SELF VERTEX SWITCHINGS OF DISCONNECTED UNICYCLIC GRAPHS

C. Jayasekaran

Department of Mathematics, Pioneer Kumaraswamy College Nagercoil – 629 003, India. e-mail: jaya_pkc@yahoo.com

Abstract

A vertex $v \in V(G)$ is said to be a **self vertex switching** of G if G is isomorphic to G^v , where G^v is the graph obtained from G by deleting all edges of G incident to v and adding all edges incident to v which are not in G. In [6], the author characterized connected unicyclic graphs each with a self vertex switching. In this paper, we characterize disconnected unicyclic graphs each with a self vertex switching.

Key words: Switching, Self vertex switching, unicyclic, $SS_1(G)$, $ss_1(G)$.

1. Introduction

For a finite undirected simple graph G(V, E) with |V(G)| = p and a set $\sigma \subseteq V$, the switching of G by σ is defined as the graph $G^{\sigma}(V, E')$, which is obtained from G by removing all edges between σ and its complement $V-\sigma$ and adding as edges all non edges between σ and $V-\sigma$. Switching has been defined by Seidel [2] and is also referred to as Seidel switching. When $\sigma = \{v\} \subset V$, we call the corresponding switching $G^{\{v\}}$ as vertex switching and denoted it as $G^{v}[1]$. A subset σ of V(G) to be a self switching of G if $G \cong G^{\sigma}$. The set of all self switchings of G with cardinality K is denoted by $SS_{K}(G)$ and its cardinality by $ss_{K}(G)$. If K = 1, then we call the corresponding self switching as self vertex switching [1, 3].

A branch at v in G is a maximal connected subgraph B of G such that the intersection of B with the vertex v is v and B-v is connected [3]. A branch B at v in G is said to be self switching branch if $B \cong B^v$. In G, two branches B_1 and B_2 at v are said to be complementary switching branches if there exist isomorphisms f_1 between B_1 and B_2^v and f_2 between B_2 and B_1^v such that $f_1(v) = f_2(v)[3]$. A simple graph in which each pair of distinct vertices is joined by an edge is called a complete graph. A complete graph on v vertices is denoted by v and v and v in a graph is a finite non-null sequence $v_0e_1v_1e_2v_2...e_nv_n$ whose terms are alternatively vertices and edges such that v is incident with v and v in v and v in v and v in v are said to be interchange similar if there is an automorphism v of v such that v and v and v in v and v and v in v and v and v and v in v and v and v in v and v and

In [4], we characterized interchange similar vertices to be self vertex switchings. In [5], we characterized trees and forests, each with a self vertex switching. In [6], we characterized connected unicyclic graphs, each with a self vertex switching. In this paper, we characterize disconnected unicyclic graphs, each with a self vertex switching and we consider simple graphs only. Now consider the following results, which are required in the subsequent sections.

Theorem 1.1.[1] If v is a self vertex switching of a graph G of order p, then the degree of the vertex v in G is $d_G(v) = (p-1)/2$.

Theorem 1.2.[3] Let B_i be either a branch at v in G or the union of v and a component of G not containing v, i=1, 2, ..., k(G-v). Then $G = \bigcup_{i=1}^k B_i$ and $G^v = \bigcup_{i=1}^k B_i^v$ where k = k(G-v), k(G) is the number of components of G.

Lemma 1.3.[5] D is a component of a graph G not containing v if and only if D+v is a branch at v in G^v .

Theorem 1.4.[5] Let v be any vertex of a nontrivial connected graph G. Then G^v is a tree if and only if G-v is acyclic and $d_B(v) = |V(B)| - 2$ for every branch B at v in G.

Theorem 1.5.[5] Let v be a vertex of a nontrivial graph G. Then G^v is a disconnected graph with k components if and only if G has at least k-1 branches at v and $d_B(v) = |V(B)| - 1$ only for k-1 branches B's at v in G.

Theorem 1.6.[6] Let v be a non cutvertex of a graph G of order $p \ge 3$. Then G^v is connected and unicyclic if and only if either of the following holds:

- (a) $G = K_2 \cup (p-2) K_1$ and v is one of the K_1 's.
- (b) G is connected, G-v is acyclic and $d_G(v) = |V(G)|-3$.
- (c) G is connected, G-v is unicyclic and $d_G(v) = |V(G)|-2$.
- (d) $G = D \cup (p-|V(D)|) K_1$, G-v is unicyclic and $d_G(v) = |V(D)|-2$.
- (e) $G = D \cup (p-|V(D)|) K_1$, G-v is acyclic and $d_G(v) = |V(D)|-3$.

(f) $G = D \cup K_2 \cup (p-2-|V(D)|) K_1$, G-v is acyclic and $d_G(v) = |V(D)|-2$ where $D \neq K_1, K_2$ is a component of G containing v.

2. Characterization of G^{v} to be disconnected and unicyclic

Let v be a vertex of a graph G. Let G^v be the switching of G by v. In [5], we gave a condition on vertex v of G such that G^v is disconnected with a given number of components. In this section, we characterize vertex v of G such that G^v is disconnected and unicyclic.

Theorem 2.1. Let G be a graph of order $p \ge 3$ and $D \ne K_1$, K_2 be a component of G containing v. Then G^v is disconnected and unicyclic with k components if and only if G has r branches at v, $d_B(v) = |V(B)| - 1$ only for k-1 branches B's at v in G, $r \ge k-1$ and either of the following holds:

- (a) G is connected, G-v is unicyclic, r = k-1 and one B-v is unicyclic.
- (b) G is connected, G-v is acyclic, r > k-1, $d_B(v) \in \{ | V(B)|-2, | V(B)| -3 \}$ for the remaining r-k+1 branches B's at v in G and $d_B(v) = | V(B)|-3$ only for one B.
- (c) G is connected, G-v is unicyclic, r > k-1, one B-v is unicyclic and $d_B(v) = |V(B)| 2$ for the remaining r-k+1 branches B's at v in G.
- (d) $G = D \cup K_2 \cup (p-2-|V(D)|) K_1$, G-v is acyclic and r = k-1.
- (e) $G = D \cup K_2 \cup (p-2-|V(D)|) K_1$, G-v is acyclic, r > k-1 and $d_B(v) = |V(B)|-2$ for the remaining r-k+1 branches B's at v in G.
- (f) $G = D \cup (p-|V(D)|) K_1$, G-v is acyclic, r > k-1, $d_B(v) = |V(B)| 3$ only for one branch B at v in G and $d_B(v) = |V(B)| 2$ for the remaining r-k branches B's at v in G.
- (g) $G = D \cup (p-|V(D)|) K_1$, G-v is unicyclic, r = k-1 and one B-v is unicyclic.
- (h) $G = D \cup (p-|V(D)|) K_1$, G-v is unicyclic, one B-v is unicyclic and $d_B(v) = |V(B)| 2$ for the remaining r-k+1 branches B's at v in G.

Proof. Let G^v be a disconnected and unicyclic graph with k components. Using Theorem 1.5, G has $r \ge k-1$ branches B's at v and $d_B(v) = |V(B)| - 1$ only for k-1 branches B's at v in G. Let $B_1, B_2, ..., B_{k-1}$ be the branches at v in G with $d_{B_i}(v) = |V(B_i)| -1$, $1 \le i \le k-1$. This implies that for any branch $B \ne B_i$, $d_B(v) \le |V(B)| -2$, $1 \le i \le k-1$. Since G^v is unicyclic,

G-v is acyclic or unicyclic. Here G may be either connected or disconnected. If G is connected, G-v is acyclic and r=k-1, then $G^v=K_1\cup (\bigcup_{i=1}^{k-1}(B_i-v))$, v is K_1 . This implies that G^v is not unicyclic since (B_i-v) 's are acyclic. Hence we consider the following seven cases.

Case 1. G is connected, G-v is unicyclic and r=k-1.

In this case $G^v=K_1\cup (\bigcup_{i=1}^{k-1}(B_i-v)), v$ is K_1 . Since G^v is unicyclic, one B_i-v is unicyclic. Hence (a) is proved.

Case 2. G is connected, G-v is acyclic and r > k-1.

Let G^* be the graph obtained from G by deleting the branches B_1, B_2 , ..., B_{k-1} except v. Then $G = G^* \cup (\bigcup_{i=1}^{k-1} B_i)$. Using Theorem 1.2, $G^v = G^{*v}$

 $\bigcup \left(\bigcup_{i=1}^{k-1} (B_i - v)\right)$ since B_i^v is the union of the vertex v and $B_i - v$. Since

 G^v is unicyclic with k components and G-v is acyclic, G^{*v} is unicyclic and connected. Let B_x be the unicyclic branch at v in G^{*v} . Let B^* be the branch at v in G corresponding to the branch B_x at v in G^v . Using Theorem 1.6(b) to B^* , $d_{B^*}(v) = |V(B^*)| -3$. Also for any branch $B \neq B_i$ and B^* , we have $d_B(v) = |V(B)| -2$, $1 \le i \le k-1$. Hence (b) is proved.

Case 3. G is connected, G-v is unicyclic and r > k-1.

Since G-v is unicyclic, one B-v is unicyclic. Let B^* be the branch at v in G such that B^*-v is unicyclic. We consider the following two subcases with respect to B^* .

Case 3.a. $B^* = B_i$ for at least one $i, 1 \le i \le k-1$.

As in Case-2, $G^v = G^{*v} \cup (\bigcup_{i=1}^{k-1} (B_i - v))$. This implies that G^{*v} is a tree. Using Theorem 1.4, we get $d_B(v) = |V(B)| - 2$ for any branch $B \neq B_i$ at v in G, $1 \leq i \leq k-1$.

Case 3.b. $B^* \neq B_i$, $1 \le i \le k-1$.

Now $d_{B^{\bullet}}(v) \neq |V(B^*)|-1$. Suppose $d_{B^{\bullet}}(v) < |V(B^*)|-2$. Then G^v has at least two cycles, one contains v and the other not. This is a contradiction to our assumption that G^v is unicyclic and hence $d_{B^{\bullet}}(v) = |V(B^*)|-2$. Also $d_B(v) = |V(B)|-2$ for $B \neq B_i$, $1 \leq i \leq k-1$. Hence (c) is proved.

For proving (d) to (h), we assume that G is a disconnected graph with m components. Let the components be $D, D_1, D_2, ..., D_{m-1}$ and v be in

D. Let $D^* = D_1 \cup D_2 \cup ... \cup D_{m-1}$ so that $G = D \cup D^*$. Since G has r branches at v, D also has r branches at v.

Case 4. G-v is acyclic and r=k-1.

Here
$$D=\bigcup_{\substack{i=1\\k-1}}^{k-1}B_i$$
 so that $G=D^*\cup\bigcup_{i=1}^{k-1}B_i$. This implies that $G^v=$

$$(D^*+v)\cup (\bigcup_{i=1}^{k-1}(B_i-v))$$
. Since G^v is unicyclic and (B_i-v) 's are acyclic,

 D^*+v is unicyclic. Let $D_j \neq D$ be a nontrivial component of G for at least one j, $1 \leq j \leq m-1$. Then $D_j = K_2$ since otherwise G^v is not unicyclic. Moreover the remaining components are trivial graphs. Thus $G = D \cup K_2 \cup (p-2-|V(D)|) K_1$ and hence (d) is proved.

Case 5. G-v is acyclic and r > k-1.

Here $G = D \cup D^*$ and so $G^v = D^v \cup (D^* + v)$. Then D^v may be either acyclic or unicyclic.

When D^v is acyclic, one component of G is K_2 and others K_1 's since G^v is unicyclic. This implies that $G = D \cup K_2 \cup (p-2-|V(D)|) K_1$. Also for any branch B at v in G such that $B \neq B_i$, we have B_i^v is a tree in G^v and hence $d_B(v) = |V(B)| -2$, $1 \le i \le k-1$. Hence (e) is proved.

When D^v is unicyclic, each component of G other than D is a trivial graph. This implies that $G = D \cup (p-|V(D)|) K_1$. Now D is connected, D^v is unicyclic and D^{-v} is acyclic. Applying Case-2 to D, we get $d_B(v) = |V(B)| - 3$ only for one B and for other r^{-k} branches B's at v in G, $d_B(v) = |V(B)| - 2$. Hence (f) is proved.

Case 6. G-v is unicyclic and r=k-1.

Suppose a component of G not containing v is unicyclic. Then G^v has more than two cycles, which is a contradiction and hence cycles are in the component D. Also the other components of G are trivial graphs. This implies that $G = D \cup (p-|V(D)|) K_1$. Since G^v is unicyclic, one $B_i - v$ is unicyclic, $1 \le i \le k-1$. Hence (g) is proved.

Case 7. G-v is unicyclic and r > k-1.

Clearly, each component of G other than D is a trivial graph. This implies that $G = D \cup (p-|V(D)|) K_1$. Applying Case-3 to D, we get one B-v is unicyclic and $d_B(v) = |V(B)|-2$ for the remaining r-k+1 branches B's at v in G. Hence (h) is proved.

On the converse part of the theorem, using Theorem 1.5, G^v is disconnected with k components. Clearly, each case implies that G^v is unicyclic. This completes the proof.

Note 2.2 [3] Consider a cycle $C_r = (v_1, v_2, ..., v_r)$ (clock-wise). For our

convenience we denote it by $C_{r(v_1)}$. Identifying an end vertex of paths P_m at v_i and P_s at v_j , then the resulting graph is denoted by $C_{r(v_1)}$ (0, ..., P_m , 0, ..., P_s , 0, ..., 0). Identifying an end vertex of paths P_m and P_s at the vertex v_j , then the resulting graph is denoted by $C_{r(v_1)}$ (0, ..., $P_m \cup P_s$, 0, ..., 0).

The graphs $C_{4(v)}$ (0, 0, P_2 , P_3), $C_{4(v)}$ (0, 2 $P_2 \cup P_3$, 0, 0) and $C_{4(v)}$ (0, 2 $P_2 \cup P_3$, P_2 , P_3) are given in Figure 2.1.

Note 2.3.[5] Let v be a cutvertex of a connected graph G. Let $B_1, B_2, ..., B_k$ be the branches with $n_1, n_2, ..., n_k$ number of copies at v in G, respectively. In this case, we denote the graph G by $G(v; n_1B_1, n_2B_2, ..., n_kB_k)$.

Consider the graph G given in Figure 2.2. There are four distinct branches B_1, B_2, B_3 and B_4 at v in G and they are given Figure 2.3. Thus $G = G(v; 2B_1, B_2, B_3, B_4)$.

 $G = G(v; 2B_1, B_2, B_3, B_4)$

Fig. 2. 2.

3. Characterizing disconnected unicyclic graphs with a self vertex switching

Theorem 3.1. A disconnected and unicyclic graph G of order p=2n+1 with k components has a self vertex switching v if and on ly if it is either $D \cup K_2 \cup (k-2) K_1$ where D is either $D(v; (n-2) P_2, K_3)$ or $D(v; (k-2) P_2, K_3, (n-k) P_3)$ according as k=n or k < n or $D \cup (k-1) K_1$ and k=p+1-|V(D)| where D is either of the following: $D(v; C_4, K_{1,3}, (k-1) P_2, (n-k-2) P_3), D(v; C_{3(w)}(P_2, 0, 0), P_4, (k-1) P_2, (n-k-2) P_3), D(v; C_{4(w)}(P_2, 0, 0, 0), (k-1) P_2, (n-k-1) P_3)$ and $D(v; C_{3(w)}(P_3, 0, 0), (k-1) P_2, (n-k-1) P_3)$ where w is a vertex adjacent to v in G and for any branch B at v in G, $d_B(v)=1$ or 2 according as B is a tree or unicyclic branch.

Proof. Let v be a self vertex switching of a disconnected unicyclic graph G. Using Theorem 1.1, $d_G(v) = n$. And using Theorem 2.1, G has $r \ge k-1$ branches at v and $d_B(v) = |V(B)|-1$ only for k-1 branches B's. The following five cases arise.

Case 1. $G = D \cup K_2 \cup (p-2-|V(D)|) K_1$, G-v is acyclic and r = k-1 where $D \neq K_1$, K_2 is a component of G containing v.

G-v is acyclic implies that v lies on the cycle in the cyclic branch, say B^* , at v in G. Since G is unicyclic and $d_G(v) = n$, there are n-1 branches at v in G and hence k = n. Since K_2 is a component of G, $K_2 + v = K_3$ is a branch at v in G^v and hence $B^* = K_3$. Since the other branches at v in G are trees and $d_B(v) = |V(B)| -1$, they are P_2 's. These n-2 branches make only K_1 's in G^v . Since $G \cong G^v$, n-2 = p-2-|V(D)|. Hence $G = D \cup K_2 \cup (k-2) K_1$ where D is $D(v; (n-2) P_2, K_3)$.

Case 2. $G = D \cup K_2 \cup (p-2-|V(D)|) K_1$, G-v is acyclic, r > k-1 and $d_B(v) = |V(B)|-2$ for the remaining r-k+1 branches B's at v in G, where $D \neq K_1$, K_2 is a component of G containing v.

Let B^* be the unicyclic branch at v in G. As in Case-1, $B^* = K_3$ and there are n-1 branches at v in G. Clearly $d_{B^*}(v) = |V(B^*)| -1$. Since the other branches at v in G are trees, any branch B at v in G with $d_B(v) = |V(B)| -2$ is P_3 and with $d_B(v) = |V(B)| -1$ is P_2 . Since the branches P_2 's at v in G make only K_1 's in G^v and $G \cong G^v$, we get k-2 = p-2-|V(D)|. Hence $G = D \cup K_2 \cup (k-2) K_1$ where D is $D(v; (k-2) P_2, K_3, (n-k) P_3)$. Also n > k since r = n-1.

Case 3. $G = D \cup (p-|V(D)|) K_1$, G-v is acyclic, r > k-1, $d_B(v) = |V(B)|-3$ only for one branch B at v in G and $d_B(v) = |V(B)|-2$ for the remaining r-k branches B's at v in G where $D \neq K_1$, K_2 is a component of G containing v.

G is unicyclic and G-v is acyclic implies that v lies on the cycle in the cyclic branch, say B^* , at v in G. Hence there are n-1 branches at v in G and $d_{B^*}(v)=2$. If B^* has 3 vertices, then B^*-v is a component of G^v . Since $G\cong G^v$, G has a component K_2 , which is a contradiction and hence $|V(B^*)| \geq 4$. Using Lemma 1.3, each component $K_1 \neq D$ in G becomes a branch P_2 at v in G^v . If B is a branch at v in G with $d_B(v) \neq |V(B)|-1$, then B^v is a branch at v in G^v . Using Lemma 1.3, $d_B(v) = |V(B)|-1$ for a branch B at v in G if and only if B-v is a component of G^v . Since $G\cong G^v$ and k-1 branches B's at v in G with $d_B(v) = |V(B)|-1$, we get k-1 = p-|V(D)|. If B is a branch at v in G with $d_B(v) \neq |V(B)|-1$, then $|V(B)| \geq 3$. If B^* has order at least 6, then $p = |V(B^*)| + \sum_{d_B(v)=|V(B)|-1} |V(B)|$

+ $\sum_{\substack{d_B(v) \neq |V(B)|-1, B \neq B^* \\ 1)+3(r-k)+p-|V(D)|-r+1 = 2r+4 = 2(n-1)+4 = 2n+2 > p, \text{ which is a contradiction and hence } |V(B^*)| = 4 \text{ or 5}.$

When $\mid V(B^*) \mid = 4$, there are only two unicyclic graphs on 4 vertices and they are C_4 and $C_{3(w)}$ (P_2 , 0, 0). For any vertex v with degree 2 in C_4 and in $C_{3(w)}$ (P_2 , 0, 0), the switching of them by v are $K_{1,3}$ and P_4 , respectively, and in these degree of v is 1. Clearly C_4 and $K_{1,3}$ and $C_{3(w)}$ (P_2 , 0, 0) and P_4 are complementary switching branches at v. For any branch $B \neq B^*$ and $B \ncong B^{*v}$, if $d_B(v) = \mid V(B) \mid -1$, then $B = P_2$ since otherwise $B - v \neq K_1$ is a component of G^v and hence G has a nontrivial component other than D and if $d_B(v) = \mid V(B) \mid -2$, then B has 3 vertices since otherwise G has more vertices than p and hence $G = P_3$. This implies that $G = D \cup (k-1) K_1$ where D is either $D(v; C_4, K_{1,3}, (k-1) P_2, (n-k-2) P_3)$ or $D(v; C_{3(w)})$ (P_2 , 0, 0), P_4 , $(k-1) P_2$, $(n-k-2) P_3$) where vertex w is adjacent to v in G.

When $|V(B^*)| = 5$, there are only five unicyclic graphs on 5 vertices which are given in Figure 3.1. If B^* is either $C_{3(w)}$ (P_2 , P_2 , 0), $C_{3(w)}$ (0, $2P_2$, 0) or C_5 , then for any v in B^* with degree 2, B^{*v} is unicyclic and $B^{*v} \not\cong B^*$. Hence B^* is either $C_{4(w)}$ (P_2 , 0, 0, 0) or $C_{3(w)}$ (P_3 , 0, 0) and has a self vertex switching in the cycle, which is adjacent to w and $d_{B^*}(v) = |V(B^*)| - 3$. For any branch $B \neq B^*$, if $d_B(v) = |V(B)| - 1$, then $B = P_2$ and if $d_B(v) = |V(B)| - 2$, then $B = P_3$ since otherwise G has more than p vertices. This implies that $G = D \cup (k-1) K_1$, D is either $D(v; C_{4(w)})$ (P_2 , 0, 0, 0), $(k-1) P_2$, $(n-k-1) P_3$) or $D(v; C_{3(w)})$ (P_3 , 0, 0), $(k-1) P_2$, $(n-k-1) P_3$) where the vertex w is adjacent to v in G.

Fig. 3.1

Case 4. $G = D \cup (p-|V(D)|) K_1$, G-v is unicyclic, r = k-1 and one B-v is unicyclic where $D \neq K_1$, K_2 is a component of G containing v.

Let B^* be the branch at v in G such that B^*-v is unicyclic. Since $d_{B^*}(v) = |V(B^*)| -1$, B^*-v is a component of G^v . Since $G \cong G^v$, $D \cong B^*-v$, which is a contradiction to the fact that B^*-v is a proper subgraph of D. In this case G cannot have a self vertex switching.

Case 5. $G = D \cup (p-|V(D)|) K_1$, G-v is unicyclic, r > k-1, one B-v is unicyclic and $d_B(v) = |V(B)|-2$ for the remaining (r-k+1) branches B's at v in G where $D \neq K_1$, K_2 is a component of G containing v.

G and G-v are unicyclic implies that v does not lie on the cycle in the unicyclic branch, say B^* , at v in G and hence v is an end vertex in B^* and so $|V(B^*)| > 3$. Since $d_{B^*}(v) = |V(B^*)| - 1$ or $|V(B^*)| - 2$, $d_{B^*}(v) > 1$, which is a contradiction to v is an end vertex in B^* . In this case also G cannot have a self vertex switching.

From cases (1), (2) and (3), we get the required graph G.

Conversely, if G is the graph as given in the theorem, then v is the self vertex switching of G. This completes the proof.

Corollary 3.2. Let G be a disconnected unicyclic graph. Then $ss_1(G) = 0$ or 1. And $ss_1(G) = 1$ if and only if G is the graph given in Theorem 3.1.

Example 3.3. The five disconnected unicyclic graphs G on p = 2n+1 = 17 vertices, each of which has v as the self vertex switching and with 3 components are given in Figures 3.2 to 3.6.

Fig. 3.2. G

Fig. 3.3. G

Fig. 3.4. G

Fig. 3.5. G

References

- [1] C. Jayasekaran, A study on self vertex switchings of graphs, PhD thesis, Manonmanium Sundaranar University, Tirunelveli, India, 2007.
- [2] J.J. Seidel, A survey of two graphs, Proceedings of the Inter National Coll. Theorie Combinatorie (Rome 1973). Tomo I, Acca, Naz. Lincei, pp. 481-511, 1976.
- [3] V. Vilfred, J. Paulraj Joseph and C. Jayasekaran, Branches and Joints in the of self switching of graphs, The Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 67, pp. 111-122, 2008.
- [4] V. Vilfred and C. Jayasekaran, Interchange similar self vertex switchings in graphs, Journal of Discrete Mathematical Sciences and Cryptography, Vol. 12, pp. 467-480, 2009.
- [5] C. Jayasekaran, Self vertex switchings of trees, Accepted for publication in Ars Combinatoria.
- [6] C. Jayasekaran, Self vertex switchings of connected unicyclic graphs, Accepted for publication in Journal of Discrete Mathematical Sciences and Cryptography.