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Abstract

A set of vertices in a graph G without isolated vertices is a
total dominating set (TDS) of G if every vertex of G is adjacent
to some vertex in S. The minimum cardinality of a TDS of G is
the total domination number -;(G) of G. In this paper, the total
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graphs is determined.

Keywords: TDS, Total domination number, Generalized
@ graphs, Ladder graphs.

2010 MR Subject Classification: 05C69
CLC number: 0186.1

*Project supported by NSFC ( 11026078 )
tCorresponding author: Xiaoxin Song e-mail: sxx6@henu.edu.cn

ARS COMBINATORIA 129(2016), pp. 71-93



1 Introduction

Throughout this paper, we only consider finite and simple undi-
rected graphs without isolated vertices. For m € N, set I, =
{neN: 1<n<m} SetIy=0. Foragraph G,V = V(G)
and F = E(QG) will denote its sets of vertices and edges. For
each vertex v € V, let N(v) = {u € V : uwv € E} and
N[v] = N(v) U {v}. We denote the degree of v in G by dg(v),
or simply by d(v) if the graph G is clear from the context. For
veVand SCV,let ds(v) = N(v)N S.

For S C V, let N(S) = UyesN(v) and N[S] = N(S)US. For
S C V, an induced subgraph of G, denoted by G — S, is a graph
obtained from G by deleting all vertices in .S and all edges with
at least one end vertex in S. For a graph G = (V, E) and an edge
set Ey, we define G+ E, = (V, EUE,) and G—E; = (V, E\E,).
For each vertex u € V, let G—u = G — {u}. For S, S, C V, we
set 1 — S, =5, \ Sy and S; +S,=5,US; A path(cycle) on
n vertices is denoted by P,(C,).

A total dominating set, abbreviated TDS, of a graph G is
a set S of vertices of G such that every vertex is adjacent to
a vertex in S. The total domination number of G, denoted by
Y¢(G), is the minimum cardinality of a TDS. A TDS of G of car-
dinality 7;(G) is called a ;(G)—set. In 1980, E. J. Cockayne[3]
introduced the subject of total dominating set (TDS) in graphs.
In[1,2,7], the authors proved that v,(G) < n/2 if G is a graph
of order n with minimum degree § > 3. In [5], M. A. Henning
proved that v,(G) < (1/2+1/g)n if G is a graph of order n with
minimum degree § > 2 and girth g > 3. We refer to [1-7] for
more background on the historical importance of this problem
and other results not mentioned here.

In [4], the authors defined a function rd counting the times
v is re-dominated as rd(v) = |[N[v] N S| — 1. In this paper, we
defined a function rtd counting the times v is re-total-dominated
as rtd(v) = dg(v) — 1.
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G = (V, E) is called a generalized @ graph|6] if G is a simple
connected graph obtained from two vertices z and y by adding
at least two paths joining z and y, such that d(v) = 2 for each
veV\{z, y}.

Foreach m, n >3, G = Ly, = (V, E) is called am X n
ladder graph if G is a simple connected graph obtained from
two paths ujus - - - 4y, and vy - - - vy, by adding a path of n — 1
edges joining u; and v; for each ¢ € I;;, such that d(v) = 2 for
each'veV\{u,-, Uil iEIm}.

2 Main Result

In this paper, we have the following results:

Theorem 2.1 Let G = (V, E) be a generalized 6 graph,
where V = {z;; : i € Ip, j € I;}U{z, y} and E\ {zy} =
{IE.’E,‘], YTik; © © € Im} U {xij$i‘j+1 : 1 €L, J € Ik,-—-l} (Note
that Iy = 0.) such that k; € N for each : € I,. Let (k) =
Ye(Prs2) —2 foreach k € N.For 1 =0, 1, 2, 3,let J; = {i €
I, : ki =1(mod4)}. Then we have the following results.

(A) %(G) =L, p(k:) +2ifzy € E.

(B) %(G) = ZZyp(k) + 2= (V| -m+2)/2if Jy = In.
(C) 1%(G) = Ty p(ki) +2if Jo # 0.

(D) 1(G) = T, p(k:) + 2 if | 3] > 2.

(E) %(G) > 2, ¢(ki) + 3 if and only if zy ¢ E, Jo =
@, |J3| < 1 and J1 ?’-‘ Im.

(F) %(G) =X ok +4=|V|/2—m+3ifzy ¢ E and
J2 =Im.

(G) 1(G) =Sr, o(k:) +3ifzy ¢ E, Jo =0 and |J3] = 1.

(H) 1(G) = X", pki) +3ifzy ¢ E, Jo=J3 =0, J1 #
0, Jo#0.
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Theorem 2.2 Let G = L, = (V, E) be a m x n ladder
graph. Then we have the following results.

(A) %(G) = mn/2 if n = 0(mod4).

(B) 1:(G) = mn/2 — m/2 + 2 if n = 3(mod4) and m > 4.
Moreover, 7(Ls,) = (3n — 1)/2 if n = 3(mod4).

(C) %(G) = mn/2 if n = 1(mod4) and m = 0(mod4).

(D) %(G) = mn/2+1/2if n = 1(mod4) and m = 1, 3(mod4).
(E) %(G) = mn/2 + 1 if n = 1(mod4) and m = 2(mod4).
(F) %(G) = mn/2 —m/3 if n = 2(mod4) and m = 0(mod3).

(G) %(G) = mn/2 — m/3 + 4/3 if n = 2(mod4) and m =
1(mod3).

(H) %(G) = mn/2 — m/3 +2/3 if n = 2(mod4) and m =
2(mod3).

3 Preliminaries

In [6], the following results is proposed.
Lemma 3.1[6] For each n > 3,

2, = 0(mod4);
Y(Pn) = 1(Cn) = { El//2]+1= o:herwirsr;.o

Lemma 3.2[6] Let G = (V, E) be a generalized 8 graph
as in Theorem 2.1, there must be some 7;(G)—set containing
or y.

Lemma 3.3[6] 7:(G) < a(G) + 1 for each generalized
graph G, where a(G) denoted the matching number of G.

By Lemma 3.1, we have the following result.

Lemma 3.4 For each k € NU{0}, let p(k) = v¢(Pry2) -2,
then
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(k-1)/2, k=1, 3(modd4);

k/2 -1, k = 2(mod4);
o(k) = {
k/2, k = 0(mod4).

Moreover, 0 < p(k+1)— (k) <1, o(k+4)— (k) =2 and
o(k+3)+(k+1) = p(k+2)+@(k)+1 for each k € NU{0}.

Lemma 3.5 Let G = (V, E) be a simple connected graph.
Let P = zujuy---uxy be a path of G such that d(u;) = 2 for
eachi € Ii(k>0).Let U={u;: 1€ Ik}, Up={z, y}, U1 =
{w1, ux}. Let S be a v (G)—set. Then we have the following
results.

(A) Syep rtd(u, S) = 2[UNS| = Uy N S|+ |UpN S| -k if
k>1.

(B) [UNS| > [k/2] - 1.
(CYIUNS| > (k) = 7:(Prs2) —2if Up C S.
(D) |UﬂS|Z'yt(Pk+1)—11fk_>_1and x, U1€S.

(E) lUNS| > %(Pe-1) +1if k£ > 3 and u; € S for j =
1, k-1, k.

B)YIUNS| > (Pe-1)ifk>23, zeSandy ¢ S.
GQ)IUNS|>n(P)ifk>2andz, y¢S.

Proof (A) Note that Y cprtd(u, S) = Y,cvds(u) —k=
Yses du(s)—k =2lUNS|—|UyNS|+|UyNS|—k. (A) is proved.

(B) We may suppose that £ > 1. By (A), 2)lUNS| > k-
US|+ |UyNS| > k-2, (B) is proved.

(C) We may suppose that £ > 1. If Uy C S, then SNV (P)
is a TDS of P + {zy}, (C) is proved.

(D) We may suppose that £k > 2. If z, u; € S, then UNS +
{z} is a TDS of G[U U {z}] + {zux}, (D) is proved.

(E) We may suppose that £k > 4. Ifu; € Sforj =1, k-1, &,
then UNS—{uy} is a TDS of G[U]—ux+{u1uk-1}, (E) is proved.
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(F)Letz € Sand y ¢ S. If k£ = 3, note that N[uz] NS # 0,
then |[UNS| > 2, the result follows. We may suppose that k& > 4.
Ifu; € S, then UN S is a TDS of G[U] — u;, the result follows.
If u;, ux € S, then by (C), we have [UNS| > v(Pe) > 7(Pr—1)-
If uy € S and u, ¢ S, then ux_; € S, and then by (C), we have
[UNS| 2 %(Px-1). (F) is proved.

(G)Ifk>2andz, y¢ S, then UNS is a TDS of G[U], the
result follows. Lemma 3.5 is proved.

4 Generalized 0 graphs

Let G = (V, E), ¢, Ji(l =0, 1, 2, 3) be as in Theorem 2.1.
Let A; = {z;; : j € I} fori € I,. Let Up = {z, y}, U1 =
N(Uo) '—Uo and U2 =N(U1) —Uo—Ul. Let X = {SQ V.S
is a 1(G)—set}, Xo = {So € X : |SoNUp| = max{|S N Uy :
SeX}}, Xi={S1€ Xo: |SiNU| =max{|SoNUi|: Sp €
Xo}}, X2 = {52 S Xl . |San2| = ma.x{|SlﬂU2| : Sl € X]_}}
We may suppose that S € X,. '

Lemma 4.1 If|UyNS|=1,thenzy¢ Fand UjNS =
Uy N Ay, for some iy € I,;,.

Proof Note that S contains no isolated vertices, we may
suppose that z, z;,; € S for some iy € I,.

Claim1 zy ¢ E.

Otherwise, let T = S—A;,+{io,; € Aig ¢ Tigj+1 € S}+{v},
then T € X and [T NUy| > |SN Uy, and then S ¢ X, a
contradiction. Claim 1 is proved.

Claim 2 N(y) NS = {Tigr,, }-

Suppose that N(y) NS # {Ziuk, }, note that N(y) NS # 0,
then z;x, € N(y)NS for some ¢y #14g. Let T =S5 — A;; — A;, +
{Zioj-1 € Aiy 1 Zigj € S}+{Ziy 541 € Aiy : Tiy; € S}H{y, i},
then T € X and |TNU,| > |SNUp|, then S ¢ X, a contradiction.

76



Claim 2 is proved.
Claim 3 N(z)NS = {zi,1}-

Otherwise, let z;,; € N(z) NS for some 35 # 4. Let T =
S = Aiy — Aiy + {Zig 01 € Aig 1 Tigj € S}+ {Zipj-1 € Ay -
Tiyj € S} +{y, Zis1}, then T € X and [TNT,| > SNy, a
contradiction. Claim 3 is proved. Lemma 4.1 is proved.

Lemma 4.2 Let UyNS = {z} and U;NS = U; N A,, then
1 € Jy U Jp. Moreover, if 1 € Ji, then |[4; N S| = (k1 +1)/2 and
ANS={z;: j=0, 1(modd)}. If 1 € J, then [4, N S| =
ki/2+1and A,NS = {z;: j=1, 2(mod4)}.

Proof Claim 1 |A1 N SI > ’Yt(Pkl—l) + 1if kl > 3.

Note that z,; € S for j =1, ky, — 1, k;, by Lemma 3.5 (E),
Claim 1 is proved.

Claim 2 1 ¢ J3.

Otherwise, by Lemma 3.1, |4, N S| > 7(Pey-1) +1 = [(k1 -
1)/2]+2 = (k1+3)/2 LetT = S—A1+{$1j : ] = 0, 1(mod4)}+
{y, 1, }- Then T € X and [T NUp| > |SNTp|, then S ¢ Xo, a
contradiction. Claim 2 is proved.

Claim 3 1 ¢ J,.

Otherwise, note that k; > 4. By Lemma 3.1, |4, N S| >
'ﬁ(Pkl—l) +1 = k1/2 + 1 Let T =85 — A + {$1j A
0, 1(mod4)} + {y}. Then T € X and [T NUp| > |SN Uy, a
contradiction. Claim 3 is proved.

Claim 4 If1 € Jy, then |A;NS| = (k1 +1)/2and A;NS =
{z1;: =0, 1(mod4)}.

We may suppose that k; > 5. By Lemma 3.1, |A; N S| >
'Yt(PIn—l) +1 = (kl - 1)/2 +1 = (kl + 1)/2 Let T = S —
Ay + {z1;: j=0, 1(mod4)}, then T is a TDS of G. Note that
ISI _<_ ITI and |A1 nTl = (k1+1)/2, then |AlﬂS| = (k1+1)/2
Since Uy NS = Uy N Ay, by Lemma 3.5 (A), ¥ yea, rtd(u, S) =
2|AlnS|— |UlnS|+|UonS|—k1= (k1+1)—2+1—k1=0,



then each connected component of G[4; N S| — z1;(G[4;] - S)
is K5. Claim 4 is proved.

Claim 5 If1e€ J;, then |[A;NS|=k/2+1and 4,NS =
{z1;: 7=1, 2(mod4)}.

We may suppose that k; > 6. By Lemma 3.1, [4, N S| >
7t(Pk1—1)+1 = [(kl—l)/2]+2 = k1/2+1 Let T = S'—A1+{$1J’ :
j =1, 2(mod4)}, then T is a TDS of G. Note that |S| < |T'| and
|AiNT| =k /2+1, then |A;NS| =k, /2+1.Since S, T € X,,
then z,; € S for j = 1, 2, k1 — 1, ki. By Lemma 3.5 (A),
Tuea, Ttd(u, S) =2|ANS|—|UiNANS|+|UenNS| -k =
(k1 +2) —2+1— k; = 1. Note that rtd(zq;, S) =1, then each
connected component of G[4; N S]|(G[A4;] - S) is K>, Claim 5 is
proved. Lemma, 4.2 is proved.

Lemma 4.3 Let UyNS = {z} and U;NS = U; N A;, then
Im — {1} CJiand ;NS = {IB,'J' € A;: j=0, 3(mod4)} for
each ¢ € I, — {1}.

Proof Claim 1 [A4;NS| > v(Py,-1) if ¢ € I, — {1} and
k; > 3.

By Lemma 3.5 (F), Claim 1 is proved.

Claim 2 2 ¢ Jo.

Otherwise, since kz > 4, then |A2 N S| > ’)’t(sz—l) = [(kz -
1)/2]+1 = ky/2. Let T = S— Ay +{zs; € Ay : j = 0, 3(modd)},
then T € X, and [T NU,| > |SNU|, a contradiction. Claim 2
is proved.

Claim 3 2 ¢ J,.

Otherwise, since Uy NS = U; N A; and Nlzo,| NS # 0,
then k; > 6, and then |A2 N'S| > 74(Py,—-1) = ko/2. Let T =
S—Ay+{z25 € Ay : j =0, 1(modd)}, then T € X, and
|TNU;| > |S N Ui, a contradiction. Claim 3 is proved.

Claim4 2¢ J;.

Otherwise, |A2 N SI > 'Yt(sz—l) = (kz + 1)/2. Let T =
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S—Ay+ {zy; € Ay =0, 3(modd)} + {y}, then T € X and
[T NUp| > |S N Ty|, a contradiction. Claim 4 is proved.

Claim 5 2€ J;, A,NS={zy € A4y: j=0, 3(modd)}.

By the above claims, we have 2 € J; and |AoNS| > (k.—1)/2.
Let T =S — Ay + {z0; € A2 : j =0, 3(mod4)}, then T is a
TDS of G. Note that |S| < |T| and |A; N T| = (k2 — 1)/2, then
|A2NS| = (ka—1)/2. We may suppose that k2 # 1. Since U1NS =
Up N A; and N[zg,)NS # 0, then z24, 1 € S. By Lemma 3.5
(A), Suen, rtd(u, S) = 2|A2NS|—|U1NANS|+[UpNS| k2 = 0.
Claim 5 is proved.

By symmetry, Lemma 4.3 is proved.

Lemma 4.4 |UyN S| = 1if and only if 2y ¢ F and
Im = Jl.

Proof => Otherwise, suppose that UpNS = {z} and 1 ¢ J;.
By Lemma 4.1, zy ¢ E. Moreover, Uy N S = U, N 4, for some
io € I,. By Lemma 4.3, i =land AiNS={z;; € A;: j =
0, 3(mod4)} for each i € I, — {1}. By Lemma 4.2, 1 € J; and
AiNS = {z; € A1 : j =1, 2(modd)}. Now, %(G) = |S| =
S ki—1)/2+ (ki/2+1)+1=(V|-m+3)/2. Let T =
Us+{z1j: =0, 3(modd)} + {25 : 7 =1, 2(mod4)} + {zy; :
i>3, j=2, 3(modd)}, then T € X and |TNU,| > |SNUpl, 2
contradiction. the result follows.

< Otherwise, we have Uy C S by Lemma 3.2. By Lemma
3.5 (B), |[Ain S| > [ki/2] = 1 = (ki — 1)/2 for each i € I.
Note that U; N S # @, we may suppose that z;; € S, then by
Lemma 3.5 (D), |4; N S| > 7(Pry+1) — 1 = (k1 + 1)/2. Now,
G =152 TLi(ki —1)/2+3=([V[-m+4)/2. Let T =
{z1j: =0, 1(modd)} + {z;; : 1>2, j =0, 3(modd)} + {z},
then T is a TDS of G with |T| < |S|, a contradiction. Lemma
4.4 is proved.

Lemma 4.5 %(G) = ([V|-m+2)/2if 2y ¢ E and
Im = Jl-
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Proof By Lemma 4.1 and Lemma 4.4, we may suppose
that UpNS = {z} and U;NS = U; N A;. By Lemma 3.5 (E) and
(F), %(G) = |S| 2 ZZy %(Pe-1) +2 = Ty (ki — 1)/2+ 2 =
([VI-m+2)/2. Let T = {z} + {z1; : j =0, 1(modd)} +
{zij : i 22, j =0, 3(mod4)}, then T is a TDS of G with
|T| = (V| — m + 2)/2. Lemma 4.5 is proved.

By Lemma 4.4 and Lemma 4.5, the case for [UyNS|=1is
solved completely.

Lemma 4.6 Let Uy C S and 1 € J;, then we have the
following results.

(A) |[A1N S| = (k1) = (k1 —1)/2.
(B) |AlﬂS| =(p(k1) = (kl —1)/2 lfA]ﬂU] ﬂS=0
(C) |AlﬂS|=<p(k1)+1=(k1+1)/21fAlﬂUlﬂS¢0

Proof (A) The result follows by Lemma 3.4 and Lemma
3.5 (C).

B)Let T=5—A; +{z1; € A1 : j=0, 3(mod4)}, then T
is a TDS of G with |A; NT| = p(k,). (B) is proved.

(C) We may suppose that z;, € S, then by Lemma 3.5 (D),
|A1nS| > 7t(Pk1+1)_l = (k1+1)/2 LetT = S—A1+{$1j €A, :
j =1, 2(mod4)}, then T is a TDS of G with |A;NT| = (k;+1)/2.
(C) is proved. Lemma 4.6 is proved.

Lemma 4.7 Let Uy C S and 1 € J,, then we have the
following results.

(A) [A1N S| > (k1) = k1 /2 — 1.

B) |AinS|=p(k) =k /2-1if AANnUNS =0.

(C) |A1N S| = (k) + 1=k /2 if [A,NU; N S| = 1.
(D) |[A1N S| = p(k) +2 =k /2 + 1 if |4, NU, N S| = 2.

Proof (A) The result follows by Lemma 3.4 and Lemma
3.5 (C).
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(B)Let T=S— A, + {z1; € A1 : =0, 3(mod4)}, then T
is a TDS of G with |A; NT| = k;/2 — 1. (B) is proved.

(C) We may suppose that z;; € S, then by Lemma 3.5 (D),
|A1 N Sl > ’yt(Pk1+l) -1= k1/2. LetT =8 - A1 + {371_7' € A1 :
j =0, 1(mod4)}, then T is a TDS of G with |A; NT| = k;/2.
(C) is proved.

(D) By Lemma 3.5 (C), |A1 NS| > %(Py,) = k1/2 + 1. Let
T=8—-A+{z1; € A : j=1, 2(mod4)}, then T is a TDS of
G with |A;NT| = k;/2+1. (D) is proved. Lemma 4.7 is proved.

Lemma 4.8 Let Uy C S and 1 € J3, then we have the
following results.

(A) |[A1N S| > (ki) = (k1 —1)/2 and A;NUL NS #0.

(B) [A1N S| = (k1) = (k1 —1)/2if |[A;NUIN S| =1.

(C) |[AinS|=plk)+1= (k1 +1)/2if |AANUNS|=2.

Proof (A) By Lemma 3.4 and Lemma 3.5 (C), |4, N S| >
ok) = (k1 —1)/2. Let T = S— A1+ {z1; € A1 : j =

0, 1(mmod4)}. Suppose that A; NU1 NS = 0, then T € X, and
|A;NU,NT| =1, then S ¢ X, a contradiction. (A) is proved.

(B) We may suppose that z11 € S, let T be defined as in
(A), then T € Xl, and then |A1 N Sl = |A1 ﬂTI = (kl - 1)/2,
the result follows.

(C) By Lemma 3.5 (C), |[4; N S| 2 7(P,) = (k1 +1)/2. Let
T=S—A +{z1; € A1 : j=0, 1(modd)} + {Zi, }, then T is
a TDS of G with |4, N T| = (k; + 1)/2. (C) is proved. Lemma
4.8 is proved.

Lemma 4.9 Let Uy C S and 1 € Jy, then [A;NS| =
(k1) =ki1/2 and A, NS = {z1; € A1 : j =0, 1(mod4)}.

Proof By Lemma 3.5 (C), |41 N S| > ¢(k1) = ki/2. Let
T=S-A,+{z;€ A : j=0, 1(mod4)}, then T € X;, then
|A1 N S| =k;/2 and z,; € S for j =1, k;. By Lemma 3.5 (A),
Tuea, Ttd(u, S) =2|A;NS|—-|ANUINS|+|UsNS| -k =0,
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the result follows.
By the above six lemmas, we have the following result.
Lemma 4.10 %(G) > Y2, ¢(k;) + 2. For each i €
Inm, |40 S| 2 o(k:).
By Lemma 3.4, we have the following result.
Lemma 4.11 Y3, o(k:) = (V||| —2|J2| - [Ja] - 2) /2.

5 Proof of Theorem 2.1

Let G = (V, E), ¢, Ji(l =0, 1, 2, 3) be as in Theorem 2.1.
Let A;(i € I,), Uy(l =0, 1, 2), X, X;(l =0, 1, 2) be as in
Section 4. We may suppose that S € X,.

(A) Let zy € E. LetT=Uo+{:v,~,- eV:ieJyUlds j=
0, 1(mod4)} + {z;; € V: i € J1UJ,, j =0, 3(mod4)}, then T
is a TDS of G, then 1(G) < |T| = ¥%, ¢(k;) + 2. By Lemma
4.10, (A) is proved.

(B) Let J; = I, the result follows by (A) and Lemma, 4.5.

(C) Let Jo # 0. Similar to the proof of (A), (C) is proved.

(D) Let |J3] > 2, we may suppose that 1, 2 € J;. Let T be
asin (A) and To =T — Ay + {255 € A2 : j =0, 3(mod4)},
then Tp is a TDS of G, then 1(G) < |Ty| = X2, ¢(k;) + 2. By
Lemma 4.10, (D) is proved.

(E) = By (A), (B), (C) and (D), the result follows.

< By Lemma 3.2 and Lemma 4.4, Uy C S. Suppose that

%(G) = X%, (ki) +2, then |A;N S| = ¢(k;) for each i € I, by
Lemma4 10. Since zy ¢ E, then N(z)NS # @ and N(y)NS # 0,
we may suppose that z;; € S. By Lemma 4.6, Lemma 4.7 and

Lemma 4.8, z1;, ¢ S, we may suppose that zo, € S, then
1, 2 € Js, a contradiction. (E) is proved.

(F) By Lemma 3.2 and Lemma 44, Uy C S. By Lemma
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4.7, |[A;n S| = (k) + |A; N S NUy| for each i € I,. Note
that N(z) NS # 0 and N(y) N S # 0, then 1(G) = |S| =

mook)+24+|UNS| >0, (ki) +4. Let T = {zijeV:
i€l,, j=0, 3(modd)} + {z, y, T11, Zi,}, then T is a TDS
of G with |T| =X, ¢(k;) + 4, (F) is proved.

(G) By (E), %(G) > X, ¢(k;) + 3. Let T be defined as in
(A), let Top = T + {z1x, }, then Tp is a TDS of G with |Ty| =
Y7, (ki) + 3. (G) is proved.

(H) By (E), %(G) > Et“l (ki) + 3. We may suppose that
1 € J;. Let T be defined as in (A), let Ty =T — A, + {215 €
A1 : j =1, 2(mod4)}, then Ty is a TDS of G with |Tp] =

>m, (ki) + 3. (H) is proved. Theorem 2.1 is proved.

6 m x n ladder graph

Let G = Ly, = (V, F) be a m x n ladder graph, where V' =
{x,-j 1€l j€ In} and F = {xijx,-“,j P 1€ Ip, =
1, n} U {xijxi,j+1 : 1€y, jEI _1}. Let A; = {IE,'J' eV:je
IL}fori € I,. Let B; = {z;; € V : i € I,} for j € I,. Let
Uy=BUB,and Uy = ByUBp_;.Let X={SCV: Sisa
%(G’)—set}, .X1 = {Sl € X: |Sl ﬂUll = ma.x{lSﬁ U1| : Se€e
X}}, Xy = {Sz € X;: |San2| = max{lSl ﬁUzl : S1 € X1}}
We may suppose that S € X5.

Lemma 6.1 Let n > 5. For each i € I, |SN A >
Ye(Pn-2). Moreover, |SNA;| > % (F) if i1, zin € S, |[SNAi| >
'Yt(Pn-3) +1if IA, N U1 n SI =1.

Proof Ifz;, 7y ¢ S, since SNA; is a TDS of G[A;]-Uh, the
result follows. If z;1, Zin € S, then |SNA;| > %(P,) 2> 7:(Pa2)
by Lemma 3.5 (C). By Lemma 3.4, 0 < ¢(k+1) — (k) <1 for
each k € N.If |A;NU,NS| =1, then |SNA;| > 74(Pr-3) +1 2>
¥¢(Pp—2) by Lemma 3.5 (F). Lemma 6.1 is proved.

Lemma 6.2 v;(Lms) = mn/2 if n = 0(mod4).
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Proof The case for n = 4 is trivial, we may suppose that
n > 8. By Lemma 6.1, ¥;(Lmp) > mn/2.Let T = {z;; € V: i €
In, j =0, 1(mod4)}, then T is a TDS of G with |T| = mn/2.
Lemma 6.2 is proved.

Lemma 6.3 |SN A+ [SN A > %(Ps) + 7e(Po2) if
n2>9.

Proof If x5, zon ¢ S, since SN A; is a TDS of G[A,] and
SNA; is a TDS of G[A2]—Uy, the result follows. If |A,NU1NS| =
1, then |SnA1| + I.S’ﬂ Ao| 2 7(Pr-1) +7e(Pr-3)+1= Y (Pn) +
¥¢(Pn—2) by Lemma 3.4 and Lemma 3.5 (F). If 253, z2, € S, then
SN AL +|SN Az| > %(Pat2) +%e(Pn) — 2 = 71(Pn) + 1(Pn-2)
by Lemma 3.5 (C). Lemma 6.3 is proved.

Lemma 6.4  (Lm,) = m(n —1)/2 + 2 if n = 3(mod4)
and m > 4. Moreover, :(L3,) = (3n — 1)/2 if n = 3(mod4).

Proof Since the result follows for the case m = 3 by The-
orem 2.1 (D), we may suppose that m > 4.

Claim 1 v (Lps) >2m(n—-1)/2+2ifn> 7.

By Lemma 6.1, |S N A;] 2 %(Pa-2) = (n — 1)/2 for each
1€ Im. By Lemma 63, |SﬁA1|+|SﬂA2| 2 ’)’t(Pn)-P‘Yt(Pn_z) =n.
By symmetry, |SN Ap_1] + |SN Any| > n. Claim 1 is proved.

Claim 2 (L;,3) > m+ 2.

For each ¢ € I, note that N[z;2] = A;, then [4;N S| > 1.
Suppose that |S N A;| = |S N Az| = 1, note that S contains
no isolated vertices, we may suppose that z;;, zo; € S, then
N[z3)NS = 0, a contradiction. Therefore, |[SNA,;|+|SNAs| > 3.
By symmetry, |SN Ap_1| + |SN Ap] > 3. Claim 2 is proved.

Now,let T = {z;; € V : i =1, 2(mod4), j =0, 1(modd)}+
{zi; €V : i=0, 3(modd), j =0, 3(modd)}+{z2m, Tm-1,1, Tm-1,n}
then T is a TDS of G with |T'| = m(n —1)/2 + 2. Lemma 6.4 is
proved.

The cases for n = 0, 3(mod4) is simple. In order to consider
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the cases for n = 1, 2(mod4), some notations is added. Let
K, = {ie I : |A,-ﬂU1r1.5'| =l} and J; = {'& €l,: |Aan| =
Ye(Pa—2)+1} for 1 =0, 1, 2. Let ¢(T) = X7, i%|A;NT| for each
T € X, we may suppose that ¢(S) = max{¢(T): T € X,}.

Lemma 6.5 Let n = 1(mod4), then we have the following
result.

(A) S, =0.

(B) Jo € Kp. Moreover, |A;NU2N S| <1 for each ¢ € Jj.

(C) 2, m-—1 ¢Jo

(D) {7, i+ 2} — Jo # 0 for each ¢ € I,_,. |

Proof (A) Suppose that iy € J,, then |A4;,NS| = (n+3)/2.
We may suppose that 49 # 1. Let T = S — A;, + {zi,j € A, :
=1, 2(mod4)}+{x,~o_1,n}. then T € X and lTﬂU1| > |SnU1|,
and then S ¢ X, a contradiction. (A) is proved.

(B) By Lemma 6.1, Jo C Kj. Suppose that A;NU; C S, then
A; N S is a TDS of G[A;], then |[A4; N S| > w(Pr) = (n+1)/2,
and then ¢ ¢ Jp, (B) is proved.

(C) Otherwise, we may suppose that 2 € Jy, then 2 € Kj,
and then z21, zo, ¢ S.

Claim 1 [A; N S|+ |4:NS| < n.

Otherwise, let T=S — A — Ay +{z;;€V:i=1,2, j=
1, 2(mod4)}, then T is a TDS of G with |A; NT|+ |4 NT| =
n+1 < |A;NS|+|A2NS|, and then T € X and |TNU,| > |SNU,|,
a contradiction. Claim 1 is proved.

Claim 2 IA] ﬂS' + IAanI =n.

Since |A; N S|+ 42N S| > 1(Pr) + ¥t (Pa—2) = n by Lemma
6.3, by Claim 1, Claim 2 is proved.

Claim 3 (A;UA;)NS isnot a TDS of G[A; UA;]. Moreover,
{731, 23} NS # 0.
Note that v;(Ps,) = n + 1, by Claim 2, Claim 3 is proved.
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By Claim 3, we may suppose that z3, € S. Let T = S —
A, —A2+{$1j €A j=2 3(mod4)}+ {5L‘2j €EAy: j=
1, 2(mod4)}. By Claim 2, T € X; and |SNU; N A;| = 2, and
then z;; € Sfor j =1, 2, n—1, n. But now, (4,;U4;)NSisa
TDS of G[A; U A,], a contradiction by Claim 3. (C) is proved.

(D) Otherwise, suppose that i, i +2 € J; for some ¢ € I;,_,
then A,‘+1 NS is a TDS of G[Ai.}.l], then |A¢+1 N Sl > ’)’g(Pn) =
(n+1)/2, then i+1 € J;. Since |A;NS|+|Ai+1NS| = n < 7(Poy),
then (A;UA;+1)NS is not a TDS of G[A;UA;41]. We may suppose
that N{z;1) NS = {z;-1,1}. There are two cases.

Casel i+1e€J — K,.

In this case, z;4;; € S for j = 2, 3, n — 1, n. Note that
A,'.HOS is a TDS of G[Ai+1U{$in}], then |A,~+1ﬂS| > ’Yt(P‘n+l) =
(n + 3)/2, a contradiction.

Case 2 i+1¢€J,NK,.

Let T = S—Ai+1 +{a:,-+1,,- € A4+1 : 7=0, 3(m0d4)}+{:1:i1},
then T € X and |T NU4| > |SNU|, a contradiction. Lemma
6.5 is proved.

Lemma 6.6 Ko = Jo, Ky = J1, K, = Difn= 1(mod4)
Proof Claim 1 i —1¢€ Ky ifip € Ko — Jp — {1}.

Otherwise, we may suppose that z;,—1; € S. Let T = S —
Ai, + {zip; € Ay © j = 0, 1(mod4)}. Since iy ¢ Jp, then
|AixNS| > %(Pa—2)+1=(n+1)/2,then T € X and [TNU;| >
|SNU,|, and then S ¢ X;, a contradiction. Claim 1 is proved.

By symmetry, we have the following result.
Claim 2 ?:o+1€K0ifi0€Ko—Jo—{’m}.
Claim 3 Ko = Jo.

By Lemma 6.5 (B), Jy C Kj. Suppose that iy € Ky — Jp.
Then by Claim 1 and Claim 2, we have Nz;, 1] NS = {z;,2}
and N{z;,,] NS = {Ziyn-1}- We may suppose that i # 1. Let
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T=§8- Aio + {IL'{OJ' € Aio : j=0, 3(mod4)} + {xio—l,l}~ Note
that N([ziy—1,] NS # 0, then z;,—1, is not an isolated vertex in
T, and then T is a TDS of G with |T| < |S|. Now, T € X and
ITNUy| > |SNU, then S ¢ X, a contradiction. Claim 3 is
proved.

Claim 4 K2 = J1 and K1 = 0

Since J, = @, by Claim 3, J; = K; U K,. Suppose that
K, # 0, then [A;NS| = (n+1)/2 for each i € K;. Let T =
S—(U{4i: i € K1})+{zi: i € K1, j =1, 2(mod4)}, note that
Ky = Jy, then T contains no isolated vertices by Lemma 6.5,
and then T is a TDS of G. Since T € X and [TNU4| > |SNU4|,
then S ¢ X, a contradiction. Therefore, K; = 0. Lemma 6.6 is
proved.

Lemma 6.7 7(Lmn) = m(n — 1)/2 + w(Pn) if n =
1(mod4).

Proof Let Ly = {i € I, : i = l(mod2)} forl =0, 1,
then |Lo| = |[m/2] and |L,| = [m/2], and then v,(Pn) =
[1Lol/2] + [|L1|/2] by Lemma 3.1. By Lemma 6.5 (D), we have
the following result.

Claim 1 lJoﬂLz, < ”Lzl/z-l forl = 0, 1.
Claim 2 |Jy| < m — v(Pr) if m = 0(mod4).

|Jol = |Jo N Lo| + |JoN L1| < [|Lol/2] +[|L11/2] = 1(Pm) =
m/2 =m — v,(Pp), Claim 2 is proved.

Claim 3 |Jy| < m — 7(Pn) if m =1, 3(mod4).

By Lemma 6.5 (C), 2, m—1 ¢ Jy, then |Jo N Ly| < [(|Lo| —
2)/2]. Since |JoNL,| < [|L1]/2], then |Jo| = |JoNLo|+|JoNL,| <
[\Lol/21+IL1]/2]1 =1 = %(Pm) —1 = (m—1)/2 = m —7(Pn)-
Claim 3 is proved.

Claim 4 |Jy| £ m — 7 (Pn) if m = 2(mod4).

By Lemma 6.5 (C), 2, m—1¢ Jy, then |JoNLi| < [(| L] —
1)/2] = [(m/2-1)/2] = (m —2)/4for | =0, 1, then |Jp| =
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|JoNLo|+|JoNLy| < m/2—1=m—y(Py,). Claim 4 is proved.
Claim 5 |Jy| < m — v:(Py) and |J1| > 4:(Pm).

Note that J, = @ by Lemma 6.5 (A), Claim 5 is proved by
the above claims.

Claim 6 (Lma) = m(n —1)/2 + %(Pm)-

Since J» = @, then I, = Jo U J;. By Claim 5, v;(Lys)
m(n —1)/2 + |J1| > m(n — 1)/2 + 7(Py,). Claim 6 is proved.

Let T = {z;j € V : j =2, 3(modd)} + {zin : 1
2, 3(mod4)} + {Tm-1,}, then T is a TDS of G with |T|
m(n —1)/2 + 7(P,). Lemma 6.7 is proved.

Lemma 6.8 Let n = 2(mod4), then we have the following
result.

(A) Jo € Ky. Moreover, AiNS = {z;; € A;: j =0, 3(mod4)}
for each i € Jj,.

(B) J2 = K. Moreover, A;NS = {z;; € A;: j =1, 2(mod4)}
for each i € J;.

(C)1€ Jyand 2 € J,.

(D)me Jpifm—1¢€ Jy.

(E) Foreachi € I,,_5, we have i + 1 € J, if i, 1 + 2 € Jp.
(F) |JA;nU;N S| <1 for each i € J;.

Proof (A) Let i € Jp, then |4;N S| = 74(Pa-z) =n/2 - 1.
Note that by Lemma 3.5 (A), Yyea,—v, Ttd(u, S) =2|A;iNS -
Ul = |AinUan S|+ |AinTiNS|— (n—2) =2|4;N S| - |A:iN
U,NS|—]A;NULINS|—(n—-2) < 2|AiNS|-(n—2) = 0, then we
have |4;NULNS| = |A;NU2NS| = 0 and rtd(u, S) = 0 for each
u € A; — Ui. Note that each component of G[4;] — S(G[A; N S))
is K5, (A) is proved.

(B) By Lemma 3.5 (C), Ko C Jo. Let i € J,, then |A; N
S| = ’yt(Pn_2)+2 = n/2+1. Let T = S—Ai+{:v,-,- € A; :
j =1, 2(mod4)}. Note that S, T € Xp, then z;; € S for j =
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1, 2, n~1, n. By Lemma 3.5 (A), Xyca,-v, Ttd(u, S) = 2|4;N
S|—-1AinUNS|-|ANUNS|—(n—2) = 2|4;NS|-4—(n—2) =0,
then we have rtd(u, S) = 0 for each u € A; — U,. Note that
each component of G[4;] — S(G[A; N S]) is K>, (B) is proved.

(C)Let T=S—A; — Ay + {z1;: =0, 3(modd)} + {z; :
j =1, 2(mod4)}, then we have the following result.

Claim 1 T is a TDS of G. Moreover, |S| < |T|.
Claim 2 1¢ J,and 2 ¢ Jp.

Suppose that 1 € J,, then 2 € Jp and |T| = |S| by Claim
1, then T € X, and ¢(T) > ¢(S), a contradiction. Therefore,
1 ¢ Jo. Suppose that 2 € Jy, then 231, 22, ¢ S by (A), then
|A1 NS| > v(Ps) =n/2+ 1 by Lemma 3.5 (G), then 1 € J,, a
contradiction. Claim 2 is proved.

Claim 3 1¢ Jo.

Suppose that 1 € J;. Note that 2 ¢ Jy and |S| < |T|, then
2 € J,, then T € X, and ¢(T) > ¢(S), a contradiction. Claim
3 is proved.

By Claim 3 and (A), note that N[z;;] NS = {z,;} for j =
1, n, then 2 € K,. By (B), (C) is proved.

(D) If m—1 € Jy, then Tm-1,1y Tm—1n ¢ S by (A), then
|Am N S| > 7(P,) = n/2+ 1 by Lemma 3.5 (G), then m € J,.
(D) is proved.

(E) Let i € I,_o and 4, i +2 € Jy, then ¢, 1 +2 € K by
(A), then A;y; NS is a TDS of G[A;41], and then |A;y: N S| >
v(P,) =n/2+1, (E) is proved.

(F) Otherwise, A; N S is a TDS of G[A;], then [4; N S| >
7(Ps) = n/2+1, and then i ¢ Ji, a contradiction. (F) is proved.
Lemma 6.8 is proved.

Lemma 6.9 i+1 € Jyif n=2(mod4) and i € JoNI_;.
Proof Claim1l me Jyifm—1¢€ /.

89



Otherwise, let T} = S— A+ {Zm; € An : j =0, 3(modd)},
then T is a TDS of G with |T}| < |S|, a contradiction. Claim 1
is proved.

Now, Suppose that ¢ € J, and i +1 ¢ Jp. By Claim 1,
i#Fm—1 Let T, = S—Ai+1—Ai+2+{$i+1,j €A 7=
0, 3(mod4)} + {Zit2; € Aira: j =1, 2(modd)}.

Claim 2 |(Ai+1 U Ai+2) N S[ =n- 1, n.

Note that T3 is a TDS of G, then |S| < |T3|, then |(A;4; U
Air2) N S| < n. Since i + 1 ¢ Jy, then |A;4; N S| > n/2. Claim
2 is proved.

Claim 3 l(Ai+1 U A,'+2) N S| =n-—1.

Suppose that |(A;41 U Aiy2) N S| = n, then |S| = |T3|, then
T, € X. Since 71 + 1 ¢ Jy, we consider two cases.

Casel i+1€J,andi+2€ .

In this case, By Lemma 6.8 (A) and (B), [ToNUi| = |SNU|
for k =1, 2, then T € X, and ¢(T3) > ¢(S), a contradiction.

Case2 i+4+1,i+2€J;.

By Lemma 6.8 (B), |(Ai+1 U Ai2) NUINS| <2 =|(Aiz1 U
A,’+2) N U1 N T2|, then T2 € Xl. Since IAk N Uz N S' <1 for
k=1i+1, i+ 2 by Lemma 6.8 (F), then |SNUs| < T2 N Uy,
then T, € X, and ¢(T2) > #(S), a contradiction. Claim 3 is
proved.

Claim4 i+1€Jyandi+2¢€ Jp.

Since i +1 ¢ Jy, |Ai+1 N S| > n/2. By Claim 3, Claim 4 is
proved.

By Lemma 6.8 (B), i+1 ¢ K5, we may suppose that z;,,; ¢
S. By Lemma 6.8 (A), Zi4p; ¢ Sfor j =1, 2, n—1, n, then
ZT;iy31 € S. Now, let T3 = S — Aiy1 — Aipe + {$i+1,j € A1 :
j =0, 3(modd)} + {zit2,; € Aiy2 : j = 0, 1(mod4)}. Note
that T3 € X, and ¢(T3) > ¢(S), a contradiction. Lemma 6.9 is
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proved.

Lemma 6.10 i+1, i+2 € Jyand i+3 € J, if n = 2(mod4)
and ; € Jz N Im_g.

Proof Letie€ J,NI,.-3. By Lemma6.9,7+ 1 € Jp.

Claim 1 i+2€ Jp.

Let T = S—Ai+2—Ai+3+{£L‘i+2,j € Aipe: =0, 3(mod4)}+
{ziy3; € Aiyz: j =1, 2(mod4)}. Then T is a TDS of G, then
|S| < |T|. Suppose that i+ 2 € J2, theni+1 € Jo, T € X, and
#(T) > ¢(S), a contradiction. Suppose that i + 2 € Ji, then
i+ 3 € J, by Lemma 6.8 (E). Similar to the proof in Case 2 of
Lemma 6.9, T € X, and ¢(T) > ¢(S), a contradiction. Claim 1
is proved.

Sincei+1, i+2 € Jo, thenzx; € Sfor k=i+1, 1+ 2 and
j=1, 2, n—1, n, then z;13; € S for j =1, n. By Lemma 6.8
(B), i+ 3 € K, = Jo. Lemma 6.10 is proved.

Lemma 6.11 Let n = 2(mod4), then we have the following
results.

(A) Jy =0.

B) Jo={i€lp: i=0, 1(mod3)} and Jo={i € I,: i =
2(mod3)} if m =0, 2(mod3).

C)Jhh={iel,: i=0, 1(mod3)} — {m} and J = {i €
I, : i =2(mod3)} + {m} if m = 1(mod3).

Proof By Lemma 6.8 (C), 1 € J; and 2 € J,. By Lemma
6.8 (D), m € Jp if m — 1 € Jy. The result follows by Lemma 6.9
and Lemma 6.10. Lemma 6.11 is proved.

Lemma 6.12 Let G = Ly, = (V, E) and n = 2(mod4),
then we have the following results.

(A) %(G) = mn/2 — m/3 if m = 0(mod3).
(B) %(G) = mn/2 — m/3 + 4/3 if m = 1(mod3).
(C) 1(G) = mn/2 — m/3 + 2/3 if m = 2(mod3).
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Proof By Lemma 6.11, 4,(G) = m(n/2 — 1) + 2|J,).
(A) Since |J2| = m/3, then 1(G) = mn/2 — m/3.
(B) Since |J5| = (m+2)/3, then v (G) = mn/2—m/3+4/3.

(C) Since |J2| = (m+1)/3, then %(G) = mn/2—m/3+2/3.
Lemma 6.12 is proved.

7 Proof of Theorem 2.2

Proof Let G = L, = (V, E) be a m x n ladder graph. By
Lemma 6.2, Lemma 6.4, Lemma 6.7 and Lemma 6.12, Theorem
2.2 is proved.
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