Some Notes on Combination Graphs

M.A. Seoud and M.N.Al-Harere

m.a.seoud@hotmail.com

Department of Mathematics, Faculty of Science, Ain Shams University Abbassia, Cairo, Egypt

Abstract: We introduce a theorem on bipartite graphs, and some theorems on chains of two and three complete graphs, considering when they are combination or non-combination graphs, present some families of combination graphs. We give a survey for trees of order ≤ 10 , which are all combination graphs.

Keywords: Combination graphs, Splitting graph of a graph.

Mathematics Subject Classification: 05C78

0 Introduction

Hegde and Shetty [2, 4] define a graph G with n vertices to be a permutation graph if there exists an injection f from the vertices of G to the set $\{1, 2, 3, ..., n\}$), such that the induced edge function g_f defined as $g_f(uv) = f(u)!/|f(u)|$ |f(v)|!, |f(u)| > f(v) is injective. They say a graph G with n vertices is a combination graph if there exists an injection f from the vertices of G to the set $\{1,2,3,...,n\}$ such that the induced edge function g_f defined as g_f (uv) = f(u)!/|f(u)-f(v)|!|f(v)!|, f(u)>f(v) is injective. We call a graph G non-combination if it is not a combination graph. They prove : K_n is a combination graph if and only if $n \le 2$; C_n is a combination graph for n > 3, $K_{n,n}$ is a combination graph if and only if $n \leq 2$; W_n is a not a combination graph for $n \le 6$, and a necessary condition for a (p, q)-graph to be a combination graph is that $4q \le p^2$ if p is even, and $4q \le p^2 - 1$ if p is odd. They strongly believe that W_n is a combination graph for n > 6 and all trees are combination graphs .Seoud and Anwar [7] give the number of edges in any maximal combination graph G(n,q) if n is even or if n is odd, n > 3. They show that $K_{m,n}$ is a combination graph if and only if $n,m \le 2$ or m=1. They give a survey of all maximal combination graphs on n vertices and q edges such that $n \le 6$. Also they give a necessary condition for a strong k-combination

Seoud and Al-Harere [5] presented two Theorems:(1) A graph G(n,q) having at least 6 vertices, such that 3 vertices are of degree 1, n-1, n-2 is not a combination graph G(n,q) having at least 6 vertices, such that

there exist 2 vertices of degree n-3, two vertices of degree 1 and one vertex of degree n-1 is not a combination graph. Second they show that the following families are combination graphs: Two copies of C_n sharing a common edge, the graph consisting of two cycles of the same order joined by a path of l vertices, the union of three cycles of the same order, the wheel W_n $n \ge 7$, what Hegde and shetty believed, the corona $T_n \odot K_1$, where T_n is the triangular snake, the graph obtained from the gear G_m , by attaching n pendent vertices to each vertex which is not joined to the center of the gear, and some corollaries.

Seoud and Al-Harere [6], prove: the graph G(n,q), $n\geq 3$ is a non-combination graph if it has more than one vertex of degree n-1; and the following graphs are non-combination graphs; G_1+G_2 if n_1 or $n_2>2$, n_1 , $n_2\neq 1$; the double Fan $\overline{K_2}+P_n$; $K_{l,m,n}$; $K_{k,l,m,n}$; $P_2[G]$; $P_3[G]$; $C_3[G]$; $C_4[G]$; $K_m[G]$; $W_m[G]$; the splitting graph of K_n , $S^1(K_n)$, $n\geq 3$; K_n-e , $n\geq 4$; K_n-3e , $n\geq 5$; $K_{n,n}-e$, $n\geq 3$. Barrientos [1] define a chain graph as one with blocks B_1 , B_2 , ..., B_m such that for every i, B_i and B_{i+1} have a common vertex in such a way that the block cut-point graph is a tree .

We will denote the chain graph with m blocks by $CK(m; (a_1, a_2, ..., a_m))$, where the sequence of m blocks is the complete graphs $K_{a_1}, K_{a_2}, ..., K_{a_m}$. We will assume that all $a_i \ge 2 \cdot If \ a_1 = a_2 = \cdots = a_m = 2$ then $CK(m; (2, 2, ..., 2)) = P_{m+1}$. It is well known that P_m is a combination graph. If $a_1 = a_2 = \cdots = a_m = 3$ then CK(m; (3, 3, ..., 3)) is the triangular snake which is a combination graph [8].

Figure(1)

Here, we introduce a theorem on bipartite graphs, and some theorems on chains of two and three complete graphs considering when they are combination or non-combination graphs. We show that some families of graphs are

combination graphs. Finally we give a survey for trees of order≤10, which are all combination graphs.

Any notion or definition which is not found here could be found in [3].

1 General results

Lemma 1.1.[5] In a combination graph the vertex of degree n-1 receives label 1 or 2.

Remark 1.2.[5] 1. The vertex v in the combination graph G(n,q) could be labeled by k if $d(v) \le \left|\frac{k}{2}\right| + n - k$, k = 1,2,...,n.

2. The graph G(n,q) is a non-combination graph if it has no vertex of degree $\leq \left|\frac{n}{2}\right|$.

Theorem 1.3.[5]A graph G(n, q) having at least 6 vertices, such that 3 vertices are of degree n-1, n-2, 1 is not a combination graph.

Theorm1.4.[5] The graph G(n,q) having 2 vertices of degree 1, 2 vertices of degree n-3, 1 vertex of degree n-1 is not a combination graph.

Theorem 1.5. If G is a bipartite graph, both of its sets has n elements, such that $\frac{n}{2}$ elements of each set has degree n, then G is a non-combination graph, $n \ge 6$.

Proof. Let A and B be the sets of labels of the two bipartite sets of G and have n elements. Let $A = \{1, x_1, x_2, ..., x_{n-1}\}$, where $x_1 < x_2 < \cdots < x_{n-1}$. As $C_1^{x+1} = C_x^{x+1}$ note that $1, x \in A$ implies $1 + x \notin B$. Now $1 + x_{n-2} \notin B$, therfore $1 + x_{n-2} \in A$, which implies that $1 + x_{n-2} = x_{n-1}$. Similarly $1 + x_{n-3} \in A$ implies that $1 + x_{n-3} = x_{n-2}$, so that $A = \{1, x_1, x_1 + 1, x_1 + 2, ..., x_1 + n - 2\}$, $B = \{y_1, y_2, ..., y_n\}$, with $y_1 < y_2 < \cdots < y_n$. We will choose a labeling for this graph from the following four cases according to the degree of their vertices and Remark 1.2

Case 1. $1 < x_1 < x_1 + 1 < x_1 + 2 < \dots < x_1 + n - 2 < y_1 < y_2 < \dots < y_n$. $A = \{1, 2, \dots, n\}$, $B = \{n + 1, n + 2, \dots, 2n\}$. Clearly $\forall n + i$, $i = 1, \dots, n - 1$, we get $\binom{n + i}{n} = \binom{n + i}{i}$, so the vertices labeled by n + i, $i = 1, \dots, n - 1$ are not joined with all vertices in A.

Case 2. $1 < y_1 < y_2 < \cdots < y_n < x_1 < x_1 + 1 < x_1 + 2 < \cdots < x_1 + n - 2$. $A = \{1, n + 2, n + 3 \dots, 2n\}$, $B = \{2, 3, \dots, n + 1\}$. $\forall n + i \in A$, $i = 1, \dots, n$, we get $\binom{n+i}{n} = \binom{n+i}{i}$, so the vertices labeled by $n + i \in A$, $i = 1, \dots, n$ are not joined with all vertices in B.

Case 3. There exists k, 0 < k < n, such that

$$1 < y_1 < \dots < y_k < x_1 < x_1 + 1 < x_1 + 2 < \dots < x_1 + n - 2 < y_{k+1} < y_{k+2} \dots < y_n.$$

All y_i , i = 1, ..., k can join all vertices in A, since $y_i < x_j \ \forall \ i = 1, ..., k$, j = 1, ..., n-1.

i) $k \leq \frac{n}{2}$

When $k < \frac{n}{2}$ all the vertices labeled by y_{k+i} , $i=1,\ldots,n-k-1$ have degrees greater than $\left\lfloor \frac{y_{k+i}}{2} \right\rfloor$, such that the vertices labeled y_{k+i} cannot join the vertices labeled y_{k+i+1} , $i=1,\ldots,n-k-1$ and $\binom{y_n}{x_1} = \binom{y_n}{x_1+n-2}$, so we have repeated edge labels. Now let $k=\frac{n}{2}$, the vertices labeled x_j are joined with all vertices of B if $x_j \geq 2y_k$, $2y_k = 2\left(\frac{n}{2}+1\right) = n+2$, $n+2 \leq x_j \leq 3\frac{n}{2}$, so the values $\binom{x_j}{y_i}$, $i=1,\ldots,k$ are different labels, since $\binom{n}{r}$, $r=1,\ldots, \left\lfloor \frac{n}{2} \right\rfloor$. Therefore the number of vertices in A which can join all vertices in B is $3\frac{n}{2}-(n+1)+1=\frac{n}{2}$, $1\epsilon A$, but we have $\binom{x_2}{y_1}=\binom{x_2}{y_k}$.

ii) If $k > \frac{n}{2}$, the vertices in the set A which can be joined with all vertices in the set B are less than $\frac{n}{2}$.

Therefore G is a non-combination graph.

For a graph G, the splitting graph of G, $S^{-1}(G)$, is obtained from G by adding for each vertex v of G a new vertex v^{-1} , so that v^{-1} is adjacent only to every vertex that is adjacent to v, so we have:

Corollary 1.6. The graph $S^{-1}(K_{n,n})$, $n \ge 3$ is a non-combination graph. Figure (2) shows the graph $S^{-1}(K_{3,3})$.

2 Chain graphs with two blocks

If m = 2, then $CK(2; (a_1, a_2))$ is the one-point union of two complete graphs, we assume $a_1 \le a_2$.

Theorem 2.1 . For m=2 and $a_1=2$, $CK(2;(a_1,a_2))$ is a non-combination graph if and only if $a_2\geq 4$.

Proof. If $a_2 = 2$, then CK(2; (2, 2)) is a combination graph. If $a_2 = 3$ then CK(2; (2, 3)) is the dragon(Figure(1)), which is a combination graph .For $a_2 \ge 4$ the graph $CK(2; (a_1, a_2))$ has three vertices of degrees n, n-1, 1,

respectively. When $a_2 = n$, the graph is a non-combination graph according to Theorem 1.3 in [5].

Figure (3)

Theorem 2.2. For m=2 and $a_1 = 3$ the graph $CK(2; (a_1, a_2))$ is a noncombination graph if and only if $a_2 \ge 4$.

Proof. If $a_2 = 3$, then it is a triangular snake, which is a combination graph. For $a_2 \ge 4$, let n+2 be the number of vertices of $CK(2; (a_1, a_2))$. If we delete the edge e which is adjacent to the two vertices of degree 2 of k_{a_1} , we get the graph $CK(2; (a_1, a_2)) - e$ which has the following vertices: one vertex of degree n+1, two vertices of degrees n-1,1 respectively, and according to Theorem 1.4 in [5] the graph is a non-combination graph. Since $CK(2;(a_1,a_2)) - e$ is a subgraph of $CK(2;(a_1,a_2))$ with the same number of vertices, it follows that $CK(2; (a_1, a_2))$ is a non-combination graph, $a_2 \ge 4$.

Figure (4)

Theorem 2.3. For $m = 2,CK(2;(a_1,a_2))$ is a non-combination graph if $a_1 = a_2 \ge 4$.

Proof. The number of the vertices of $CK(2; (a_1, a_2))$ is 2n - 1, and the number of edges is n (n-1). Since we have a vertex in common between K_n and K_n , so this vertex will be of degree 2n - 2.

Let v be this common vertex and let the vertices of K_{a_1} be v_i , $i=1,2,\ldots,n-1$, the vertices of K_{a_2} be u_j , $j=1,2,\ldots,n-1$. According to Lemma 1.1 in [5] we have two cases:

Case 1. f(v) = 1, if we label v_1 by k, k < 2n - 1 then we must label u_1 by k + 1 since $\binom{k+1}{1} = \binom{k+1}{k}$, therefore the even labels will be in K_{a_1} and the odd labels in K_{a_2} , or vice versa and this is a non-combination graph, since $\binom{6}{4} = \binom{6}{2}$, $n \ge 4$.

Case 2. f(v) = 2. Without any loss of generality, let $f(v_1) = 1$. Since $\binom{3}{1} = \binom{3}{2}$, the label 3 will be in Ka_2 . Since 2 + 3 = 5, so the label 5 will be in Ka_1 hence label 4 is in Ka_2 . If the label 6 in Ka_1 , then $\binom{6}{1} = \binom{6}{5}$. If it is in Ka_2 we get also $\binom{6}{4} = \binom{6}{2}$. Hence the result.

3 Chain graphs with three blocks

There are several cases to consider for chain graphs with three blocks. Since the graph $CK(3; (a_1, a_2, a_3))$ is isomorphic to $CK(3; (a_3, a_2, a_1))$, we will consider one case instead of both. We will order the sequence by lexico graphical order.

Theorem 3.1. For m=3, $a_1=a_3=2$, $CK(3;(a_1,a_2,a_3))$ is a non-combination graph if and only if $a_2\geq 4$.

Proof. For $a_2=2,3$ see Figure 5. CK(3;(2,4,2)) is a non-combination graph[7]. For $a_2\geq 5$, the number of the vertices of $CK(3;(a_1,a_2,a_3))$ is n+2, according to Remark 1.2 in [5] we can label one of the vertices of degree one by n+2 only, since the remaining vertices are of degrees $> \left\lfloor \frac{n+2}{2} \right\rfloor$. Also for the label n+1, we can label the second vertex of degree one by n+1 only, since the remaining vertices are of degrees $> \left\lfloor \frac{n+1}{2} \right\rfloor$, so the vertices of k_{a_2} will be labeled $1,2,\ldots,n$. (K_n is a combination graph if and only if $n\leq 2$ [4]), and therefore $CK(3;(a_1,a_2,a_3))$ is a non-combination graph.

.........

Figure (6)

Theorem 3.2 . For $m = 3, a_2 = 2, CK(3; (a_1, a_2, a_3))$ is a non-combination graph if $a_1 = a_3 \ge 5$.

Proof .When $a_1=a_3=3,4$ the graph is a combination graph (Figure (6)). For $a_1=a_3\geq 5$, let A and B be the set of vertices in the complete graph of vertices a_1 and a_3 respectively. Without loss of generality, let $1\epsilon A$. Now, if $2n\epsilon A$ $n\neq 1$, then there exists $x\epsilon A$, such that $x\neq 2,n$, then $x-1,x+1,2n-x\in B$, but 2n-x+x-1=2n-1 and $2n-1\in B$, so $\binom{2n-1}{2n-x}=\binom{2n-1}{x-1}$, and this is a non-combination graph, so $2n\notin A$ implies $2n\in B$. Now if $2n-1\in A$, $n\neq 1$, there exists $x\in A$ such that $x\neq 2$, implies $x-1,x+1,2n-1-x\in B$, but 2n-1-x+x-1=2n-2 and $2n-2\in B$ and we get $\binom{2n-2}{2n-1-x}=\binom{2n-2}{x-1}$. Continuing in this procedure we get $B=\{2n,2n-1,...,2n-(n-1)\}$. And this means $A=\{1,2,...,n\}$, and it is clear that labeling of K_{a_1} is a non-combination labeling (K_n is a combination graph if and only if $n\leq 2$). Hence the result.

Theorem 3.3.The union of two complete graphs $K_n \cup K_n$, $n \ge 5$ is a non-combination graph.

Proof. Use the same idea of the proof of Theorem 3.2.

4 Some combination families

Theorem 4.1. The C_4 -snake is a combination graph. Proof. Let the C_4 -snake be described as in Figure (7).

Figure (7)

The graph C_4 -snake is a graph of order 3n + 1, n is the number of the cycles C_4 .

We define the function:

$$f: V(C_4 - snake) \rightarrow \{1, 2, ..., 3n + 1\}$$
 as follows:

$$f(v_i) = i$$
, $i = 1, ..., n+1$, $f(u_i) = n+1+j$, $j = 1, ..., 2n$.

The edge labels will be as follows:

$$\begin{array}{l} q_1 = \left\{ \left. 2\,,3\,,...\,,n+3 \right. \right\}, \;\; q_2 = \left\{ \left. n+5\,,n+7\,,...\,,3n+1 \right. \right\}, \\ q_3 = \left\{ \left. \binom{n+3}{2} \right\}, \binom{n+4}{2} \right\}, \binom{n+5}{3} \right\}, \binom{n+6}{3} \right\}, \ldots, \binom{3n-1}{n}, \binom{3n}{n} \right\}, \;\; q_4 = \left\{ \left. \binom{3n+1}{n+1} \right. \right\}. \end{array}$$

The labels in each of the previous sets are increasing.

Figure (8) shows a combination labeling of a C₄-snake, n=4.

Figure (8)

A double triangular snake consists of two triangular snakes that have a common path.

Theorem 4.2. A double triangular snake is a combination graph, n≥3.

Proof. The graph is shown in Figure (9)

Figure (9)

We define the labeling function

$$f: V(G) \rightarrow \{1, 2, ..., 3n-2\}$$
 as follows:

$$f(v_i) = i, i = 1, ...n, f(u_i) = n + j, j = 1, ..., 2n - 2.$$

The edge labels will be as follows:

$$\begin{array}{l} q_1 = \{\,2\,,3\,,...,n+2\,\} \\ q_{i+1} = \{\,\binom{n+2i-1}{i+1}\,,\binom{n+2i}{i+1}\,,\binom{n+2i+1}{i+1}\,,\binom{n+2i+2}{i+1}\,\}\,\,,\quad i=1,...,n-2. \\ q_n = \{\,\binom{3n-3}{n}\,,\binom{3n-2}{n}\,\}\,. \text{ The labels in each of the previous sets are increasing.} \\ q_1 \cap q_j = \emptyset \,\,, j=2,...n\,\,, \text{ since every label in }\,q_1 \,\,\text{ is less than every label in }\,q_j \\ \text{for every }\,\,j=2,...,n\,\,,\,\,, q_i \cap q_j = \emptyset\,\,, i\neq j\,\,,\,\,i,j=2,...,n\,\,,\,\,\text{ since }\,\binom{n+2i+2}{i+1}\,\,<\binom{n+2i+1}{i+2}\,\,,\,\,i=1,...,n-2\,\,,\,n\geq 4. \end{array}$$

Figure (10) shows a combination labeling of a double triangular snake, n=3.

Figure (10)

A caterpillar is a tree for which, if all leaves (vertices of degree 1 and their associated edges) were removed, the result is a path.

Theorem 4.3. All caterpillars are combination graphs.

Proof: Let $v_1, v_2, ..., v_n$ be the vertices of the path and $u_1, u_2, ..., u_n$ the vertices of the leaves. We define the label function as follows: $f(v_i) = i$, i = 1, ..., n, $f(u_i) = n + i$, i = 1, ..., m. All labels are given from left to right.

The fan F_n is defined to be the graph $P_1 + K_n$.

Theorem 4.4. The graph F_n is a combination graph if and only if $n \ge 6$.

Proof. The number of vertices of F_n is n+1 and the number of edges is 2n-1, according to Theorem 3 in [4], F_n is a non-combination graph, $n \le 5$. When p is odd $4q > p^2 - 1$ implies $4(2n-1) > (n+1)^2 - 1$, i.e. $n^2 - 6n + 4 < 0$, $n \le 4$.

Figure (11)

When p is even, since $4q > p^2$ implies $4(2n-1) > (n+1)^2$, i.e. $n^2 - 6n + 5 < 0$, n < 5.

For n = 5 we have the number of edges = 9 > 8, hence F_5 is a non-combination graph. The labeling of F_n when n=6 is as follows:

For $n \ge 7$, F_n is a subgraph of the wheel W_n with the same number of vertices and since W_n is a combination graph, $n \ge 7$ [5], F_n is a combination graph, $n \ge 6$.

Theorem 4.5. The graph $4C_n$ is a combination graph for $n \ge 3$. Proof. Figure (12) shows the graph.

Figure (12)

We define the function $f: V(G) \rightarrow \{1,2,...,4n\}$ as follows: $f(v_i) = i$, i = 1,...,n-1, $f(v_n) = 4n-2$, $f(u_i) = n-1+i$, i = 1,...,n-1, $f(u_n) = 4n-1$, $f(w_i) = 2n-2+i$, i = 1,...,n-1, $f(w_n) = 4n$, $f(y_i) = 3n-3+i$, i = 1,...,n-1, $f(y_n) = 4n-3$.

The edge labels can be described as follows:

$$\begin{array}{l} q_1 = \{\,2\,,3,\ldots,n-1\,\}\,,\,q_2 = \{\,n+1\,,\ldots,2n-2\,\},\\ q_3 = \{2\,n\,,\ldots,3n-3\,\}\,,\,\,q_4 = \{\,3\,n-1\,,\ldots,4n-3,4n-2\,\}\\ q_5 = \,\,\left\{{4n-3 \choose n-1}\,,{4n-2 \choose n-1},{4n-1 \choose 2n-2},{4n \choose 3n-3}\,,{4n \choose 2n-1}\right\},\\ \text{All edge labels are different; we need to notice only that:}\\ {4n \choose 3n-3} \neq \,\,{4n-1 \choose 2n-2}\,\,\text{and}\,\,{4n-1 \choose n} \not\subseteq {4n \choose 3n-3}. \end{array}$$

Example 4.6. Figure (13) shows a combination labeling of $4C_7$.

Definition 4.7.

- (1) A regular or a complete binary tree is a binary tree that meets the following conditions:
 - a) There is exactly one vertex of degree two, namely the root.
- b) All vertices other than the root have degree one or three.
- (c) All vertices of degree one are at the same distance from the root.
- (2)Let $n \ge 4$, and consider all ternary trees, i.e. on n vertices, where "internal" vertices have degree three and "external" vertices have degree one.
- (3) Now we consider the graph resulting from identifying the pendent vertices of the S_m with the paths P_{n_i} , for some n_i , $1 \le n_i \le m$.
- Theorem 4.8. (i) The trees described in Definition 4.7 are combination graphs.
- (ii) The trees T_n , $n \le 10$, obtained by joining the centers of two trees by a path in Definition 4.7,(3) are combination graphs.

Proof. (i) According to Definition 4.7, we have:

- (1) We will introduce a labeling of a full binary tree by using the Breath _First Algorithm. We label the root by 1 and label the vertices that are adjacent to the root by 2 and 3, and then label the vertices that are adjacent to these vertices by 4,5 and 6,7 respectively and so on.
- (2) Method of vertex labeling: The center of the star S_m is labeled by 1, and then label the vertices of distance 1 by 2,3,4, the vertices of distance 2 by 5,..., 10, the vertices of distance 3 by 11,...,22 and so on.
- (3) We label the center of the star by 1, then we label the first branch by n_1+1 , n_1+2 ,..., n_1+n_2 , where n_1 and n_2 are the number of vertices of the first and second branches respectively, and so on.
- (ii) We label the path P_n by 1,2, ..., n, then we label the branches as in(3).

Survey 4.9. We label all trees of order ≤10 as combination trees.

- 1) Paths and stars can be easily labeled.
- 2) All caterpillars (Theorem 4.3).
- 3) Trees in Theorem 4.8, (2) and (3).

4) The remaining trees are labeled in the following manner.

References

- [1] C.Barrientos, Graceful labelings of chain and corona graphs, Bulletin ICA 34 (2002)17-26.
- [2] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2011), #DS6.
- [3] F. Harary, Graph Theory, Addison-Wesely, Reading, Massachusetts (1969).
- [4] S.M.Hegde, and Shetty, S.,Combinatorial labeling of graphs , Applied Math .E-notes, 6 (2006) 251-258.
- [5] M.A.Seoud, and M.N.Al-Harere, On combination graphs, Int.Math.Forum,7(2012)1767-1776.
- [6] M.A.Seoud, and M.N.Al-Harere, Some non-combination graphs, preprint.
- [7] M.A.Seoud, and M.Anwar, On combination and permutation graphs, accepted for publication in Utilitas Mathematica.
- [8] M.A.Seoud, and M.Anwar, Some families of combination and permutation graphs, accepted for publication in Ars Combinatoria.