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Abstract

A vertex v € V(G) is said to be a self verter switching of G if
G is isomorphic to G¥, where G" is the graph obtained from G by
deleting all edges of G incident to v and adding all edges incident
to v which are not in G. In [6], the author characterized connected
unicyclic graphs each with a self vertex switching. In this paper,
we characterize disconnected unicyclic graphs each with a self vertex
switching.
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1. Introduction

For a finite undirected simple graph G(V, E) with | V(G)|= p and
a set o C V, the switching of G by o is defined as the graph G (V,
E’), which is obtained from G by removing all edges between o and its
complement V-0 and adding as edges all non edges between o and V-0 .
Switching has been defined by Seidel [2] and is also referred to as Seidel
switching. When o = {v} C V, we call the corresponding switching Giv}
as vertex switching and denoted it as G [1]. A subset o of V(G) to be
a self switching of G if G= G . The set of all self switchings of G with
cardinality k is denoted by 5Si(G) and its cardinality by ssg(G). If k =
1, then we call the corresponding self switching as self vertex switching
1, 3].

A branch at v in G is a maximal connected subgraph B of G such that
the intersection of B with the vertex v is v and B-v is connected [3]. A
branch B at v in G is said to be self switching branch if B~ BY. In G,
two branches B; and Bs at v are said to be complementary switching
branches if there exist isomorphisms f; between B; and Bj and f
between B, and BY suchthat f; (v) = f2 (v)(3]. A simple graph in which
each pair of distinct vertices is joined by an edge is called a complete graph.
A complete graph on n vertices is denoted by K,. A walk in a graph is
a finite non-null sequence voeivieava...enty Whose terms are alternatively
vertices and edges such that e; is incident with v;—; and v;. A pathisa
walk in which all the vertices are distinct. A path with n vertices is denoted
by P, . Two vertices « and v in G are said to be interchange similar if
there is an automorphism & of G such that o (u) = v and a(v) = u
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In {4], we characterized interchange similar vertices to be self vertex
switchings. In [5], we characterized trees and forests, each with a self ver-
tex switching. In [6], we characterized connected unicyclic graphs, each
with a self vertex switching. In this paper, we characterize disconnected
unicyclic graphs, each with a self vertex switching and we consider simple
graphs only. Now consider the following results, which are required in the
subsequent sections.

Theorem 1.1.[1] If v is a self vertex switching of a graph G of order p,
then the degree of the vertex v in G is dg(v) = (p-1)/2.

Theorem 1.2.[3] Let B; be either a branch at v in G or the union of

v and a component of G not containing v, ¢ = 1, 2, ..., k(G-v). Then
k k

G = U B; and G¥ = U B! where k = k(G-v), k(G) is the number of

i=1 i=1
components of G.

Lemma 1.3.[5] D is a component of a graph G not containing v if and
only if D+v is a branch at v in G”.

Theorem 1.4.[5] Let v be any vertex of a nontrivial connected graph G.
Then GY is a tree if and only if G-v is acyclic and dg(v)=| V(B)|-2 for
every branch B at v in G.

Theorem 1.5.[5] Let v be a vertex of a nontrivial graph G. Then GV is
a disconnected graph with k¥ components if and only if G has at least k-
1 branches at v and dp(v) =| V(B)|-1 only for k-1 branches B’s at v in G.

Theorem 1.6.[6] Let v be a non cutvertex of a graph G of order p > 3.
Then G¥ is connected and unicyclic if and only if either of the following
holds:

() G =K, U(p-2) K, and v is one of the K;’s.

(b) G is connected, G-v is acyclic and dg(v)=| V(G)|-3.

(c) G is connected, G-v is unicyclic and dg(v)=| V(G)|-2.

(d) G=Du(p-|V(D)|)K,, G-vis unicyclic and dg(v)=| V(D) |-2.
() G=Du(p-|V(D)|) K1, G-v is acyclic and dg(v)=| V(D)|-3.
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(f) G = DU Ky U(p-2-|V(D)|) K1, G-v is acyclic and dg(v) =
| V(D)|-2 where D # K,,K, is a component of G containing v.

2. Characterization of G¥ to be disconnected and unicyclic

Let v be a vertex of a graph G. Let G¥ be the switching of G by wv.
In 5], we gave a condition on vertex v of G such that GV is disconnected
with a given number of components. In this section, we characterize vertex
v of G such that GY is disconnected and unicyelic.

Theorem 2.1. Let G be a graph of order p>3 and D# K, ,K> be a
component of G containing v. Then G is disconnected and unicyclic with
k components if and only if G has r branches at v, dp (v) =| V(B)|-1
only for k-1 branches B's at v in G, r > k-1 and either of the following
holds:

(a) G is connected, G-v is unicyclic, r = k-1 and one B-v is unicyclic.

(b) G isconnected, G-v is acyclic, r > k-1, dg(v) € {| V(B)|-2,| V(B)|
-3} for the remaining r-k+1 branches B’s at v in G and dg(v)
=| V(B)| -3 only for one B.

(¢) G is connected, G-v is unicyclic, » > k-1, one B~v is unicyclic and
dp(v)=| V(B)|-2 for the remaining r-k+1 branches B’s at v in G.

(d) G=DuU K, U(p-2-|V(D)|) K1, G-v is acyclic and r = k-1.

() G=DuU K, U(p-2-|V(D)|) K1, G-visacyclic, r > k-1 and dg(v)
=| V(B)|-2 for the remaining r-k+1 branches B’s at v in G.

(f) G=DU(p-| V(D)|) K1, G-visacyclic, r > k-1, dg(v) = | V(B) |-
3 only for one branch B at v in G and dg(v)=| V(B)|-2 for the
remaining r-k branches B’s at v in G.

(g) G=Du(p-| V(D)|) K., G-v is unicyclic, » = k-1 and one B-v is
unicyclic.

(h) G=Du(p-| V(D)|) K1, G-v is unicyclic, one B-v is unicyclic and
dp(v)=| V(B)|-2 for the remaining r-k+1 branches B’s at v in G.

Proof. Let GV be a disconnected and unicyclic graph with k& components.
Using Theorem 1.5, G has r > k-1 branches B’sat v and dg(v)=| V(B) |-
1 only for k-1 branches B’s at v in G. Let By, B,, ..., Bx—; be the branches
at vin G with dp,(v)=| V(B;)|-1,1 <i < k-1. This implies that for any
branch B # B;, dg(v) < | V(B)|-2, 1<i<k-1. Since G" is unicyclic,
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G-v is acyclic or unicyclic. Here G may be either connected or discon-
nected If G is connected, G-v is acyclic and r = k-1, then G*=K; U

( U(Bt —wv)), vis K;. This implies that G is not unicyclic since

(B — v )’s are acyclic. Hence we consider the following seven cases.

Case 1. G is connected, G-v is unicyclic and r = k-1.
k—1
In this case G =K, U( U (Bi—v)), vis K; . Since GV is unicyclic,

i=1
one B; — v is unicyclic. Hence (a) is proved.
Case 2. G is connected, G-v is acyclic and r > k-1.
Let G* be the graph obtained from G by deleting the branches B, Bs,
k—1
«» Bk_y except v. Then G = G*U( | ] B:). Using Theorem 1.2, G” = G**

i=1
k—1

U( U (B; —v)) since B} is the union of the vertex v and B; — v. Since
i=1

G" is unicyclic with k components and G-v is acyclic, G*Y is unicyclic

and connected. Let B, be the unicyclic branch at v in G*¥. Let B* be

the branch at v in G corresponding to the branch B, at v in G?. Using

Theorem 1.6(b) to B*, dg-(v) =| V(B*)|-3. Also for any branch B # B;

and B* we have dg(v)=| V(B)|-2,1<1i<k-1. Hence (b) is proved.

Case 3. G is connected, G-v is unicyclic and 7 > k-1.

Since G-v is unicyclic, one B-v is unicyclic. Let B* be the branch at v
in G such that B*-v is unicyclic. We consider the following two subcases
with respect to B*,

Case 3.a. B* = B; for at least one 7, 1 <i < k-1.
k—1
As in Case-2, G*=G™ U( U(B —v)). This implies that G*¥ is

tree. Using Theorem 1.4, we get dB(v) =| V(B)|-2 for any branch B # B;
atvin G,1<i<k-1.
Case 3.b. B*# B;,1<i<k-1.

Now dpg-(v) # | V(B*)|-1. Suppose dg-(v) < | V(B*)|-2. Then
G" has at least two cycles, one contains v and the other not. This is a
contradiction to our assumption that GV is unicyclic and hence dg.(v) =
| V(B*)|-2. Also dg(v)=| V(B)|-2 for B# B;,1<1%<k-1. Hence (c)
is proved.

For proving (d) to (h), we assume that G is a disconnected graph with
m components. Let the components be D, Dy, Ds, ..., D,,..; and v be in
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D.Let D* =D; U Dy U ..U D,y sothat G = DUD* Since G has r
branches at v, D also has r branches at v.

Case 4. G-v is acyclic and r = k-1.

k-1 k-1
Here D = | J B; so that G = D*U | J B;. This implies that G¥ =
k—11=1 i=1
(D*+v) U ( U (B;—v)). Since GV is unicyclic and ( B; —v )’s are acyclic,
i=1

D*+v is unicyclic. Let D; # D be a nontrivial component of G for at
least one j, 1 <j <m-1. Then D;= K> since otherwise G is not uni-
cyclic. Moreover the remaining components are trivial graphs. Thus G =
DU K, U(p-2-| V(D)|) K, and hence (d) is proved.

Case 5. G-v is acyclic and r > k-1.

Here G = DU D* and so G¥ = D¥ U (D*+v). Then DY may be either
acyclic or unicyclic.

When DV is acyclic, one component of G is K, and others K 's since
G¥ is unicyclic. This implies that G = DU K, U (p-2-| V(D)|) K.
Also for any branch B at v in G such that B # B;, we have B} is a tree
in G¥ and hence dg(v) =| V(B)|-2, 1 <i < k-1. Hence (e) is proved.

When DV is unicyclic, each component of G other than D is a triv-
ial graph. This implies that G = DU (p-| V(D)|) K;. Now D is con-
nected, DV is unicyclic and D-v is acyclic. Applying Case-2 to D, we get
dg(v)=| V(B)|-3 only for one B and for other r-k branches B’s at v in
G, dg(v)=| V(B)|-2. Hence (f) is proved.

Case 6. G-v is unicyclic and r = k-1.

Suppose a component of G not containing v is unicyclic. Then GY has
more than two cycles, which is a contradiction and hence cycles are in the
component D. Also the other components of G are trivial graphs. This
implies that G = DU (p—| V(D) |) K, . Since GV is unicyclic, one B;-v
is unicyclic, 1 < ¢ < k-1. Hence (g) is proved.

Case 7. G-v is unicyclic and r > k-1.

Clearly, each component of G other than D is a trivial graph. This
implies that G = DU (p—| V(D) |) K1 . Applying Case-3 to D, we get one
B-v is unicyclic and dg(v) =| V(B)|-2 for the remaining r—k+1 branches
B’s at v in G. Hence (h) is proved.

On the converse part of the theorem, using Theorem 1.5, GV is discon-
nected with k components. Clearly, each case implies that G¥ is unicyclic.
This completes the proof. O

Note 2.2 [3] Consider a cycle C, = (vy,v,...,v; )(clock-wise). For our
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convenience we denote it by C;(,,). Identifying an end vertex of paths
P, at v; and P, at v;, then the resulting graph is denoted by C.(,) (0,
wer Pmy 0, ..., Py, 0, ..., 0). Identifying an end vertex of paths P, and
P, at the vertex vj, then the resulting graph is denoted by C;(,,) (0, ...,
P,uUP,0..0).

The graphs Cy(,) (0,0, P2, P3), Cy4) (0,2 P, U P3,0,0)and Cy (0,
2P, U P;, P, P;) are given in Figure 2.1.

Csv) (0,0, P2, P3) Cyv)(0,2P, U P3,0,0)

Csv) (0,2 U P, P, P3)
Fig. 2.1

Note 2.3.[5] Let v be a cutvertex of a connected graph G. Let By, Bs, ...,
B;. be the branches with n;,ns,...,nx number of copies at v in G, respec-
tively. In this case, we denote the graph G by G(v; nyBy,n2Bs, ...,nk B ).

Consider the graph G given in Figure 2.2. There are four distinct
branches B;,Bs,B3 and By at v in G and they are given Figure 2.3.
Thus G = G(’U; 231 , Bg, B3, B4).
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G = G('U;zBl» B, Bs, B4)

Fig.2.2.
v
\v v v
*—9o
B, B, B, B; : ‘ B, v
Fig.2.5.

3. Characterizing disconnected unicyclic graphs with a self ver-
tex switching

Theorem 3.1. A disconnected and unicyclic graph G of order p = 2n+1
with k components has a self vertex switching v if and on ly if it is either
DuU K; U(k-2) Ky where D is either D(v; (n-2) P;,K3) or D(v; (k-
2) P, Kj, (n—k) P;) according as k = nor k<n or DU (k-1) K; and
k = p+1-| V(D)| where D is either of the following: D(v; C4,K, 3,
(k—l) P2 y (n—k—2) P3 ), D('U; 03(1,,) (Pz ) 0, 0), P4 y (k—l) P2 3 (n—k—2) P3 ),
D(‘U; C4(w) (P2 , 0, 0, 0), (k—l) P2, (n—k—l) Ps) and D(‘U; Cg(w) (Pa, 0,
0), (k-1) P, (n-k-1) P3 ) where w is a vertex adjacent to v in G and for
any branch B at v in G, dg (v) =1 or 2 according as B is a tree or unicyclic
branch.
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Proof. Let v be a self vertex switching of a disconnected unicyclic graph
G. Using Theorem 1.1, dg(v) = n. And using Theorem 2.1, G has 7 > k-
1 branches at v and dg(v)=| V(B)|-1 only for k-1 branches B’s. The
following five cases arise.

Case 1. G = DU K, U(p-2-| V(D)|) K1, G-v is acyclic and r = k-1
where D # K, , K, is a component of G containing v.

G-v is acyclic implies that v lies on the cycle in the cyclic branch, say
B*, at v in G. Since G is unicyclic and dg(v) = n, there are n—-1 branches
at v in G and hence k = n. Since K, is a component of G, Ko +v = K3
is a branch at v in G? and hence B* = K3 . Since the other branches at v

in G are trees and dg(v) =| V(B)| -1, they are P,’s. These n-2 branches

make only K;'sin G". Since G= GY, n-2 = p-2-| V(D) |. Hence G =

Du K, U(k-2) K, where D is D(v; (n-2) Py, K3).

Case 2. G =DU K, U(p—2-|V(D)|)K,, G-v is acyclic, r > k-1 and

dp(v)= | V(B)|-2 for the remaining r—k+1 branches B’s at v in G, where
K, , K, is a component of G containing v.

Let B* be the unicyclic branch at v in G. As in Case-1, B* = K3 and

there are n-1 branches at v in G. Clearly dp.(v)=| V(B*)|-1. Since
the other branches at v in G are trees, any branch B at v in G with
dp(v)=| V(B)|-2is P; and with dg(v)=| V(B)|-1is P.. Since the
branches P,’s at v in G make only K;’s in G¥ and G= GY, we get
k-2 = p2-|V(D)|. Hence G = DU K U(k-2) K; where D is D(v;
(k-2) P2, K3, (n-k) P3). Also n > k since r = n-1.
Case 3. G = DU(p-|V(D)|)Ky, G-v is acyclic, r> k-1, dg(v)=
| V(B) | -3 only for one branch B at v in G and dg(v) =| V(B)|-2 for the
remaining 7—k branches B’s at v in G where D # K, , K, is a component
of G containing v.

G is unicyclic and G-v is acyclic implies that v lies on the cycle in
the cyclic branch, say B*, at v in G. Hence there are n-1 branches at
v in G and dg-(v)= 2. If B* has 3 vertices, then B*-v is a compo-
nent of G¥. Since G= GY, G has a component K, which is a con-
tradiction and hence | V(B*)| >4. Using Lemma 1.3, each component
K; #D in G becomes a branch P, at v in GY. If B is a branch at v
in G with dg(v) # | V(B)|-1, then BY is a branch at v in G¥. Us-
ing Lemma 1.3, dg(v)=|V(B)|-1 for a branch B at v in G if and
only if B-v is a component of G”. Since G= G¥ and k-1 branches
B’s at v in G with dg(v)=| V(B)|-1, we get k-1 = p—| V(D)|. If
B is a branch at v in G with dg(v) # | V(B)|-1, then | V(B)| >3.
If B* has order at least 6, then p = | V(B¥*) |+ Z | V(B)|

dp(v)=|V(B)|-1
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+ > | V(B)| +(the number of K; 'sin G)-r+1 > 6+2(k~
dp (v)#|V(B)|-1,B#B*

)+3(r-k)+p-| V(D) |-r+1 = 2r+4 = 2(n-1)+4 = 2n+2 > p, whichis a

contradiction and hence | V(B*)| =4 or 5.

When | V(B*)|= 4, there are only two unicyclic graphs on 4 vertices
and they are C4 and Cj(y) (P2, 0, 0). For any vertex v with degree
2in C; and in Cy) (P, 0, 0), the switching of them by v are K3
and P, respectively, and in these degree of v is 1. Clearly C4 and K3
and Cj(y) (P2, 0, 0) and Py are complementary switching branches at
v. For any branch B # B* and B$ B*Y, if dg(v)=| V(B)|-1, then B
= P, since otherwise B-v# K, is a component of G and hence G has a
nontrivial component other than D and if dg(v) =| V(B)|-2, then B has
3 vertices since otherwise G has more vertices than p and hence B = P;.
This implies that G = D U (k-1) K; where D is either D(v; C4, K13, (k-
1) P, (n-k-2) P3) or D(v; Caw) (P2, 0, 0),Py, (k-1) P, (n-k-2) P3)
where vertex w is adjacent to v in G.

When | V(B*)| = 5, there are only five unicyclic graphs on 5 vertices
which are given in Figure 3.1. If B* is either C3(y) (P2, P2, 0), Caw) (0,
2 P,,0) or Cs, then for any v in B* with degree 2, B*¥ is unicyclic and
B*Y % B*. Hence B* is either Cyw) (P2, 0, 0, 0) or Cs) (Ps, 0, 0)
and has a self vertex switching in the cycle, which is adjacent to w and
dp-(v) =|V(B*)|-3. For any branch B # B*, if dg(v)=|V(B)|-1,
then B =P, and if dg(v)=| V(B)|-2, then B =P;3 since otherwise G
has more than p vertices. This implies that G = D U (k-1) K, D is either
D(v; Cyqwy (P2, 0,0,0), (k-1) P, (n—k-1) P3) or D(v; Caw) (F3,0,0),
(k-1) Py, (n—k-1) P3 ) where the vertex w is adjacent to v in G.

L ]

w v v
u u w
CS C4(w) ( P, 0,0, 0) C3(w) (-P3 , 0, 0)
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Ciw) (0,2 P, 0) Csw) (P2, P2, 0)

Fig. 3.1

Case 4. G = DU (p-| V(D)|) K1, G-v is unicyclic, = k-1 and one
B-v is unicyclic where D # K; , Ks is a component of G containing v.

Let B* be the branch at v in G such that B*-v is unicyclic. Since
dp-(v)=| V(B*)|-1, B*-vis a component of G" . Since G= G¥, D = B*-
v, which is a contradiction to the fact that B*-v is a proper subgraph of
D. In this case G cannot have a self vertex switching.

Case 5. G =DU(p-{ V(D)|) K1, G—v is unicyclic, 7 > k-1, one B-v is
unicyclic and dg(v)=| V(B)|-2 for the remaining (r-k+1) branches B’s
at v in G where D # K, K, is a component of G containing v.

G and G-v are unicyclic implies that v does not lie on the cycle in
the unicyclic branch, say B*, at v in G and hence v is an end vertex
in B* and so | V(B*)| >3. Since dp-(v)=| V(B*)|-1or | V(B*)]|-2,
dp-(v) > 1, which is a contradiction to v is an end vertex in B*. In this
case also G cannot have a self vertex switching.

From cases (1), (2) and (3), we get the required graph G.

Conversely, if G is the graph as given in the theorem, then v is the self
vertex switching of G. This completes the proof. O

Corollary 3.2. Let G be a disconnected unicyclic graph. Then ss) (G) =
Oor 1. And ss; (G) =1 if and only if G is the graph given in Theorem 3.1.

Example 3.3. The five disconnected unicyclic graphs G on p = 2n41
= 17 vertices, each of which has v as the self vertex switching and with 3
components are given in Figures 3.2 to 3.6.
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Fig. 3.2. G Fig. 3.3. G
[ ] [}
[ ] q [ ]
v
L
Fig. 8.4. G Fig. 3.5. G
[ J
[ J
Fig. 3.6. G
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