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Abstract
We identify a graph without proper cycles, which is comatching with a cycle.
The result is then extended to certain general families of graphs with cyclomatic
number 1, formed by attaching trees to cycles.

1. Introduction

The graphs considered here are finite and contain no loops. However, they
may contain multiple edges. We refer to Harary [4], for the basic definitions in Graph
Theory (however, we use “nodes” and “edges” instead of “points” and “lines”
respectively) .

It is well known, that the matching polynomial is not a characterizing
polynomial for graphs (See Farrell [1]). Given an arbitrary graph, it is of interest, to
identify graphs which have the same matching polynomial. Some general
constructions of such graphs are given in Farrell and Wahid [2]. Itis also of interest,
to identify graphs whose matching polynomial is the determinant of an associated
matrix. Such graphs have been discussed in Farrell and Wahid [3].

Definiti

Let G be a simple graph with p nodes, q edges and k components. Then, the

cyclomatic number (or cycle rank) of G is q-p+k.

In this paper, we identify families of graphs, without proper cycles (i.e.
cycles with at least three edges), which have the same matching polynomial as certain
families graph formed by attaching trees to cycles; i.e. families of graphs with
cyclomatic number 1.We conclude the paper with a summary of the results in his area
and a discussion on some open problems.

2. The Matching Polynomial of a Graph

First of all, we give some definitions and results, which are relevant to the
material which follows.

Let G be a graph. A matching in G is a spanning subgraph, whose
components are nodes and edges only. Let p be the number of nodes in G; and a, -the
number of matchings in G, with k edges. Then, the matching polynomial of G is
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where w = (w,, w,). The indeterminates w, and w, (over the complex numbers) are
the weights associated with each node and edge respectively, in G. This polynomial
was introduced in Farrell [1]. For brevity, we shall write M(G) for M(G;w), when it
would lead to no confusion. Graphs which have the same matching polynomial, are
called comatching.

The smallest pair of non-trivial comatching graphs is the following:
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Figure 1

The following are the smallest connected comatching graphs.

Figure 2
The following result is taken from [1]. It provides the basic algorithm (called
The Reduction Process) for finding matching polynomials of arbitrary graphs.
[heorem 1(The Fundamental Edge Theorem
Let G be a graph containing an edge uv (joining nodes u and v). Let G’ be
the graph obtained by deleting the edge uv; and G” -the graph obtained from G by
removing nodes u and v. Then
M(G;w) = M(G";w) + w,M(G"w).

When this theorem is applied, the graph G’ is referred to; as “the reduced
graph” and the graph G"; as “the incorporated graph”

Let G be a graph with p nodes. The matching matrix of G is the pxp matrix
A(G) = [a;]}, over the complex numbers, where

\/ nw, , if nodes i and j are joined by n edges; and i < j

-—-\/nwz , if nodes i and j are joined by n edges; and i > j

&= oo
wp,ifi = j

0, if nodes i and j are not adjacent.

This matrix was introduced in {3}.
Let G be a graph, such that its matching polynomial is the determinant of its
matching matrix; i.e. M(G) = | A(G)|. Then G is called a D-graph. If H is any
D-graph, such that H is comatching with G, then H is called a D-graph for G; and
we write H = D(G).
The following lemma gives a sufficient condition for a graph to be a
D-graph. This result is taken from [3].



Lemma 1
Let G be a graph without proper even cycles. Then

M(G) = |AG)| .

3. D-graphs for Cycles

We will denote by C,, the cycle with n nodes. From Lemma 1, it is clear that
an odd cycle is a D-graph. In the case of an even cycle, we will find a comatching
graph, without proper cycles.

A path is a tree, with nodes of valencies | and 2 only. The path with n nodes
will be denoted by P,. We will call P, a chain, when it is a component of a graph.
The two nodes of valency | are called
end-nodes of P,.

The tadpole graph (or tadpole, for brevity) T,, is the multigraph with n
edges, formed from P,, by adding a new edge, joining an end node, to its adjacent
node. The resulting ncde of valency 2 is called the head node of T .

The following theorem identifies a graph which is comatching with a cycle.

Theorem 2
Let C, be the cycle with n nodes. Then tadpole T, is a D-graph for C,.

Proof
Let us apply The Reduction Process to C,, by deleting an edge. Then

the reduced graph G’ will be the chain P,. The incorporated graph G” will be the
chain P_,. Therefore

M(Cn) = M(Pn) + ‘VZM(Pn-L’)'

Apply the Reduction Process to T,,, by deleting one of its double edges. Then

the reduced graph will be P,. The incorporated graph will be P, .. Therefore

M(T,) = M(P,) + w,M(P,..)

= M(C).

Since T, has no proper cycles, it is a D-graph. Hence T, = D(C,). 1

4, D-graphs for Cycles With Chains Attached

Let G and H be graphs, rooted at nodes u and v respectively. We attach G to
H (or H to G) by identifying nodes u and v. The resulting node is called the node of
attachment. Throughout this paper, we will use an end node (a node of valency one)
of a chain as its root. The connecting edge of an attached chain, is the edge incident
to its node of attachment.

We now consider the graph T, , with cyclomatic number 1, formed by
attaching the chain P, to the cycle C,.

Theorem 3
Let H be the graph formed by attaching the chain P, to the head node of the
tadpole T,. Then H = D(T, ,).
Proof
Let xy be the connecting edge of the chain P, . Apply the Reduction Process

to T,., by deleting xy. The reduced graph will consist of two components; the cycle
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C, and the chain P_,. The incorporated graph will be the graph obtained from T, ,, by
removing nodes x and y. It will therefore consist of two components chains; P, , and
P.... Hence Theorem | yields,

M(T,.) = M(COM(P,.,) + w.M(P,, ) M(P,,..).

Now, apply the Reduction Process to H; by deleting the connecting edge xy
of P, . The reduced graph will consist of two components; the tadpole T, and the
chain P, ,. The incorporated graph will be the graph obtained from H, by removing
nodes x and y. It will therefore consist of the two component chains; P,,, and
P_... Hence Theorem! yields

M(H) = M(T)M(P,,.,) + w.M(P, ) M(P_,..).
=M(C)M(P,,.)) + w.M(P_ ) M(P,,,) (using Theorem 2)
=M(T, ).
Since H has no proper cycles, it is a D-graph. Hence the result follows. 1}

5. D-graphs for Cycles With Trees Attached

Let C, be a cycle with n nodes. Let R,, R,, .. and R, be trees, such that for

I<i<n,R= R, Let us attach these n trees to C, , in the following manner.

Firstly, attach R, to an arbitrary node of C,. Then, attach the remaining trees R.,
R;...and R, in sequential order (ie. for 1<i < n-1, the node of attachment of R, is
adjacent to the node of attachment of R,,,) either clockwise or anticlockwise, to the
remaining n-1 nodes of C,.Then the n trees have been attached symmetrically to C, .

We will now consider graphs formed by attachmg trees (mg_l_@_ng_gggs_m
one node) symmetrically to cycles; with the restriction that two of the attached trees
are isomorphic and are separated by a path of length 2, on the cycle. The node

separating these trees is called a symmetric node of the cycle. Clearly then, R, is
always attached to a symmetric node. The order in which the other trees are attached,
relative to a symmetric node x, will be referred to, as the order “starting at x”. We
attach trees “in order” to a tadpole, starting with the head node as the first node of
attachment. Therefore, for attachment purposes, the head node of a tadpole , is
equivalent to a symmetric node of a cycle.

The following theorem identifies a D-graph for a graph consisting of a cycle
with trees symmetrically attached, and containing a symmetric node.

Let G be the graph with a symmetric node, formed by attaching trees
symmetrically, to the nodes of the cycle C,. Let H be the graph formed by attaching
isomorphs of the trees in order, to the n nodes of the tadpole T,. Then H is a D-graph
for G.

Proof

Let x, be a symmetric node in G. Apply the Reduction Process to G, by
deleting the edge x,x, of C,, incident to x,. The reduced graph G will be the chain P,,
with the n trees attached in order, starting at x,. In general, the incorporated graph G°,
will contain three subgraphs;

() Ri-{x,},

(ii) R,-{x,},



[N.B. if R, and R, are nodes, then R;-{x,} and R -{x,} will be empty graphs. Also, if
the roots of R, and R, have valencyl, then R\-{x,} and R,-{x,} will be connected
graphs.]
and (iii) the graph P, ,(2,3,....,n-1), consisting of the chain P,,, with the n-2 trees
R,, Ry, R, ... R, attached in order, starting at node X,.
Clearly then,
M(G™;w) = M(R,-{X,}) M(R;~{x,}) M(P,» (2,3,....,n-1)). .. ()
From Theorem |, we have
M(G:w) = M(G';w) + w.M(G";w).
= M(G';w) + W.M(R,-{x, hDMR -{x,h)M(P, > (2,3,.....0-1) ). ...(2)
Let head node of T, be z, and its adjacent node- y, Apply the Reduction
Process to H, by deleting one of the double edges yz. Then the reduced graph H' will
be the chain P,, with the n trees attached in order, starting with the tree R, at z. It will
therefore be isomorphic to G'. Therefore
M(H';w) = M(G;w). ... (3)
The incorporated graph H’, will be the graph obtained from H, by removing
nodes y and z. It will therefore contain three subgraphs;
(i) R,-{z}(since R, is attached to the head node z),
(i) Ry-{y}(since R, is attached to node y),
and (iii) the graph P, , (3,4,....,n), consisting of the chain P, ., with the n-2 trees
R;, R, ,... R, attached in order, starting at node y.
Therefore
M(H";w) = M(R,-{z}) M(R;-{y}) M(P,.. (3 4,.....n)). e (@)
Clearly R,-{x,} and R,-{z} are isomorphic graphs. Also, R,and R, are isomorphic (by
data); and therefore R -{x,}and R,-{y} are isomorphic.
Now, the graph P, ,(3,4,....,n) can also be denoted by P, .(n,n-1,....,4,3), by viewing
the chain from the opposite end. Since the trees are symmetrically attached to the
nodes of the cycle C,, then, for I<i<n, we have Ria R ...
= P, .(2,3,....,n-1) and P,,(n,n-1,....,4,3) are isomorphic.
= P_,(2.3,.....n-1) and P_,(3,4,....,n) are isomorphic.
Therefore, from Equation (4), we get
M(H™;w) = M(R,-{x,} MR-{x,Hh)M(P,(2.3,....,n-1)).
From Theorem 1, we get
M(H;w) = M(H;w) + w.M(H";w).
=MH W) + waMR - {X MR- {x, h)M(P,5(2.3......n-1)).
= M(G;w) + w.M(G™;w). (Using Equation 3)
=M(G;w)
Since H has no proper cycles, it is a D-graph. Hence the result follows. 0

An Illustration
Let G be the following graph obtained by attaching trees to the cycle Cs.
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Then the following graph H, is the comatching D-graph for G, obtained by using
Theorem 4, with node 1 as the symmetric node.

T

The following graph H, is the comatching D-graph for G, obtained by using
Theorem 4, with node 4 as the symmetric node.

IR

6. Discussion

Given a graph G, it is an interesting problem, to find a comatching
D-graph D(G). It is also a difficult problem. In this paper, we have identified graphs
D(G), for graphs G, with cyclomatic number 1. However, there are restrictions on the
trees which are attached to the basic cycle. One restriction is that two of the attached
trees are isomorphic and are separated by a path of length 2. This became necessary,
in order to define a symmetric node. Such a node is vital to the construction of the
comatching D-graph, since the trees must be attached in the particular order, defined
by the symmetric node. Hence the problem has not been entirely solved for all graphs
with cyclomatic number 1.

Graphs with cyclomatic number 2, have been investigated. Results
have been obtained for the basic graphs; but only for certain kinds of theta graphs.
These results have also been extended to general graphs formed by attaching trees to
the basic graphs. Again there have been restrictions.
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The technique which has been used to construct comatching D-graphs
has the advantage of providing more than one such D-graph, for a given graph. The
implications of this, on theory of determinants is no doubt, very interesting.

Given an arbitrary graph G, how does one, in general, find a D(G)?
Our approach has been via its cyclomatic number. This approach has had limited
success so far.
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