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Abstract
From a computer search new minimum sizes for the maximal partial
spreads in PG(3, q) have been obtained for ¢ = 8,9, 16 and for every ¢ such
that 25 < ¢ < 101. Furthermore, density results in the cases ¢ =8,9,16,19,23,
25,27 have been obtained. Finally, the already known exceptional size 45 for
g = 7 has been founded again.
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1 Introduction

A spread in PG(3,q), the projective space of three dimensions over the field
GF(q), is a set of mutually skew lines covering the space. A partial spread is
a set of mutually skew lines which is not a spread. A partial spread is said to be
maximal if it is neither properly contained in a spread nor in a partial spread.

Maximal partial spreads have been investigated by several authors, but a com-
plete knowledge of them is still far away.

This work is the natural continuation of the paper “A new method to construct
maximal partial spreads in PG(3, g)” [20], where we found new minimums for the
sizes of maximal partial spreads in PG(3,q), with ¢ = 11,13,17,19,23.

Moreover in [20), for ¢ = 11,13,17, we constructed maximal partial spreads
(in the following Mps) having all the cardinalities between our minimums and
those of the density results found by O. Heden (see Section 2). In the cases g = 19
and g = 23 we did not fill the previous gap, but we do it here.

In this paper we found new minimums for the sizes of Mps in PG(3, g), with
g = 8,9, 16 and for every ¢ such that 25 < g < 101.

Afterwards, we found the necessary cardinalities to fill the gaps between our
minimums and the size g* — g + 2, and do it for g = 8,9,19,23,25,27. We aiso
obtained density results in the case g = 16.
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During the research, we found many known values, such as the exceptional
cardinality 45 for ¢ = 7.

To construct the Mps, we used several programs, written in C language, and
let them run on a notebook with processor Intel Core i5-430M, 2.26 GHz, 3 MB
L3 cache and 4 GB RAM.

The first program, identified as the “max-intersecting program”, is a much
more efficient version than the one used in [20], and it works in the following way:
first of all, the program eliminates all the lines meeting some lines of an initial
partial spread; then it calculates the number of the remaining lines meeting each
remaining line, and adds to the initial partial spread the remaining line meeting
the maximum number of remaining lines. The program proceeds in this way until
a Mps is obtained.

For all the values of g studied in this paper we found minimums less than

([2logagl +1)g+1-3q, .

where ([2log,g] +1)g+1 is the known minimum for ¢ odd and g > 25, while
for g even the known minimum is much higher than that.

Furthermore, we used two other versions of the program which again calcu-
late the number of the lines meeting a fixed line, but select it when its value is
the minimum or the closest to the average. Such programs will be identified as
the “min-intersecting program” and the “middle-intersecting program”, respec-
tively. We use these versions to get unknown cardinalities greater than the found
minimums.

Furthermore, we used programs that construct several Mps at the same time.

For simplicity reasons all the previous programs use the line of Pliicker coor-
dinates (0,0,0,0,0, 1) as initial line.

Afterwards, we wrote a program which constructs Mps in the following way.
The program, that we call “linear program”, chooses the first line in the order of
construction, that is the order in which our algorithm constructs the Pliicker co-
ordinates of the lines (see Subsection 3.1), and eliminates all the lines meeting it.
Next, the program chooses the first of the remaining lines and proceeds similarly -
until to construct a Mps. Then the program chooses the second line, in the order
of construction, as first line and constructs the second Mps, and so on. So the
program constructs 836,/6; Mps, where 6, =q" +¢" ' +... +1.

The linear program, besides giving many unknown cardinalities, finds Mps of
sizes greater than those obtained by the max-intersecting program, but lower than
the previous known minimums.

2 Known results about maximal partial spreads

The first lower bound for maximal partial spreads follows A. A.Bruen, who in
1971 (see [4]) proved the following result.
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Theorem 2.1. If & is a maximal partial spread in PG(3,q), then

g+va+1<|#)1< ¢ - 3.

The upper bound was given by D. M. Mesner in 1967 (see [22]) and later by
A. A.Bruen, by using blocking sets theory. In 1976, A. A. Bruen and J. A. Thas
(see [6]) improved the previous result, ruling out the equal sign on the left.

The next lower bound is due to D. G. Glynn (see [9]), who in 1982 proved the
following result.

Theorem 2.2, If & is a maximal partial spread in PG(3,q), then
11> 2q.

The best upper bound for maximal partial spreads in PG(3,g), ¢ a prime, is
now given by A.Blokhuis. It follows from his results about blocking sets [3]
through which we get that

|.5’|<qz+]—q—.;—l

for a Mps ¢ in PG(3,4).
In (4], A. A. Bruen proved the existence of a Mps . in PG(3,g), with

|#| =g —q+1, g>2, 1)
and of a Mps % with
|#|=¢*—q+2, qodd,q>3. )
In [6), A. A.Bruen and J. A. Thas constructed a Mps . with
|#|=¢*—q+2, g=2"1h>1 3)
In [7], J. W. Freeman constructed a Mps ., with
|#=g"—q+2, ¢=2"h>1. @

For ¢ odd, the best density result known by us is due to O. Heden, who in [16]
proved that for any integer n in the interval

2
T+ 6<n<gi—g+2 ®)

there is a maximal partial spread of size n in PG(3,q), g > 7. In [13] O.Heden
found the following density result:
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¢ +1
2
0. Heden also found

+3$n§q2—q+2, when g+ 1=8or 16 mod24.

2
q ;-1 +1, when ged(g+1,24) =2 or 4, 6)
2
9 2+ 112, when ged(g+1,24) =4, )
in [12] and
g +1
> +n, forn=3,4,5 if g+ 1= 1+2mod6, 8)
g*+1
2 +n, forn=4 if g+1=0mod6andg>17, (9)
g*+1
s—+n  forn=1,23,45 if g+1=+2mod12, (10)
g*+1
> +n, forn=3,4,5 if g+1=+4mod12, (11)

in [16].
In [12], [11] and [14], O.Heden found the following other density results:
13-18 forg = 5,23-30 for g =7 and 58-66 for g = 11.
In [10), A. G4cs and T. Sz6nyi constructed maximal partial spreads in PG(3, q)
of size
cq+1,

where ¢ is an integer satisfying the condition
6lng+1<c<qg. (12)
For g odd, the previous condition becomes
2log,q+1<c<gq. (13)

It follows that for g odd, g > 25, the smallest known maximal partial spreads
have size ([2log,q] +1)g+1.

We remark that in {10] and in [20] the formula (13) has been mistakenly re-
ported with the symbol In instead of log, [26].

Moreover in [20], by a computer search, we found minimum sizes for g =
11,13,17,19,23 and, for g = 11,13,17, we also found all the values between our
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minimums and the previous minimums of the density results. The cases g = 19
and g = 23 were not yet completed. More precisely, in the case ¢ = 19, thirty-one
sizes were missing, and in the case g = 23 only one. In this paper, as already said,
we complete the previous density results.

Other results about Mps are the following.

In [2], A. Beutelspacher showed that in PG(3,¢) there is a Mps .%, with

| =¢"+1—nq, OSns%q—l,neN. (14)

In {23), S. Rajola, together with M. S. Tallini, showed that in PG(3, g), g even
and g > 8, there are Mps .%, with

|#| = —2ng+2n+1, n<min{q_l, 1+V2§""1}, neN. (15)

4

In (21], D.Jungnickel and L. Storme proved the existence of a Mps % in
PG(3,q), g even and g > 4, such that

|#|=4"-q. (16)

In [5], A. A. Bruen and J. W. P. Hirschfeld showed that in PG(3, q), with (g +
1,3) =1, there is a Mps ., with

¢ +q+2

1= T

an

Moreover, in [17], O. Heden proved that there are no maximal partial spreads
of size 115 in PG(3,11) and in [18] O.Heden, S.Marcugini, F. Pambianco and
L. Storme proved the non-existence of a Mps of size 76 in PG(3,9).

Finally, in [1], J. Bérat, A. Del Fra, S. Innamorati and L. Storme proved that 58
is the largest size for a maximal partial spread in PG(3, 8).

In the Table 1 we give all the known cardinalities for g < 101 (we recall that,
in the case g = 2, there is only the spread).

Moreover, in the Table 1 the notation Yk < nmeans k= 1,2,...,n.

Table 1: The known sizes of maximal partial spreads in PG(3,¢q), g < 101

q Min. Ref. Others Ref.

3 7 [25]

4 11 251 12-—-14 [25]

5 13 [14] 14-22 [14]

7 23 [11] 24-25;26—30;31—44,45 (11]; [12]; (5); [15]
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Table 1: The known sizes of maximal partial spreads in PG(3,¢), g < 101

q Min. Ref. Others Ref.
14); (15); (16); (1);
8 41 (14) 49; 51; 56; 57; 58 23)) (13); (16); (1)
9 46 (17) 47-74 )
11 48 [20] 49-57;58—66;67—112 [20]; [12]; (5)
13 62 [20) 63 —85;86—158 [201; (5)
145+k-16,Yk < 5; (14);
16 145 (14) 193,197, 227; (15);
240; 241; 242 (16); (1); (4)
17 95 [20] 96 —148; 149; 150; 151 —274 [20]; (9); [20]; (5)
19 114 [20] 115 — 146; 150; 156; 158; 163; [20];
182 —344 (5)
23 148 (20] 150 — 253; 254; 255 —270; [20]; (13); [20];
271 —-508 (5)
25 276 (13) 301;314—-602 (13); (5)
27 298 (13) 325,352;368—704 (13); (5)
29 320 (13) 349,378,407, 427-814 (13); (5)
31 342 (13) 373,404,435,466; 484 —932 (13); (5)
5454-k-32,Vk < 13; (14);
32 545 (14) 705+k-32,Vk < 6; (12);
777,839,901,963; (15);
992; 993; 994 (16); (1); 4)
37 445 (13) 445+ k-37,Vk < 6; (13);
686 ~ 1334 (10)
. < R .
41 493 (13) 493 +k-41,Vk < 8; (13);
847 — 1642 (5)
43 517 (13) 517+k-43,Vk<9; (13);
928 —930; 931 — 1808 ®); (5)
. < 10; :
47 612 (13) 612+k-47,Vk < 10; (13);
1111 -2164 &)
. <11: -
49 638 (13) 638+k-49,Vk < 11; (13);
1202 — 1206; 1207 — 2354 (10); (5)
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Table 1: The known sizes of maximal partial spreads in PG(3,¢), ¢ < 101

q Min. Ref. Others Ref.
. < . .
53 690  (13) 690+ k-53,Vk < 13; (13),
1411 —2758 (5)
768+ k- 59, Vk < 16; (13);
59 768 13
13 1747 - 3424 )
794+ k-61,Vk <17, (13);
61 794 13
’ (13 1862 — 1866; 1867 — 3662 (10); (5)
1665 + & - 64, Vk < 36; 12y
2113+ k- 64, Vk < 29; (14);
4
6 1665 (12) 3341,3467,3593,3719,3845; (15);
3971; 4032; 4033; 4034 (15); (16); (1); (4)
939 +k-67,Vk < 19; (13);
67 939 13
(13) 2248 —2250; 2251 — 4424 8); (5)
995+k-71,Vk < 21; (13);
71 S5 13
99 13 2527 —4972 (5)
1023 +k-73, Vk £ 22; (13);
73 1023 (13
(13) 2666 —2670; 2671 — 5258 (10); (5)
1107 + k- 79, Vk < 25; (13);
79 1107 (13
13 3124 —3126; 3127 — 6164 (8); (5)
- <26; ;
81 1135 (13) 1135+ %-81,Vk <26 (13)
3287 — 6482 (5)
1163 + k- 83, Vk < 27; (13
83 1163 (13
(13) 3451 — 6808 (5)
. < . .
89 1247 (13) 1247 + k- 89, Vk < 30; (13);
3967 — 7834 5)
1456 + k- 97, Vk < 33; (13);
97 14
6 U3 4706 —4710; 4711 - 9314 (10); (5)
1516+ k- 101, Vk < 35; (13);
101 151 13
0 S16.(13) 5107 - 10102 )
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3 Algorithms description

In this section we give the details of the algorithms used in our search for maximal
partial spreads.

We show the construction of the Pliicker coordinates, the initial partial spreads
and the way to construct maximal partial spreads.

3.1 Construction of Pliicker coordinates

We recall that the Pliicker coordinates represent a line in three dimensional space
using six coordinates (poi, po2, Po3, P12, P13, P23), different from (0,0,0,0,0,0),
which are determined up to proportionality and such that

porp23 — pozp13 + po3p12 = 0. (18)

In order to construct the Pliicker coordinates of the lines we proceed in the
following way.

We fix the first coordinate equal to 1 and vary the others in all the possible
ways, but taking into account the condition (18).

After this we fix the first coordinate equal to 0 and the second equal to 1 and
vary the others in all the possible ways, taking again into account the previous
relation. We proceed in this way up to the line (0,0,0,0,0,1).

In the table below we describe the six different groups of lines obtained as
above described. We write in bold font the coordinates depending on other co-
ordinates, since (18) holds. In the last column we report the number of lines for
each group of lines. The symbols 7,...,V denote the line groups.

po P po3 pr2 pis pa |
7

P(’>2 P(’B P12 P{3 Py | 4*

Loty Py PH|S

oo | o2

q

7

1 p2 P13 P33
0 1 ps P
0 0 1 pgz q

1

1
0
0
0
0
0 0 0 0 1

o O O O

We remark that, by (18), we get:
P§3 = P{nP{s - P(')3P€z,
pis = pspih,

piz =0.

As an example, we show the construction of the lines of the first group, that is

(1, poz, po3» P12, P13, P23) -
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We use the following algorithm. The Pliicker coordinates of the (i + 1)-th line,
withi =0,1,...,4* — 1, are:

po1 =1,

po2 =imodg;

po3 = |i/q)| modg,

p12 = |i/q*| modg,
p13 = |i/q*| modg,
P23 = po2P13 — P03P12,

where |X | denotes the integer part of X. We remark that the calculus of p,3 is
done in GF(q).

As easily checked, the obtained sextuples are all distinct, and two of them are
never proportional, since the first element is 1 for all of them. Moreover all these
sextuples represent lines of PG(3,q), since each of them satisfies the condition
(18) and is not formed by six zeros.

For example, in the case g = 2, the above algorithm gives the following sex-
tuples, where p23 depends on the line and is given by (18):

(, 0, 0, 0, 0, px)
(1: 11 ] Oa O' p23)
, 0, 1, 0, 0, pa3)
a, 1, 1, 0, 0, px3)
, 0, 0, 1, 0, px)
(1, 1, 0, 1, 0, p»)
(1, o, 1, 1, 0O, pxn)
a, 1, 1, 1, 0, pxn)
(1, 0, 0, 0, 1, px)
(1, 1, 0, 0, 1, p23)
a o, 1, 0, 1, pa)
(1, I, 1, Ov 1, P23)
a, 0, 0, 1, 1, pa3)
(a, 1, 0, 1, 1, pw)
(1, o, 1, 1, 1, pxn)
(a, 1, 1, 1, 1, pxn)

We remark that pgy varies after 1 = g lines, po3 varies after ¢! lines, p2
varies after g2 and finally p;3 varies after ¢° lines.

3.2 Construction of the initial partial spread

First of all, we recall that the line (0,0,0,0,0,1) belongs to all the different initial
partial spreads that we use.
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As first initial partial spread we choose some lines of the spread in PG(3,9)
obtained by A. A. Bruen and J. W. P. Hirschfeld and formed by tangent lines, imag-
inary chords and imaginary axes of a twisted cubic, with ged(g+1,3) = 3 (see
(5D

The Pliicker coordinates (po1, po2, Po3, P12, P13, p23) of the tangent lines dif-
ferent from (1,0,0,0,0,0) are

(¢4,263,32,6%,21,1), (19)

for every t+ € GF(g). The algorithm constructs from 0 to g — 1 tangent lines,
through (19), which gives the possibility to construct the tangent line (1,0,0,0,0,0)
or not. The (g + 1)-th tangent line is the line (0,0,0,0,0,1) which, as above said,
is always chosen as first line.

The Pliicker coordinates of the imaginary axes and the imaginary chords are
respectively

(a* (v +3)",20% (b7 +3), 302 (b~ 1), @* (6% +3) , 2ab, 1),

(a* (2 +3)", 20 (67 +3), 302 (67 +3), & (82— 1) , 2ab, 1),

where a varies in GF(¢q)\{0} and b in GF(q). It is easy to check that the pairs (a, b)
and (—a, —b) give the same coordinates. So we make a vary in {1,...,(g—1)/2}
and bin {0,...,q—1}.

For every choice (4,b) the algorithm constructs all the Pliicker coordinates
associated with the pairs (a,b), with a = 1,2,...,dand b=0,1,2,...,b and so
the algorithm constructs @ (b + 1) lines (by considering the elements @ and b of
Zp as integer numbers).

The algorithm constructs from 0 to g(g — 1) /2 axes and from O to g (g — 1) /2
chords.

If a program uses this spread we add the number 1 to its name.

As a second initial partial spread, we use, either entirely or partially, the fol-
lowing partial spread:

(a®,—k,a,—ka,0,k), (=¥ ,b%b,kb,K,0),

where k, k' are fixed elements of Z,\{0}, with k # &', while a and b vary in
Z,\{0}. Such a partial spread has been found by using a representation of the
space PG(3,q) in the geometry of AG(2,q). Such a representation is shown in
[24]. For every choice of k and k’, the algorithm allows us to take from Q to g — 1
lines of the first set and from 0 to ¢ — 1 lines of the second set.

If a program uses this spread we add the number 2 to its name.

We also use the following spread (see [19], 17.3.3).
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Let g = p”, with & > 1 and let x**! 4 bx — ¢ be a polynomial without roots in
F = GF(g). Then the set

{((1,0,0,0), (0,1,0,00)} U {{(z,%, 1,0), (e, 2 +by”,0,1)) || (»,z) € F*}

is an aregular spread of PG(3,¢).
If a program uses this spread we add the number 3 to its name.

3.3 The algorithms

First of all, the programs identified as the max-intersecting program, the min-
intersecting program and the middle-intersecting program work with the set &
formed by the lines not meeting (0,0,0,0,0,1).

We first explain the max-intersecting program.

The algorithm firstly constructs the array of the Pliicker coordinates of the
lines of the initial partial spread & and cancels out all the lines meeting a line of
Z.

Denoting by % the set of the remaining lines. For each line lj € %, i =
0,...,|-%| — 1, the algorithm calculates the number n(};) of the lines of % meet-
ing I;. The program selects the first line /; having the value n(l;) = maxn(l;), that
is the line of % meeting the maximum number of lines of %, or the first one,
following our order of construction, in the case there are at least two lines of %
meeting the same (maximum) number of lines of .%p. Therefore the selected line
I; is marked, as a line of our line set, and all the lines meeting / are ruled out.
Denote by £} the new set of the remaining lines. At the second step the program
calculates the number n(}), l; € £,i=0,...,|-£| — 1, and again determines the
maximum of n(/;). The program stops at the n-th step, when £, = 0.

As concern the other two versions of the program, they again calculate the
number n(l;) of the lines meeting a fixed line /;, but the program selects it when
its value is the minimum of n(l;) or the closest to the average of all the numbers
n(l).

Again, as mentioned in the introduction, we wrote a program which constructs
Mps in the following way. The program, that we call linear program, chooses the
first line in our order of construction of the lines and the program eliminates all
the lines meeting it. Next, the program chooses the first of the remaining lines and
proceeds similarly until a Mps is achieved. Then the program chooses the second
line, in the order of construction, as first line and it constructs the second Mps, and
so on. So the program constructs 6;6,/6; Mps, where 6, =¢"+¢" ' +... + 1.

4 Results

We found some new minimums and new density results for the sizes of Mps of
PG(3,q). In particular, we found new minimums for g = 8,9, 16 and for every ¢
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such that 25 < ¢ < 101.

Moreover, we found new density results for 4 = 8,9,16,19,25,27. We also
found a Mps of the size 149 for g = 23, which is the missing value between the
minimum found in [20] and the minimum of the density result found in the same
article,

We also found many well known results, such as the size 45 forg = 7.

Totally, we constructed about one million and a half Mps or spreads.

The density results found here and which appear in the Table 2 include also
some known values. The knowledge of such values is not specified for brevity
reasons.

Table 2: New sizes of maximal partial spreads in PG(3,4q)

q Min. Previous min. Density results Previous density results
8 30 41 31-55 56-58

9 36 46 37-45 46-74

16 87 145 88-221,225-231 240-242

19 114 147-181 115-146; 182-344
23 148 149 150-508;

25 173 276 174-313 314-602

27 193 298 194 -367 368-704

29 210 320
31 231 342
32 238 545
37 306 445
41 345 493
43 372 517
47 417 612
49 474 638
53 488 690
39 569 768
61 600 794
64 623 1665
67 672 939
71 732 995
73 761 1023
79 848 1107

428



Table 2: New sizes of maximal partial spreads in PG(3, q)

q Min. Previous min. Density results Previous density results
81 873 1135
83 903 1163
89 968 1247
97 1102 1456
101 1160 1516

From the already known results and from our results, we get the following
theorem.

Theorem 4.1. In PG(3,q), for every q such that 5 < q < 101, there are maximal
partial spreads of size less than

([2logq] +1)g+1-3q.

Concerning density results, in the case g = 16 we have not found all the
unknown cardinalities included between the minimum value we found and the
biggest unknown cardinality, in spite of numerous attempts. This is really unex-
pected, because in the other cases we have found all the unknown cardinalities in
a very easy way.

In addition, from the already known results and from our results, we get the
following theorem.

Theorem 4.2. In PG(3,q), for every q such that 5 < q < 27 and q # 16, there is
a maximal partial spread of size n for any integer n in the interval

([2log,q] +1)g+1-3g<n<g* —q+2.

For every new example of Mps, we specify the program through which we
have obtained it. Obviously, we have obtained several results using different pro-
grams. :

In the following scheme we do not report the already known values, even if
we remark that in many cases we have obtained them.

e g = 8. Sizes 30, 31, 32 by the max-intersecting program 3. Sizes 33-40,
42-48, 50 and 52-55 by the linear program.

e g =9. Sizes 36-40 by the max-intersecting program 3. Sizes 41-45 by the
linear program.

e g = 16. Sizes 87-99, 121-140, 142-144, 146-160, 162, 164, 166-168, 170-
173, 175, 176, 178, 181, 182, 184-186, 188, 190, 194, 196, 198, 200, 202,

429



204, 212-214 and 226 by the max-intersecting program 3. Sizes 100-120
by the linear program. Sizes 141, 163, 165, 169, 174, 179, 183, 187, 189,
191, 192, 195, 199, 201, 203, 205-208, 210, 211, 215-221, 228-231 by the
middle-intersecting program 3. Size 180 by the min-intersecting program

3.
e g = 19. Sizes 147-149, 151-155, 157, 159-162 and 164-181 by the linear
program.

o g =23. Size 149 by the max-intersecting program 1.

e g =25. Sizes 173-193, 286, 289, 290, 302 and 304 by the max-intersecting
program 3. Sizes 194-275, 277-285, 287-288, 291-300, 305-313 by the
linear program. Size 303 by the middle-intersecting program 3.

o g = 27. Sizes 193-215 by the max-intersecting program 3. Sizes 216-297,
299-324, 326-351 and 353-366 by the linear program. Size 367 by the
middle-intersecting program 3.

¢ 29 < g < 101. All the minimum values have been found by the three ver-
sions of the max-intersecting program.

We give some examples about the execution time of the programs.

For g =7 the linear program finds all the sizes between 27 and 45, and does it
in 1,37 seconds.

For g = 8 the linear program constructs, in 5,95 seconds, 4096 Mps or spreads
having all the cardinalities between 33 and 52, and the cardinalities 54, 56, 57 and
65.

For g =9 the linear program constructs, in 16,89 seconds, 7462 Mps or spreads
having all the cardinalities between 41 and 69, and the cardinalities 71, 72 and 82.

The max-intersecting program 3 gives, for g = 8, the cardinality 30 in 0,46
seconds; for g = 9 the cardinality 36 in 0,87 seconds; for ¢ = 16 the cardinality
87 in 19,80 seconds and, for ¢ = 32, the cardinality 238 in 648,09 seconds.

For g =71 the max-intersecting program 1 gives the cardinality 732 in 2571,34
seconds, the cardinality 785 in 119,78 seconds and the cardinality 983 (that is
lower than the previous known minimum) in 42,71 seconds.

S Some new examples of maximal partial spreads
In this section we describe the Pliicker coordinates of the lines of some Mps that
we found.

For every reported Mps, we first write the Pliicker coordinates of the lines of
the initial partial spread, and then the order numbers i of the added lines, whose
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Pliicker coordinates can be determined through the formulas:

po1 =1,

Po2 =imodg,

po3 = |i/q| modg,

piz = |i/q*| modg,
pi3 = |i/q® | modg,
P23 = po2P13 — P03P12,

which appear in Subsection 3.1.

As a first example we describe the maximal partial spread of size 30 for g = 8.
In order to construct this Mps, we have chosen seven lines from the spread re-
ported at the end of Subsection 3.2.

Initial lines:
©,0,0,0,0,1),(1,4,1,0,6,5),(1,0,0,1,6,0), (1, 1,2, 2,6,2),(1, 1, 3, 3, 6,
3),(1,1,4,4,6,0),(1,1,5,5,6,1),(1, 1, 6,6, 6, 4).

Added lines:
24, 2367, 231, 3708, 455, 2394, 3784, 1165, 180, 3971, 2134, 2589, 1893, 1808,
631, 3883, 382, 1462, 2063, 708, 810, 1537.

As a second example we describe the maximal partial spread of size 210 for
q =29. In order to construct this Mps, we have chosen sixty-one lines from the
Bruen-Hirschfeld’s spread.

Initial lines:

©0,0,0,0,0,1),9,0,9,-1,0, 1), (16, 8, 12,0, 2, 1), (20, 28, 21, 3, 4, 1), (28,
14,7,8, 6, 1), (13,7, 28, 15,8, 1),(28,0,7,-4,0, 1), (24, 6, 19, 0, 4, 1), (1, 21,
26, 12, 8, 1), (13, 25, 28, 3, 12, 1), (5, 27, 25, 2, 16, 1), (4, 0, 23, -9, O, 1), (20,
13,21, 0,6, 1), (25, 2, 15,27,12,1), (6, 1, S, 14, 18, 1), (9, 15, 20, 19, 24, 1),
9,0,-3,3,0,1),(16,8,0,4, 2, 1), (20, 28,9, 7, 4, 1), (28, 14, 24, 12, 6, 1), (13,
7,16, 19, 8, 1), (28, 0, -12, 12,0, 1), (24, 6, 0, 16, 4, 1), (1, 21, 7, 28, 8, 1), (13,
25,9, 19, 12, 1), (5, 27, 6, 18, 16, 1), (4,0, -27,27, 0, 1), (20, 13,0, 7, 6, 1), (25,
2,23,5,12, 1), (6, 1, 13, 21, 18, 1), (9, 15, 28, 26, 24, 1), (1, 2, 3, 1, 2, 1), (16,
16, 12, 4,4, 1), (23, 25, 27,9, 6, 1), (24, 12, 19, 16, 8, 1), (16, 18, 17, 25, 10, 1),
(20, 26, 21, 7, 12, 1), (23, 19, 2, 20, 14, 1), (7, 9, 18, 6, 16, 1), (7, 8, 11, 23, 18,
1), (24, 28, 10, 13, 20, 1), (25, 23, 15, 5, 22, 1), (1, 5, 26, 28, 24, 1), (25, 15, 14,
24,26, 1), (20, 7, 8, 22, 28, 1), (20, 22, 8, 22, 1, 1), (25, 14, 14, 24, 3, 1), (1, 24,
26,28,5, 1), (25,6, 15,5,7, 1), (24, 1, 10, 13,9, 1), (7, 21, 11, 23, 11, 1), (7, 20,
18, 6, 13, 1), (23, 10, 2, 20, 15, 1), (20, 3, 21, 7, 17, 1), (16, 11, 17, 25, 19, 1),
(24,17,19, 16,21, 1), (23,4, 27,9, 23, 1), (16, 13, 12,4, 25, 1), (1, 27,3, 1,27, 1).
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Added lines:

677253, 504585, 521560, 449301, 625597, 347945, 489072, 36563, 240119,
509323, 616226, 330155, 82544, 121871, 174971, 187236, 138497, 157222,
346096, 108275, 124884, 147268, 601567, 391027, 429148, 109152, 145311,
432435, 550591, 697973, 25022, 191857, 173609, 589158, 459617, 129059,
206486, 596160, 367651, 56530, 337034, 658419, 317597, 55325, 603163, 52495,
107491, 451648, 683065, 148086, 285155, 116416, 302602, 337486, 150168,
477206, 196604, 506753, 274083, 561501, 33049, 42382, 458736, 70067, 569409,
441523, 416479, 80220, 243346, 537506, 516647, 89547, 328090, 212003, 98520,
109483, 234264, 215347, 245551, 503476, 528854, 21953, 385516, 271778,
527360, 189087, 423060, 232916, 38771, 286659, 112330, 669444, 296968,
277363, 182475, 583897, 482186, 160767, 110259, 38321, 642746, 341987,
105983, 122833, 49273, 531042, 304797, 519957, 115948, 644653, 594328,
395375, 650790, 492067, 662581, 113012, 494299, 7416, 498804, 103763, 90926,
167220, 272780, 58186, 47265, 200268, 372443, 421720, 605597, 76597, 464438,
706631, 437079, 453946, 510541, 27980, 70865, 152474, 344471, 410036, 27349,
111830, 197156, 197918, 202937, 241613, 254354, 370916, 379262, 397943,

6 Validity of the results

In this section we explain the proves on which we base the validity of the used
programs. .
First of all, max-intersecting program, min-intersecting program and middle-
intersecting program give the same results of the similar programs used in [20].
Furthermore, the validity of these programs is based on the following facts:

1. We check the validity of the Pliicker coordinates construction and the writ-
ing of incidence condition for two lines. Moreover, we submitted the pro-
grams to the following preliminary test: we slightly changed the programs
to calculate the number n(!) (for all the lines of the space for several val-
ues of ¢ and for many lines for the others) always obtaining the value
n(l) = (¢*+q) (g+1) + 1 for every line . The number n(I) has been cal-
culated more than one million of times.

2. We constructed the Bruen-Hirschfeld’s spread for the maximum value of
q that we have studied and we checked that it is a set of g> + 1 mutually
skew lines and so a spread, by using a macro of Microsoft Excel (see [20]).
Afterwards, by starting from a number of its lines less than g2 + 1, but close
to it, the program constructs again the Bruen-Hirschfeld’s spread.

3. The program never gives results against the theory, in particular for the cases
PG(3,2), PG(3,3) and PG(3,4), for which there is a complete characteri-
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zation of maximal partial spreads (see [25]) and for which we obtain all and
only the known cardinalities, in addition to several spreads.

4. We obtain a spread when we expect it.

5. For g a prime and g < 13, we constructed maximal partial spreads by Mi-
crosoft Excel using a macro similar to the macro used in [20], and we have
obtained the same results which we get through the C language program.

6. For ¢ a prime and ¢ < 13, we tested some constructed line sets through a
macro in Microsoft Excel and verify that they are Mps.

7. We tested, also for high values of ¢, g a prime, some constructed line sets
by Microsoft Excel using the macro described in [20], and than we verified
that they are sets of mutually skew line.

8. We wrote a (very) simple C language program which we have tested the
obtained results and that program always confirmed that they are Mps.

9. We tested also the test programs. For example, to checked the program that
verify that the obtained line sets are Mps, proceeding in the following way.
For instance, we tested the Bruen-Hirschfeld’s spread and the test program
confirms that it really consists of a spread. After this we tested the previous
spread deprived of a line and the program replies that it is not maximal.
Furthermore, we tested the line set obtained by adding a line to the previous
spread and the program answers that it is not a set of mutually skew lines.

Concerning the programs that construct Mps in PG(3, p"), with p a prime and
h > 1, the points 1, 3, 4, 5, 8,9 and 10 hold and we did also the following tests.

Firstly we verified that the used tables of sum and product, obtained through
a specific software [8] but written as an array for the C language by a macro of
Microsoft Excel, are really those of a Galois field, by using a program which
checks the axioms of a finite field.

Secondly, for PG(3,2) and PG(3,3) we constructed Mps either by using oper-
ations mod p or the tables of sum and product, and we obtained the same results.

Concerning the linear program, the points 1, 3, 7 and 9 still hold. Furthermore,
we remark that the program finds the sizes g> — g +2 and g% + 1, but not sizes
between them, for all the values that we studied. In the case g = 7, the program
finds the size g — g+ 3 and this is the only case in which the existence of such

cardinality is known.

7 Conclusion

This work has the aim not only of finding new minimum sizes for the maximal
partial spreads in PG(3, ¢), but also of giving, as an obvious consequence, a theo-
retical indication and therefore a new impulse to the research.
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In fact, the results we improve back to the year 2003, when A.Gé4cs and
T. Szényi managed to lower the previous minimums remarkably. However, the
gaps between the Glynn’s lower bound and the known minimums still appeared
much too large. Here, for the values of ¢ that we study, we succeed in getting a
reduction up to 70% of the previous gaps, as happens in the case g = 64.

Moreover, we have noted not only that the new minimums are quite lower than
the previous one, but also that an essential difference between the cases g even and
g odd does not appear. Only the case g = 16 has been different from the others,
but only for the density results.

Nevertheless, it is possible to develop the computer search, too. We are de-
veloping new programs from which we expect to be able to achieve new results
for maximal partial spreads in PG(3,q) for values of ¢ that are larger than those
studied in this paper.
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