develop mod 17.

locks (3,1, 00), (4,1, 00), (5,1,6),

Example 9 An H,(24,2), Use the starter blocks (5,1,00), (8,1,00), (3,1,2),
(19,2,1), (9,1, 4), (18,4,1), (11,1,6), (18,6,1) and develop mod 23.

The following theorem now follows from Lemma 2,
Theorem 1 The necessary conditions are sufficient for the existence of Hy (v, 2).

A cyclic proof of Theorem 1, suggested by a reader of the paper, can be given
succinctly as follows. We specify the needed difference sets developed modulo
by using C(m) = {{t +2¢ —1,0,%), (¢t + 24,0,%) : 1 <i < m} mod z.

H,(6t +1,2) on Zg;4 : C(t) mod 6t + 1;

H, (6t + 3,2) on Zg;42 | J{oo} : C(t) and (00,0, 3t + 1) mod 6¢ + 2;

H, (6t +4,2) on Zgs 14 : C(t) and (3t + 1,0,3t + 2) mod 6t + 4;

H,(6t,2) on Zgy—y | J{oo}: C(t—1) and (3t — 1,0,¢), (c0,0,t) mod 6t —1.

2.2 Thecase )\ =3

We now consider the case for A = 3,
Theorem 2 The necessary conditions are sufficient for the existence of Hy(v, 3).

Proof: We will show that there exists an Hj(v,3) for every v > 3. Suppose
B is the set of blocks of a P(v,3,2). First, rewrite each block {a, b, c) of B as
{{a, b}, {b,c}}. If we regard the edges {a, b} as the points of a new design, then
as the new blocks of B have two points each and as each point appears twice in
B, the set of blocks is an equi-replicate design. Applying Agrawal’s Lemma, put
the blocks of B in an array, say A, with two rows so that each new point {a, b}



appears once in each row. Now create a new array, say Ao, whose first two rows
are copies of the first row of A,, and whose third row is a copy of the second row
of A;. The new array is now seen to be a decomposition of K = K(v, 3) into
blocks of the form {{p, ¢}, {p, ¢}, {g,7}} for some p, g, and r. That is, A, is the
set of blocks of an Hy(v,3). O

We may observe that every A > 2 may be written as A = 2s < 3t for some
non-negative integers s and t. We have shown that, if v = 35 or 35 + 1, then
the only necessary H;-condition, Av(v — 1) = 0 (mod 3), is met, and that, for
such v, there exist H; (v, 2s + 3t) by using the blocks of s-copies of the design
in Theorem 1 and ¢-copies of the design from Theorem 2. If v = 35 + 2, then
H, (v, 3t) exist by the previous theorem. This proves:

Theorem 3 The necessary conditions are sufficient for the existence of Hy (v, \).

3 Hy(v, ) Designs

In this section we decompose K = K (v, A) into copies of Hp, and a single block
{a, b, c) represents the four edges {a, b}, {b, ¢}, {b, ¢}, and {c, a}. Since there are
4 edges per block, the necessary condition is Av(v — 1) = 0 (mod 8).

3.1 TheCase A =2

When A = 2, it is necessary that v = 0,1 (mod 4). We begin with examples
which will allow us to apply the PBD Lemma.

Example 10 There exists an H,(4,2) design. The blocks are (a,b,c), {a,b,d),
and (a, ¢, d).

Example 11 There exists an Hy(5,2) design. The blocks are

1 2 3 4 5
4 3 5 2 1
5 4 2 1 3

Example 12 An H3(8,2). Use starter blocks {00, 1,4) and {0, 1, 6) and develop
mod 7.

Example 13 There exists an Hy(9,2). Use starter blocks (0, 3,4) and (0,3, 5)
and develop mod 9. -

Example 14 An H3(12,2). Use starter blocks (0,0, 4), (0,3,9), (0,3,2) and
develop mod 11.

Theorem 4 There exists an Ha(v,2) for v=10,1 (mod 4).



Proof: Apply the PBD Lemma. In view of the examples, we may assume v #
8,9,12. Let P denote a PBD on v points, where v = 4t or 4t + 1 but v # 8,9,12,
For each block 3 of size 4 in P, identify arbitrarily the points of § with the points
of the Hy(4,2) above and create the 3 blocks as in the example. For each block
of P of size 5, create five blocks as in the example for the H2(5,2). Since each
pair of points met exactly once in the PBD, they meet twice in the Hz(v,2). O

3.2 TheCase \=3

Next we consider Hz(v, 3), and the necessary condition is v(v — 1) = 0 (mod 8).
Theorem 5 There exists Hy(8t +1,3) forallt > 1.

Proof: Develop cyclically the following starter blocks modulo v, for v = 8¢ + 1:
(4(t —7),0,s+4r) where1 < s<3and0<r<t-1.0

Example 15 [fv = 8,16, 24, then there is an Hy(v, 3):

v | Develop cyclically modulo v — 1
8 {4, 0, 5), (3,0,2), (2,0, 3)
16 (8,00,9), (6,0, 7), (7,0,5),
(3,0,4), (5,0,3), {4,0,6)

24 | (13,00,12), (10,0,11), (9,0, 10)
(3,0,5), (6,0,8), (8,0,6)
{7,0,3), {5,0,9), (11,0,7)

It is interesting that, for each v = 8t in this last example, replace oo by 0 in
the first block, and obtain a set of starter blocks for 8¢ 4+ 1 (developed mod 8¢+ 1).
The results from this section and the PBD Lemma prove that:

Theorem 6 The necessary conditions are sufficient for the existence of Ha(v, 3),
except possibly for the v = 8t < 1680 listed in Table 3.23 in [4].

Sarvate and Zhang [8] have recently completed the existence by resolving all these
cases in affirmative.

3.3 Thecase) =14

This subsection is devoted to proving the following main theorem:
Theorem 7 There exists an Ha(v,4) forallv 2> 3.

An Hj(v,4) exists for v = 0,1 (mod 4) by taking two copies of the design for
index 2.

Theorem 8 There exists an Hy(4t + 3,4) for every t > 0.
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Proof: Use a BIBD(4t + 3, 3, 3) which exists as v is odd. Write each BIBD block
0 = {a, b, ¢} as a block of edges {{a, b}, {b,c}, {c,a}}. Apply Agrawal’s Lemma
to the newly written blocks of the BIBD. In the Agrawal array, for the block §
given, suppose {b, ¢} occurs in row 3. Then choose {b, c} to be the double edge
in the Hy block {a, b, c). Since each edge occurs once in row 3, every pair now
occurs 4 times in H; blocks and the index of the design is 4. O

We now suppose v = 4t + 2. In order to show that there is always a cyclic
Hy(4t + 2, 4), we divide H(4t + 2, 4) into two cases, v = 8m + 2 and 8m + 6.

Example 16 An H,(6,4). Use the blocks (developed mod 5): {0,1,2), (00,1, 3),
(4,1,2).

Example 17 An H2(14,4). Use a Langford sequence of order 4 and defect 2.
(See array below.) The starter blocks (mod 13) from the sequence are {0,2,7),
(0,3,5), {0,4,8), (0,6,9). The remaining blocks are {c0,0,1), {00,0,6), and
(0,10,11). The Langford pairs determine starter block differences of 2,3, 4,5,
which are associated with double edges. The vertices used for these blocks,
2,3,...,9 omit 1,10, and 11 (1,2, -3 mod 13). The remaining three blocks
use differences of 1 (four times) and 6 (twice). Since 6 and 7 (= —6 (mod 13))
are used as vertices, all pairs with difference 6 occur 4 times in the blocks de-
veloped. The final block, with vertices 10,11 covers the differences —3, —2 (mod
13). It follows that the index is 4.

4 1 3 1 2 4 3 2
2 3 4 56 6 7 8 9

Example 18 An H(18,4). Use a Langford sequence of order 7 and defect 2 to

create starter blocks (mod v—1 = 17). In the array below, the top row is a Lang-

Jford sequence of order 7. In the second row are the vertices {2,3, 4, ...,15}. First

use the "initial” starter blocks (00,0,1) and (00, 1,2). The other starter blocks

are determined by the pairs of vertices which correspond to like elements in the

.Z‘equence)e. They are (0,2,4), (0,5,8), (0,10,14), (0,7,12), (0,9, 15), {0,6,13),
0,3,11).

3 7 4 6 3 5

1 71 2 6 4 2 5
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Theorem 9 There exists an Ha(4t + 2,4) forall t > 1.

Proof: First suppose v = 8m + 2. The cyclic solution begins with the (mod v — 1)
starter blocks (c0,0,1) and (o0, 1,2). Next, use a Langford sequence of order
4m — 1 and defect 2 to determine pairs {a, b}, as in the example, with differ-
ences 2,3, ...,4m and form starter blocks (0, a, b) for each pair. The blocks are
developed mod v — 1. Now suppose v = 8m + 6. Use a Langford sequence
of order 4m and defect 2. The first 4m starter blocks (mod v — 1) are {0, a;, b;)
where {a;, b;} are the pairs determined by the sequence as in the array. In these
starter blocks, the differnces |a; — b;| include the values 2, 3, ..., 4m + 1 which
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correspond to double edges. The vertices used in these blocks, 2,3,...,8m + 1,
correspond to single edges.The last three starter blocks, which fill in the missing
needed differences, are (00,0, 1), {(c0,0,4m + 2) and (0,8m + 2,8m + 3). O

We may observe that necessary conditions v > 3 and v = 0,1 (mod 8) are
sufficient for the existence of a Hy(v, 3) for all v's except for finitely many values
and Hy(v,2) exists for all v > 3 and v = 0,1 (mod 4). Hence given any odd
A, say, 2t + 3, we can construct Ha(v,2t + 3) for all integers ¢ > 0. As the
necessary conditions when A = 0 (mod 4) are same as the necessary and sufficient
conditions for the existence of Ha(v, A = 4) and for A = 2 (mod 4) are same as
the necessary and sufficient conditions for the existence of Ha(v,A = 2), we
have:

Theorem 10 The necessary conditions are sufficient for the existence of Ha(v, A)
except possibly for the v = 8t < 1680 listed in Table 3.23 in [4]..

As mentioned earlier, Sarvate and Zhang [8] have resolved all these cases in affir-
mative.

4 Hs(v, \) Designs

In this section we decompose X = K (v, A) into copies of H3, and a single block
(a, b, c) represents the five edges {a, b}, {b,c}, {b,¢c}, {c,a}, {c,a}. The third
vertex listed in each block will always be the vertex with degree 4 and the other
two will be the vertices with degree 3. The necessary condition is that Av(v—1) =
0 (mod 10).

4.1 The ) = 2 case for small v

For an H3(v, 2) to exist, it is necessary that v = 5t or 5t + 1 since there are 5
edges per block.

Example 19 We develop the starter block (4, 1,0) cyclically modulo 6, to obtain
an H3(6,2).

Theorem 11 There does not exist an H3(5, 2).

Proof: For v = 5, from the necessary conditions, there would be 20 edges and
4 blocks. Suppose (1, 2, 3), corresponding to edges {1, 2}, {2, 3}, {2,3}, {1,3},
and {1,3}, is a block. Now, since {1,2} must be a single edge in exactly one
more block, we may assume WLOG it is (1,2, 4). Thus, {1,2} appears twice in
Hj blocks. However, in K (5, 2), the degree of vertex 1 is eight, and in the first
two blocks, vertex 1 has a degree sum of six. In a third and last block with edge
{1, 2}, vertex 1 must have degree two. But there are no vertices of degree two in
an Hj3 block. O
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Example 20 There exists an H3(5, 4).

b b d d d d b b
c ¢c e e e e ¢ ¢
a a a a b ¢ d e
Example 21 An H3(10,2).
YT 9 5§ 7 9 1 7 8 1 7 8 5 7 8 2 7 8 2
8 10 6 8 10 4 9 10 4 9 10 6 10 9 3 10 9 3
1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6

Example 22 In constructing an H3(15,2), if one vertex occurs only as a degree
4 vertex, experience suggests we refer to it as oo and consider a cycled block
(a+1i,b+1,00). However, here 0 < i < 6. This suggests having six starter
blocks which cycle seven times each for the needed 42 blocks. This further sug-
gested dividing the vertices into two sets {8,9, ...,14} and {1, 2, ..., 7} which cy-
cle independently. Starter blocks meeting the conditions are (1,11, 00}, (1,11, 8),
(1,12,13), (1,12,10), (1, 3,9), and (1,3,7). For example note the development
(1,8,11), (2,9,12), (3,10,13), (4,11,14), (5,12,8), {6,13,9), (7,14,10). It
JSollows that we have constructed an H3(15,2).

The general case for H3(5t, 2) remains open.

When v = 5t + 1, however, counting [for any vertex z, deg(z) = A(v — 1)
= 2(5t) = 10t = 4(t) + 3(2t)] shows that each vertex may occur ¢-times as a
degree 4 vertex in some Hj block and 2t-times as a vertex of degree 3. This
suggests a complete cyclic construction. We will actually show that there exists a
cyclic H3(v,2) if v = 5t + 1 for some ¢t > 1. The proof will be completed in the
next subsection in which we show how to create the starter blocks.

4.2 More applications of Skolem and Langford sequences

We apply Skolem sequences to v = 10t + 1 and Langford sequences to v =
10t + 6.

Example 23 An H3(41,2). The "Skolem differences” are {1,2,3,4} and the
pairs (a;,b;) are determined from the array. The top row is a Skolem sequence
of order t = 4 (length 8), and the same sequence is listed again. The vertices
(asi,b;) are listed sequentially in the second row. The starter blocks determined
are {5,6,0), (7,10,0), (8,12,0), (9,11,0), (13,14,0), (15,18,0), (16,20, 0),
(17,19,0). There are A(v — 1)/10 = 2t = 8 starter blocks. Because of the
degree 4 vertex in each Hj starter block is the vertex 0, it is important that the
Skolem differences do not appear as vertices in the starter blocks.

3 2 41 1 3 4 2 3 2 4
13 14 15 16 17 18 19 20

OV =
D =
-3 W
00
© N
b
o
Pt
—
i
N
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Example 24 An H3(31,2). Use a hooked Skolem sequence and two arrays. The
Skolem sequence 31132*2 is repeated in reverse order for the second array. For
the first pairs, 9 is not used, and in the second group 10 is not used. The starter
blocks are (4,7,0), (5,6,0), (8,10,0), (9,11,0), (12,15,0), and (13, 14,0).

31T 1 3 2 2] 2 » 2 3 1 1 3
4 5 6 7 8 9 109 10 11 12 13 14 15

When v = 10t + 6, there are 2t + 1 starter blocks needed. The method
used requires an initial block (5t + 2,10t + 5,0) . In this way, the vertices with
difference v/2 occur twice as single edges when this block is developed mod v.
The remaining blocks are determined as above but using a Langford sequence of
order t and defect 2.

Example 25 An H3(46,2). For v = 46 = (10)(4) + 6, the parameter t is
4. Begin with the starter block (22,45,0). When this block is developed mod
46, each pair of vertices with difference 23 will occur twice. The differences 1
(45 — 0 mod 46) and 22 correspond to double edges. The remaining differences
needed for the starter blocks are 2,3, ...,21. The single edges will correspond
to differences {2,3,4,5}. We illustrate with the arrays below. The top row is a
Langford sequence of order t = 4 and defect 2, and it is repeated in the next array.
Between the two 4's are four terms. Between the two 3’s, there are three terms,
and so on. Corresponding to the two 4's in the first row, in the second row are the
terms 6 and 11, whose difference is 4 + 1. The four corresponding pairs in row
2 are the vertices in the starter blocks. These are: (23,45,0), (6,11,0), (7,9,0),
(8,12,0), (10,13, 0), and (14,19, 0), (15,17,0), (16,20,0), (18,21,0).

T]1[3[1[2[4 3 2] .
617189101112 13 |*"
2113112 14[3]°2
T4 (15 (16|17 | 18 | 19 [ 20 | 21

Example 26 An H3(56,2). Witht = 5, the Langford differences are {2,3,4,5,
6} and a suitable set of pairs is determined by a hooked Langford sequence. The
first 11 entries in the top row below give a hooked sequence, and the vertices are
listed sequentially. The entries are reversed to finish the array. The pairs which
determine the starter blocks are the matches in the second row to the correspond-
ing entries in the first row. The starter blocks are (27,55,0), (7,11,0), (8,13,0),
(9,15,0), (10,12,0), (14,17,0), (16,19,0), {18,24,0), (20,25,0), (21,23,0),
(22,26, 0).

3 4 5 1 3 1 4 2 & =* 2
7 8 9 10 11 12 13 14 15 16 17

2 x5 2 4 1 3 1 5 4 3
16 17118 19 20 21 22 23 24 25 26

Theorem 12 There exists an H3(10t + 6,2) for all t > 0 and an H3(10t + 1, 2)
forallt > 1.
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Proof: For v = 10t+6, use the starter block (5¢ + 2, 10t + 5,0). Then, ift = 0, 3
(mod 4), use a Langford sequence of order ¢ and defect 2 and if t = 1,2 (mod 4)
use a hooked Langford sequence. For v = 10t + 1, if ¢ = 0,1 (mod 4), then a
Skolem sequence of order t exists and the sequence, and its shift, generate suit-
able starter blocks. If ¢ = 2,3 (mod 4), then a hooked Skolem sequence suffices
as in the examples. O

4.3 Higher Values of the Index.

Theorem 13 There does not exist an H3(v, 3) for any v.

Proof: Since the index is three, which is odd, each edge must appear in an H3
block as a singleton edge at least once. There is one such edge per block, and,
therefore, there are not enough such edges as at least v(v — 1)/2 are needed but
there are only 3v(v — 1)/10 blocks. O

Theorem 14 If v is even, there does not exist an H3(v,5).

Proof: Suppose v = 2n for some n > 2. Any H3(2n,5) would have exactly

(%') blocks. Since each pair of vertices occurs 5 times (an odd number), each
pair must occur as a single edge in an Hj block at least once. It follows that each
edge must occur exactly once in this way since that accounts for each singleton
edge. As every vertex has degree 5(v — 1) and occurs in blocks 2n — 1 times as a
vertex of degree three, every vertex must occur with degree 4 in y blocks, where
y=[5(2n — 1) — 3(2n — 1)]/4 = (2n — 1)/2. But this y is not an integer. O

Theorem 15 If v is odd, then there exists an H3(v, 5).

Proof: If v is odd, there exists a BIBD(v, 3, 3) with block set B. Suppose {a, b, ¢}
is ablock in B. Re-write {a, b, c} as a block of three edges {{a, b}, {b, ¢}, {c,a}},
and do so similarly for each block in B. With this new way to write the blocks,
apply Agrawal’s Lemma and form an array in which each column is a block and
each new point (i.e., edge) appears in each of the three rows exactly once. For
each new block, say {{p,q},{q,7}, {r,p}}, with {p, ¢} in row one in the array,
create the Hj3 block (p, g, 7) with five edges such that {p, g} is the single edge.
Since the index of the BIBD is 3, each pair appears in each row exactly once. The
edge {p, q} will appear in two more Hj blocks, each time as a double edge. Thus,
in the new Hj blocks, each edge occurs five times. O

Corollary 1 For every v > 3, there exists an H3(v, 10).

Proof: Apply the argument in the previous theorem using the fact that a BIBD(v, 3, 6)
always exists. O

The argument against H3(2n, 5) does not apply to H3(2n,5m) for m odd.
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Example 27 An H3(4,15).

4 4 4 4 4 2 4 4 4 4 4 3 4 4 4 4 4 1
2 2 2 333 3 3 3111111 2 22
1111112 2 2 2 2 2 3 3 3 3 3 3

Example 28 There exists an H3(v,15) forv = 6 and v = 8. For v = 6, de-
velop the following starter blocks mod 5: (0,00,1) three times; (0,00,2), and
(0,1, 3) twice each; (0,1,2), {(0,2,1). For v = 8 develop the following mod
7: (0,%,00), for i = 1,2,3; (0,00,1), (0,1,3) three times; (0,3,1), (1,3,0),
(1,0,3), (3,1,0), (3,0,1).

Theorem 16 There exists an H3(v, 15) for all v > 3.

Proof: There exists such designs for v = 3,5 and index 15 since they exist for
index 5. An H3(v, 15) exists for v = 4, 6, 8 by the examples above in this sub-
section. The remaining designs exist by applying the PBD Lemma. O

Corollary 2 There exists an H3(v,5t) forallvand allt > 2.

5 Summarizing the Results

We have shown that the necessary conditions are sufficient for existence of graph
designs H;(v, \) for i = 1,2, except the results are undecided for Ha(8t, 3) for
24 < 8t < 1680 whereas [8] have constructed all undecided Hy decompositions.
For H3-decomposition the situation is much different, clearly H3(5t,2) fort > 3
is undecided and probably the first family one needs to work on. Also, when
A = 0 (mod 5), there is no condition on v, for all other values of A, v = 0,1 (mod
5). What makes H3, harder and interesting is H3(v, 3) does not exist and for even
v, H3(v, 5) does not exist.
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