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ABSTRACT. A graph G is called super edge-magic if there exists a bijec-
tive function f : V(G)U E(G) - {1,2,...,|V(G)| + |E(G)|} such that
FV(G) ={1,2,...,lV(G)|} and f(u)+ f(v)+ f (uv) is a constant for each
uv € E(G). The super edge-magic deficiency, u, (G), of a graph G is defined
as the smallest nonnegative integer n with the property that the graph GUn K,
is super edge-magic or +oo0 if there exists no such integer n. In this paper, the
super edge-magic deficiency of certain 2-regular graphs with two components
is computed, which leads us to a conjecture on the super edge-magic deficiency
of graphs in this class.

1. INTRODUCTION

We generally follow the notation and terminology pertaining to graphs of [3].
All graphs that we consider in this paper are finite, simple and undirected. We will
denote the set of vertices and edges of a graph G by V (G) and E (G), respectively.
For two graphs G, and G, with disjoint vertex sets, the union G = G; UG has
V(G) =V (G1)UV (Gz) and E(G) = E(G1)UE(G>). If a graph G consists of m
disjoint copies of a graph H, then we write G = mH.

For two integers a and b with a < b, we will denote the set {z € Z|a <z < b}
by simply writing [a, b], where Z denotes the set of all integers.

In 1970, Kotzig and Rosa [17] introduced the notion of edge-magic labelings.
These labelings were called magic valuations by them. These were rediscovered
in 1996 by Ringel and Lladé [19] who coined one of the now popular terms for
them: edge-magic labelings. More recently, they have also been referred to as
edge-magic total labelings by Wallis [21]. For a graph G of order p and size g, a
bijective function f : V(G) U E(G) — [1,p + q] is called an edge-magic labeling if
F(u) + f(v) + f(uv) is a constant (called the valence of f) for each uwv € E(G). If
such a labeling exists, then G is called an edge-magic graph. In 1998, Enomoto et
al. [4] defined a slightly restricted version of edge-magic labeling f of a graph G
by requiring that f (V (G)) = [1,p]. They called such a labeling super edge-magic.
Thus, a super edge-magic graph is a graph that admits a super edge-magic labeling.
Lately, super edge-magic labelings and super edge-magic graphs are referred to by
Wallis [21] as strong edge-magic total labelings and strongly edge-magic graphs,
respectively. Furthermore, according to the latest version of the survey on graph
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labelings by Gallian [10] available to the authors, Hegde and Shetty [13) showed that
the properties of being super edge-magic and strongly k-indexable are equivalent.

For every graph G, Kotzig and Rosa [17] proved that there exists an edge-magic
graph H such that H = G U nK, for some nonnegative integer n. This motivated
them to define the edge-magic deficiency of a graph. The edge-magic deficiency,
#(G), of a graph G is the smallest nonnegative integer n for which the graph GUn K,
is edge-magic. Inspired by Kotzig and Rosa’s notion, Figueroa-Centeno et al. [7]
analogously defined the concept of super edge-magic deficiency, p,(G), of a graph
G to be either the smallest nonnegative integer n with the property that the graph
G UnK is super edge-magic or +oo if there exists no such integer n. Thus, the
super edge-magic deficiency of a graph G is a measure of how “close” G is to being
super edge-magic.

In two separate papers [6, 7}, Figueroa-Centeno et al. computed the super edge-
magic deficiencies of the 2-regular graphs mC, when m = 1, 2, 3 and n > 3.
In (7], they also determined the exact values of u, (4Cs,) and p, (4Cs). According
to the parity of m, Ngurah et al. (18] discovered an upper bound for p, (mCy).
Afterwards, the authors determined the exact value of p, (mCy) in {15]. Figueroa-
Centeno et al. [8] studied the super edge-magic properties of 2-regular graphs with
two components and proved several classes of such graphs are super edge-magic.

Note that for 2-regular graphs, a super edge-magic labeling is a strong vertex-
magic total labeling (see [12, 14] for the definition and results on strong vertex-magic
total labelings of 2-regular graphs) and vice versa. In this paper, we will only deal
with 2-regular graphs. Thus, we will refer to strong vertex-magic total labelings as
super edge-magic labelings.

To present the new results contained in this paper, we will frequently use the
following lemima taken from [5].

Lemma 1. A graph G of order p and size q is super edge-magic if and only if there
ezists a bijective function f : V(G) — (1,p) such that the set

S={f(u) + f(v) luv € E(G)}

consists of ¢ consecutive integers. In such a case, f extends to a super edge-magic
labeling of G with valence k = p + q + s, where s = min(S) and

S=k-(p+q),k-(p+1)].

Due to Lemma 1, it is sufficient to exhibit the vertex labeling of a super edge-
magic graph; however, we will provide the valences to increase the clarity of our
results.

Figueroa-Centeno et al. [5] established the following necessary condition for an
r-regular graph to be super edge-magic.

Lemma 2. If G is a super edge-magic r-regular graph of order p and size q, where
r > 1, then q is odd and the valence of any super edge-magic labeling of G is
{(g+4p+3)/2.

Kotzig and Rosa [17] found an upper bound for the edge-magic deficiency of a
graph of order p, namely, u(G) < Fpi2 — 2~ (P}!), where F}, is the p-th term of the
Fibonacci sequence. This implies that every graph has finite edge-magic deficiency.
However, not all graphs have finite super edge-magic deficiency as the following
lemma indicates (see (7]).
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Lemma 3. If G is a graph of size g such that the degrees of all vertices are even
and ¢ = 2 (mod 4), then u, (G) = +o0.

The type of graph labelings that have received the most attention over the years
was introduced by Rosa [20] in 1967, who called them B-valuations. They were later
studied by Golomb [11] who called them graceful labelings, which is the popular
term in the current literature of graph labelings. For a graph of size g, an injective
function f : V(G) — [0, g] is called a graceful labeling if each uv € E(G) is labeled
|f(x)— f(v)| and the resulting edge labels are distinct. In [20], Rosa also introduced
the concept of a-valuations (a particular type of graceful labeling) as a tool for
decomposing the complete graph into isomorphic subgraphs. A graceful labeling f
is called an a-valuation if there exists an integer A (called the critical value of f)
so that min {f(v), f(v)} € A < max{f(v), f(v)} for each uv € E(G). Moreover, he
pointed out that a graph that admits an a-vaeluation is necessarily bipartite and
therefore can not contain a cycle of odd length.

The following result presented in [15] provides us an upper bound for the super
edge-magic deficiency of a graph without isolated vertices that has an a-valuation
in terms of its order and size.

Theorem 1. If G is a graph of order p and size ¢ without isolated vertices that

has an a-valuation, then
#s (G)<g-p+1.

The bound presented in Theorern 1 is sharp in the sense that there are infinitely
many graphs G for which p, (G) = |[E(G)| = |V (G)] + 1. Indeed, all complete
bipartite graphs (see [9]) and some 2-regular bipartite graphs (see [6, 7, 15]) attain
the bound.

In the following section, we present some results concerning the super edge-
magic deficiency of 2-regular graphs with two components. Notice that the bipartite
graphs in this class achieve the bound provided in Theorem 1 if the number of edges
in these bipartite graphs is a multiple of 4 (see Theorems 2 and 4, and Corollaries
1 and 2).

For a thorough study of graph labeling problems, see the survey by Gallian [10]. .
For more information on super edge-magic graphs and related topics, see the books
by Baga and Miller [2], and Wallis [21].

2. NEwW REsuLTs

Our first result concerns the super edge-magic deficiency of 2-regular bipartite
graphs of even order with two components.

Theorem 2. For even integers m and n with m > 4 and n > 4,
I ffm+n=0 (mod4),
s (CnUCh) = { +00, fm+n=2 (mod 4).

Proof. Throughout this proof, assume that m and n are even with m > 4 and
n > 4. Suppose that m + n = 0 (mod 4). By Lemma 2, the 2-regular graph
Cun U Cy is not super edge-magic, implying that u, (Cm UCp) = 1. Also, Abrham
and Kotzig [1] have proved that C,, U Cy, has an a-valuation if and only if both m
and n are even and m +n = 0 (mod 4). This together with Theorem 1 provides
that g, (Cn UCR) < 1. Thus, p, (Crn UC,) = 1 when m +n = 0 (mod 4). The
other case is an immediate consequence of Lemma 3. O
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Figueroa-Centeno et al. [8], and Gray and MacDougall [12] independently found
a necessary and sufficient condition for the 2-regular graph C3 U C,, to be super
edge-magic. This result is now extended in the following theorem.

Theorem 3. For every integer n > 3,

0, ifn > 6 and n is even;
1, ifn=1 (mod4);
m@uey =4y gnZ medd

+00, ifn=3 (mod 4).

Proof. One can verify, by an exhaustive computer search, that C3UC4U K} is not
super edge-magic. However, C3 U C4 U 2K is super edge-magic by labeling the
vertices in its cycles with4 —5-8—-4 and 1-6—-2—-9—1, and its isolated vertices
with 3 and 7 to obtain a valence of 23. This implies that p, (C3 U Cy) = 2. The
2-regular graph C3 U C,, has shown to be super edge-magic if and only if n > 6
and n is even (see (8, 12]). Thus, z, (C3UCp) =0 if n > 6 and n is even, whereas
ps(C3UCL) 2 1ifn=1 (mod 4).

To establish that p, (C3UC,) <1 whenn =1 (mod 4), let n = 4k + 1, where
k is a positive integer, and define the graph G = C3 U Cyr41 U K with

V(G)={zilie 1,3} U{nlie 1,4k +1]}u{z}
and
E(G) = {zixit1 i € [1, 2} U {z123} U {yivis1 |é € (1,45} U {s19ak41} .

Then the vertex labeling f : V(G) — {1,4k + 5] such thatf (z1) = 1; f(z2) =
2k + 4; f(z3) =2k +5;

i+1, ifl=2—-1andie[l,k;

k+3, ifl=2%-1landi=k+1;
)= 2k+i+4, ifl=2i—1andie[k+2,2k+1];

2k+i+5, ifl=2andie€[lk];

i+3, ifl=2iand i€ [k+1,2k];

and f(2) = k + 2 induces a super edge-magic labeling of G with valence 10k + 14,
which leads to conclude that g, (C3UCp) =1 when n =1 (mod 4).
Finally, the remaining case immediately follows from Lemma 3. 0

The super edge-magic characterization of the 2-regular graph Cy U C,, was in-
dependently given by Figueroa-Centeno et al. [8], and Gray and MacDougall [12].
This result is now extended in the following theorem.

Theorem 4. For every integer n > 3,

0, fn>5 andn is odd;
1, fn=0 (mod 4);

2, ifn=3;

400, fn=2 (mod 4).

Hs (04 U Cn) =

Proof. The 2-regular graph Cy U C,, has shown to be super edge-magic if and only
if n > 5 and n is odd (see {8, 12]). This implies that if n > 5 and n is odd, then
ps (C4 U Ch) = 0. The case where n = 0 (mod 4) immediately follows from Theo-
rem 2. The cases where n = 3 and n = 2 (mod 4) easily follows from Theorem 3
and Lemma 3, respectively. This completes the proof of the theorem. O
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With the aid of the super edge-magic characterization of the 2-regular graph
Cs U C,, found in (8], we are now able to provide the following result.

Theorem 5. For every integer n > 3,
0, if n is even;
us (CsUCy) =< 1, ifn=3 (mod 4);
400, ifn=1 (mod4).
Proof. The 2-regular graph Cs U C,, has proven to be super edge-magic if and only
if n > 4 and n is even (see [8]). This implies that p, (C5UCr) =0ifn >4 andnis
even, whereas p, (Cs UCy) =2 1if n =3 (mod 4). Also, it follows from Theorem 3
that g, (Cs U C3) = 1. Thus, it suffices to show that p; (CsUCr) <1 whenn>7
and n =3 (mod 4). To do this, let G = Cs U C,, U K be the graph with
V(G) = {.’L‘.' li € [1,5]}U{y.- 'i € [l,ﬂ]}U {z}
and
E(G) = {zizina|i € [1,4]} U {z1zs} U {vivisa [i € [1,n — 1]} U {3nwn},
and consider three cases.
(1) {label=Case 0:]
(2) For n = 12k — 5, where k is a positive integer, define the vertex labeling
f:V(G) = [1,12k + 1] such that
f(z1) = 3k+2  f(z2) = 9%;
flzs) =9k +1;  f(zq) = 3k+3;
flzs) = 9k +3;

fln) =1; f(y2ie1) =i+1,ifi€[2,3k-1];
flyn)=6k+i+1,ifie€[1,3k-2];

3k+3i+1, ifl=6k+6i-8andic(lk|;
9k +3i+3, ifl=6k+6i—T7andie[lk-1];
) 3k+3i+3, ifl=6k+6i—6andie€(l,k-1];
FW) =3 ok43i-1, ifl=6k+6i—-5andi€[l,k~1];
3k+3i+2 ifl=6k+6i~4andiecil,k-1];
9k +3i+1, ifl=6k+6i—3andie(l,k-1];

f(nzk-7) = 12k+1;  f(p2k—6) = 2;
f(n2e—s) = 12k - 1;
and f(z) =3k+1
(3) For n = 12k - 1, where k is a positive integer, define the vertex labeling
f:V(G) = [1,12k + 5] such that
f(z1) =3k +3;  f(z2) = 9k +8;
f(za) = 8k+4;  f(zq) = 9%+ 3;
f(zs) = 9k +5;
flyn) =1 f(yai1) =i +1, if i € [2,3k];
_ [ 6k+i+3, ifie[1,3k-1);
f(y”)‘{ i+5, if i € [3k,6k — 2];

Ok +3i+1, ifl=6k+6i—5andiellk];
fa)={ 9%+3i+8, ifl=6k+6i—3andie(lk-1);
Ok +3i+3, ifl=6k+6i—1andie(Lk];
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flnak-3) = 12k+4;  f(y2e-2) = 2%
and f(2) =3k +2.
(4) For n = 12k + 3, where k is a positive integer, define the vertex labeling
f:V(G) > 1,12k + 9] such that
f(ﬂ:l) = 3k +4; f(a:g) =9k +9;
f(.’l:s) = 3k+5; f(.’l:.g) =9k+7;
f(zs) = 9k +6;

fn) L flyaim1) =i +1,if i € [2,3k +1];
f(yeres) = 9k +8;
flum) = { SE+i+5, i€ [L3K];
Y20 =9 i+s5, if i € (3k + 1,3k +3];
Ok +3i+8, ifl=6k+6i—3andic€[l,k;
Ok +3i+9, ifl=6k+6i+1andie€(l,k;
f ) = 3k+3i+7 ifl=6k+6i+2andie(l,k-1};
Y=Y 3k+3i+6, ifl=6k+6i+4andielk-1];
Ok +3i+7, ifl=6k+6i+5andic(l,k—1];
3k+3i+8, ifl=6k+6i+6andie[lk-1];
f(ak+2) = 25 f(n2kss) = 126+ 7;
and f (z) = 3k + 3.

Therefore, by Lemma 1, f extends to a super edge-nagic labeling of G with
valence (5n + 33) /2, which implies that u; (CsUCr) =1whenn >7andn=3
(mod 4).

Finally, the remaining case immediately follows from Lemina 3. a

We now explore the super edge-magic deficiency of the 2-regular graph C; U C,,.
In this case, the authors have only been able to provide a partial solution to this
question, which is contained in the following result and Table 1.
Theorem 6. For every integer n > 3,
0, ifn=0o0or8 (mod12);
ps(CrUCL)=1¢ 1, ifn=1 (mod 4);
400, ifn=3 (mod4).
Proof. First, assume that n = 0 or 8 (mod 12), and let G & C;UC,, be the 2-regular
graph with
V(G)={zilie[l,7}u{ulie1,n]}
and
E(G) = {zizis1li € 1,6]} U {z1z7} C{mivina i € [L,n = 1]} U {navn}.
Now, consider three cases.
(1) {label= Case 1.0:,, leftmargin=*]
(2) For n = 8, define the vertex labeling f : V (G) — [1,15] such that
(f (@), = (1,10,2,11,12,7,8)
and
(f (@))5; = (3,13,9,5,15,6,4,14) .
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(3) For n = 12k, where k is a positive integer, define the vertex labeling f :
V(G) — (1,12k + 7) such that

flz) =2 f(x2) = 6k +3;
f(z3) =3 f(z4) = 6k +6;
flzs) = 1; f(ze) = 6k+T;
Flzy) = 6k +8;

f(n) =8 flys) = 4
f(ys) = 5

flye:) =6k +i+8,ifi€{1,3k]; f(ver+1) =3k +8;

3i +8, ifl=6i+1andie[l,k—1);

3i+3, ifl=6i+3andie[l,k—1];

) Bi+4, ifl=6i+5andi€[1,k~1];
F) =13 3r43, ifl =6k+6i—4andie€llk|;
3k+3i+1, ifl=6k+6i—2andiell,k;
3k+3i+8, ifl=6k+6iandie [1,k—1];

f(¥2i—1) =6k +i+7, if i € [3k +2,6k]; f (v12x) = 6k + 4.

(4) For n = 12k + 8, where k is a positive integer, define the vertex labeling
f:V(G) — [1,12k + 15] such that

flz) =1, f(z2) = 6k +10;
flz3) = 2; f(zs) = 6k +11;
flzs) = 6k+12;  f(ze) = 5;

flz7) = 6k+9;

fn) =38 fly3) =7,
flys) = 4 flyr) =9
f(yo) = 6;

flyai) =6k+i+12,ifi € [1,5];

347, if1=6i+5andie([Lk-1;
6k +3i+16, ifl=6i+6andic |l k—1];
_J sixo, ifl=6i+7andie[Lk—1];
F@) =19 6r1+3i+15, ifl=6i+8andic(lk—1];
3i+5, ifl=6i+9and i€ (l,k-1};
6k+3i+17, ifl=6i+10andie [Lk—1;
f(Yer4s) = 3k +T; S (Yerse) = 3k +8;
f(yers) = 3k +10;  f(yor+10) = 3k +5;
Ok+3i+13, ifl=6k+6i+1landic[Lh;
9k +3i+12, ifl=6k+6i+3andie|lk;
Ok +3i+14, ifl=6k+6i+5andic (LK
FO) =9 3643410, ifl=6k+6i+6andic(lk—1;
3k+3i+6, ifl=6k+6i+8andie(Lk-1];
3k+3+8 ifl=6k+6i+10andie [l k—1];

flyr2k+6) = 6k + 8 f(yizeer) = 12k +15;

f(¥zk48) = 6k +6;
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Thus, by Lemma 1, f extends to a super edge-magic labeling of G with valence
5n/2 + 19, which implies that u, (C7 UC,) =0 when n =0 or 8 (mnod 12).

Next, assume that n = 1 (mod 4). By Lemma 2, the 2-regular graph C; U C,
is not super edge-magic. This implies that p, (C7 U C,) > 1. Also, it follows from
Theorem 5 that u, (C7 U Cs) = 1. Thus, it suffices to show that u, (CrUC,) <1
when n > 9 and n =1 (mod 4). To do this, let H 2 G U K, be the graph with

V(H)=V (G)u{z} and E(H) = E(G),
where G = C; UC, as defined above, and consider three cases.

Case 1: (label= Case 2.0:,, leftmargin=%
Case 2: For n = 12k — 3, where k is a positive integer, define the vertex labeling

f:V(H)— [1,12k + 5] such that

f(z1) = 1 f(z2) = 6k+35;
flza) = 2 f(z4) = 6k+6;
f(zs) = 6k+T; flxze) = 6
f(z7) = 6k+4;

f(y2iz1) =6k +i+7,ifi€(1,3k - 1]; f(3) =3;

3i+6, ifl=6i—2andie(l,k—1];
f)=< 3i+1, ifl=6iandie[l,k-1];
3i+2, ifl=6i+2andie(l,k-1j;

f(ysk—2) = 3k+ 4; f(ysk—l) = 3k+ 5;
fyer+1) = 3k+1;

fy = Bk+i+T ifl=2iandie (3662
Y= i+g, ifl =2 —1and i€ [3k+2,6k—1];

and f(z) =3k +2.
Case 3: For n = 12k + 1, where k is a positive integer, define the vertex labeling
f:V(H) - 1,12k + 9] such that

flz) = 1; f(z2) = 6k+6;
flza) = 2 flzd) = 6k+7;
flzs) = 5 f(zé) = 6k+8;
flx7) = 6k+9;

f(y2i-1) =6k +i+9,if i € [1,3k]; f(y2) = 4

3i+4, ifl=6i-2andie[lk;
fw)=1{ 3i+5 ifl=6iandie[l,k-1];

34, ifl=6i+2andi€[1,k—1];
flyer) = 3k+5; f(Yeks1) = 3k+6;
f(yer+3) = 3k

)= [ Gk+i+9 ifl=20andie€ [3k+1,6k);
YW= i+4, ifl =2 —1and i€ [3k+ 3,6k +1];

and f (z) = 3k + 3.



Case 4: For n = 12k + 5, where k is a positive integer, define the vertex labeling
f:V(G) = [1,12k + 13] such that

fl)) = 1 flz2) = 6k+9;
f(zs) = 2 f(zd) = 6k+10;
f(zs) = 6k+11,; f(ze) = 6
f(z7) = 6k+38;

f(y2ic1) =6k+i+11,ifie 1,3k +1);
flua) = & flwa) = 5
3i+5, ifl=6iandie€|l,k];
flw)=

3i+6, ifl=6i+2andie[l,k~1];
3i+1, ifl=6i+4andie(l,k-1];

f(vers2) = 3k+6; f(vekss) = Bk+T;
flyek+s) = 8k+1
fly = { BEFiHIL if | = 2 and i € [3k + 2,6k + 2];
Y= i+4, ifl=2i—1and i€ [3k+4,6k+3);

and f(z) =3k +4.

Thus, by Lemma 1, f extends to a super edge-magic labeling of H with valence
(5n + 43) /2, which implies that g, (CUCr) =1 whenn > 9 and n =1 (mod 4).
Finally, the remaining case imnmediately follows from Lemma. 3. O

In light of Table 1, it seems plausible to have a more general result than the one
just presented.

TABLE 1. Super Edge-Magic Labelings of C,, U C,, for small m and n

mi{n | Cn Ch k
7 1101 (1,9,2,13,12,5,11,1) | (7,6,14,8,15,3,16,10,4,17,7) 44
14[(1,12,2,13,3,9,16,1) |(7,14,4,15,5,17,6,18,8,19,10, 54
20,11,21,7)
16 [ (2,13,5,9,4,15,14,2) | (1,16,6,17,3,18,7,19,8,20, 10, 59
21,11,22,12,23,1)
181 (1,15,5,13,2,17,16,1) | (6,8,18,4,19,10,20,7, 21, 3, 22, 64
12,9,23,14,24,11,25,6)
33 | (1,17,4,16,6,19,18,1) | (9,8, 20, 12, 21, 2, 22,7, 23, 3, 24, 74
10,25, 11, 5, 26, 13, 27, 14, 28, 15, 29)
%6 [ (1,19,5,17,2, 21, 20,1) | (6,12, 22,4, 23,7, 24,8, 25, 3, 26, 84
9,27,10,28,14,11,29,16,30,13,
31,18,32,15, 33,6)

Figueroa-Centeno et al. [8) have proved that if m is even with m > 4 and n is
odd satisfying n > m/2 +2, then the 2-regular graph Cr, UC;, is super edge-magic.
Combining this with Lemma 3, the above results in this section and Table 1, we
obtain the following two corollaries.
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Corollary 1. For every two integers m and n with1 < m <3 andn > 3,
0, if n is odd;
s (CamUCp) =< 1, ifn=0 (mod 4);
400, tfn=2 (mod4).

Corollary 2. For every two integers m and n with1 <m <3 andn > 3,
0, if n is odd;
s (Cama+2UCn) =< 1, ifn=2 (mod 4);
+00, ifn=0 (mod 4).

3. CONCLUSIONS

In the preceding section, we computed p, (C,, U Cy,) for some positive integers
m and n. In particular, we determine the exact value of p, (C3 U Cy4) to be 2 (see
Theorem 3). Also, we presented in Theorem 1 that ps (Cr, UC,) =1if m+n=0
(mod 4), whereas p; (Crm U Cp) = +00 if m+n =2 (mod 4). On the other hand,
Figueroa-Centeno et al. [8) conjectured that the 2-regular graph Cy, U Cy, is super
edge-magic if and only if m +n > 9 and m + n is odd. All of these lead us to the
following conjecture.

Conjecture 1. For every two integers m > 3 and n > 3,

0, ifm+n>9 and m+n is odd;
_J 1 ifm+n=0 (mod4);
#s (Cm UCy) = 2, ifm=3 andn =4;
400, ifm+n=2 (mod 4).

Holden et al. [14] have made a stronger conjecture than Conjecture 1 that with
the exception of C3 U Cy, 3C3 UCy and 2C5 U Cs, all 2-regular graphs of odd order
possess super edge-magic labelings. Thus, our results in this paper adds credence
to their conjecture.
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