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Abstract: We introduce a theorem on bipartite graphs, and some theorems on
chains of two and three complete graphs, considering when they are
combination or non-combination graphs, present some families of combination
graphs. We give a survey for trees of order < 10, which are all combination

graphs.
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0 Introduction
Hegde and Shetty [2, 4] define a graph G with n vertices to be a permutation
graph if there exists an injection f from the vertices of G to the set {1, 2, 3,...,n
}, such that the induced edge function gr defined as g¢ (uv) = f(w)!/|f(u) —
F|! , f(u) > f(v) is injective .They say a graph G with n vertices is a
combination graph if there exists an injection f from the vertices of G to the set
{ 1,2,3,...,n } such that the induced edge function gy defined as g¢ (uv) =
FYIf@) — FW) |1 f@)! ,f(w) > f(v) is injective . We call a graph G
non-combination if it is not a combination graph. They prove : K ,is a
combination graph if and only if n £ 2 ; C, is a combination graph for n >3 ,
Knn is a combination graph if and only if n < 2 ;W is a not a combination
graph for n €6 , and a necessary condition for a ( p, q )-graph to be a
combination graph is that 4qg < p?if p is even, and 49 < p?—1 ifpisodd.
They strongly believe that W, is a combination graph for n > 6 and all trees are
combination graphs .Seoud and Anwar [7] give the number of edges in any
maximal combination graph G(n,q) if n is even or if n is odd ,n > 3 . They
show that K, , is a combination graph if and only if n,m < 2 or m=1 . They
give a survey of all maximal combination graphs on n vertices and q edges such
thatn < 6. Also they give a necessary condition for a strong k-combination
graph.
Seoud and Al-Harere [5] presented two Theorems:(1) A graph G(n, q) having
at least 6 vertices , such that 3 vertices are of degree 1,n—1,n—2 isnota
combination graph .(2) A graph G(n,q) having at least 6 vertices , such that
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there exist 2 vertices of degree n — 3, two vertices of degree 1 and one vertex
of degree n-1 is not a combination graph . Second ,they show that the following
families are combination graphs : Two copies of C,, sharing a common edge ,
the graph consisting of two cycles of the same order joined by a path of [
vertices, the union of three cycles of the same order, the wheel W,, n = 7, what
Hegde and shetty believed , the corona T,,®K; , where T, is the triangular
snake , the graph obtained from the gear G,, , by attaching n pendent vertices to
each vertex which is not joined to the center of the gear , and some corollaries .
Seoud and Al-Harere [6], prove: the graph G(n,q), n>3 is a non-combination
graph if it has more than one vertex of degree n — 1; and the following graphs
are non-combination graphs; G;+G, if nyo0rn; >2,n,,n, # 1; the double
Fan K, + B 5 Kimn i Keymns  PoAGl 5 P3Gl :GIG ] C4IG] ; KnlG);
Wn[G]; the splitting graph of K, S'(K,), n>3 ; K, —e, n>4; K, — 3e ,
n25; K,, —e,n 2 3. Barrientos [1] define a chain graph as one with blocks
B, , B, , ...,Bp, such that for every i, B; and B;,, have a common vertex in such
a way that the block cut-point graph is a tree .
We will denote the chain graph with m blocks by CK(m;(ay,ay, .., ay))
swhere the sequence of m blocks is the complete graphs K, ,K,,, ..., Kq,, - We

will assume that all aq22.0fa,=a;==a,=2 then
CK(m; (2,2, ...,2)) = P44 Itis well known that P, is a combination graph . If
a; = a; = - = a,, = 3 then CK(m; (3,3, ...,3)) is the triangular snake which
is a combination graph [8] . 5
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Here, we introduce a theorem on bipartite graphs, and some theorems on chains
of two and three complete graphs considering when they are combination or
non- combination graphs. We show that some families of graphs are



combination graphs. Finally we give a survey for trees of order<10, which are
all combination graphs.
Any notion or definition which is not found here could be found in [3].

1 General results

Lemmai.1.[5] In a combination graph the vertex of degree n — 1 receives label
lor2.
Remark 1.2.[5] 1. The vertex v in the combination graph G(n,q) could be

labeled by k if d(v) < |5 +n—k ,k=12,..,n.

2. The graph G(n,q) is a non- combination graph if it has no vertex of degree
n

<|3
2

Theorem 1.3.[5]A graph G(n, q) having at least 6 vertices, such that 3 vertices

are of degree n — 1,n — 2, 1 is not a combination graph.

Theorm1.4.[5] The graph G(n, q) having 2 vertices of degree 1, 2 vertices of

degree n — 3, 1 vertex of degree n — 1 is not a combination graph.

Theorem 1.5 . If G is a bipartite graph, both of its sets has n elements, such that

-E elements of each set has degree n, then G is a non-combination graph, n= 6 .

Proof. Let A and B be the sets of labels of the two bipartite sets of G and have n
elements.Let A = {1,x;,%;, ..., Xn_, },where x, < x, < - < x,_; .As CI*' =
CX¥*' note that 1,x € Aimplies1 +x & B . Now 1+ x,,_, € B, therfore 1 +
Xp—o € A, which implies that 1 + x,,_, = x,_, .Similarly 1 + x,,_; € A implies
that 14+ x, 3=2x,_, ,50 that A={1,%,% +1,%5+2,.,x, +n—-2} ,
B={y,,¥2,..,¥} , with y; <y, < <y, . We will choose a labeling for
this graph from the following four cases according to the degree of their vertices
and Remark 1.2

Casel. 1< < +1<x+2< <t +Nn—-2<y; <y; <<y
A={12.,n},B={n+1,n+2,..2n}.Clearly vn+i,i=1,.,n—-1

,we get (n: l) = (n ':' l) , so the vertices labeled by n+1i ,i=1,..,n—-1

are not joined with all vertices in A .
Case2. 1<y <Yy << Yyp<< X +1<x+2< - <x;+n—-2.
A={1,n+2,n+3..2n},B={23,..,.n+1}.Vn+ieAd,i=1,..,n,we

get (n: ‘) = (n ':' l) , so the vertices labeled by n + i€ A4 ,i = 1,...,n are not

Jjoined with all vertices in B.

Case 3 . There exists k, 0 <k < n, such that

<y <<y << +1 < +2< < +n—2 < Ypyq <

Yiwz o < Yn.

All y;,i=1,..,k can join all vertices in A, since y;<x; Vi=1,.. .k ,j=
1,..,n—1.

. n
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When k <-'23 all the vertices labeled by ¥4 ,i=1,..,n—k—1 have

degrees greater than 9’%5 , such that the vertices labeled y;,; cannot join the

. . Yn\ _ Yn
vertices labeled Y4144, i =1,..,n—k—1 and (x1) = (x1 +n— 2) , SO we
have repeated edge labels. Now let & =1;- ,the vertices labeled x; are joined
with all vertices of B if x; 2 2y, , 2y, = 2(§+ 1) =n+2,n+2<x5<
n AN . . n _
3; , SO the values (Yi)’ i=1,..,k are different labels , since (r)‘ r=
1,.., E] . Therefore the number of vertices in A which can join all vertices in B

is 33—(n+1)+1 =;"- ,1€A , but we have (;:)=Gi)

ii) If k> 1;—, the vertices in the set A which can be joined with all vertices in

the set B are less than 21 .
Therefore G is a non-combination graph.

For a graph G , the splitting graph of G, S '(G), is obtained from G by adding
for each vertex v of G a new vertex v', so that v' is adjacent only to every
vertex that is adjacent to v, so we have :

Corollary 1.6. The graph S '(K,»),n = 3 is a non- combination graph.
Figure (2) shows the graph S '(K;3).

Figure (2)

2 Chain graphs with two blocks

If m =2, then CK(2; (a,, a,)) is the one-point union of two complete graphs ,
weassume q; < a,.

Theorem 2.1 . For m = 2 and a, = 2, CK(2; (a,,a,)) is a non-combination
graph ifand only if a, > 4.

Proof . If a, = 2, then CK(2;(2,2))is a combination graph. If a, = 3 then
CK(2;(2,3))is the dragon(Figure(1)), which is a combination graph .For
a, 24 the graph CK(2;(a,, a;)) has three vertices of degrees n, n-1, 1,
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respectively . When a; = n, the graph is a non-combination graph according to
Theorem 1.3 in [5].

—~<>—<p

CK(2;(2,4)) CK(2;(2,5))
Figure (3)

Theorem 2.2 . For m=2 and a, =3 the graph CK(2;(a,,a;)) is a non-

combination graph if and only if a, = 4.
Proof . If a, = 3, then it is a triangular snake, which is a combination graph .

For a, = 4, let n+2 be the number of vertices of CK (2; (ay, az)) If we delete
the edge e which is adjacent to the two vertices of degree 2 of k,, , we get the
graph CK(2;(ay,a;)) — e which has the following vertices : one vertex of
degree n+1 , two vertices of degrees n-1,1 respectively , and according to
Theorem 1.4 in [5] the graph is a non-combination graph. Since
CK(2;(a,,a;)) — e is a subgraph of CK(2; (a;,a,)) with the same number of
vertices, it follows that CK (2 ; (@y,a3)) is a non-combination graph, a, = 4.

) N

Ck(2;(3,4))

CK(2;(3,5))
Figure (4)

Theorem 2.3. For m = 2,CK(2;(a,,a;))is a non-combination graph if
a; = Qa; 2 4.

Proof . The number of the vertices of CK(2; (a;,a;)) is 2n— 1, and the number
ofedgesis n(n-—1).Since we have a vertex in common between K, and K,
, so this vertex will be of degree 2n - 2.
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Let v be this common vertex and let the vertices of K, bev; ,i=12,..,n—
1, the vertices of K,, be u; ,j =1,2,..,n—1. According to Lemma 1.1 in
[5] we have two cases :

Case 1. f(v) =1, if we label v; by k ,k < 2n — 1 then we must label u, by

k + 1 since (k '; 1) = (k -Iic- 1), therefore the even labels will be in K,, and

the odd labels in K, ,or vice versa and this is a non-combination graph ,since
()= =+

Case 2 . f(v) =2 .Without any loss of generality, let f (v;) =1 . Since
(:‘1’) = (3) the label 3 will be in Ka, .Since 2 +3 =5, so the label 5 will be in

Ka, hence label 4 is in K,, .If the label 6 in K, , then (2) = (g) If it is in

K,, we get also (Z) = (g).Hence the result.

3 Chain graphs with three blocks

There are several cases to consider for chain graphs with three blocks . Since the
graph CK(3; (a,, az, a3)) is isomorphic to CK(3; (a3, a,, a,)) ,we will consider
one case instead of both .We will order the sequence by lexico graphical order.

3
1 2 3 4 1 2 4 5
— o —s o . —e
CK(3;(2,2,2)) CK(3;(2,3,2)
Figure (5)

Theorem 3.1. For m = 3 , a, =a; =2, CK(3;(ay,a,,a;5)) is a non-
combination graph if and only if a, > 4 .

Proof. For a, =2,3 see Figure 5. CK (3; 2, 4,2)) is a non-combination
graph[7].For a, 2 5 ,the number of the vertices of CK(3; (a,, a5, a3)) isn+2,
according to Remark 1.2 in [5] we can label one of the vertices of degree one
by n + 2 only , since the remaining vertices are of degrees > lnzi] . Also for the
label n + 1, we can label the second vertex of degree one by n + 1 only , since
the remaining vertices are of degrees > l"T“J , S0 the vertices of k,, will be
labeled 1,2, ..., n. (K, is a combination graph if and only if n < 2 [4]), and
therefore CK(3; (a,, a,, as)) is a non-combination graph .
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CK(3;(3,2,3))

CK(3;(4,2,4))

Figure (6)

Theorem 3.2 . For m = 3,a, = 2,CK(3; (a,,a,,a3)) is a2 non-combination
graphif a, = a3 =2 5.

Proof .When a, = a; = 3,4 the graph is a combination graph( Figure (6)). For
a,=az; =5, let A and B be the set of vertices in the complete graph of
vertices a, and aj respectively. Without loss of generality , let 1€A . Now , if
2neA n#l, then there exists xeA ,such that x # 2,n, thenx —~1,x+1,2n —

XEB , but 2n—-x+x—1=2n—1and2n—1€B ,s0 @Z:D=
(2:__ 11), and this is a non-combination graph, so 2n & A implies 2n € B. Now

if 2n —1 € A, n#l, there exists x € A such that x # 2, implies x —1,x+
1,2n—1—-x€B but 2n—-1—-x+x—1=2n-2 and 2n—2 € B and

we get (anﬁ '1' 3 = (an_— 12) .Continuing in this procedure we get
B={2n,2n-1,..,2n— (n—1)}. And this means A = {1,2,...,n}, and it is
clear that labeling of K, is a non-combination labeling (K, is a combination

graph if and only if n < 2 ).Hence the result.

Theorem 3.3.The union of two complete graphs K, UK,, ,n=5 is a non-
combination graph.

Proof .Use the same idea of the proof of Theorem 3.2 .

4 Some combination families

Theorem 4.1. The C, -snake is a combination graph.
Proof . Let the C, —snake be described as in Figure (7).
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Uy Uy U3 Uy Ug Ug Uzpn-1 U2n

Figure (7)
The graph C, -snake is a graph of order 3n + 1,n is the number of the cycles

4
We define the function:

f:V(Cy- snake) - {1,2,..,3n+ 1} as follows :

f@)=1i, i=1,.,n+1, f(y) =n+1+j, j=1,.,2n
The edge labels will be as follows:

g ={2,3,.,n+3}, g, = {n+5,n+7,...3n+1},

= ("2, (79, (5, (73 o (50,60 V0 = L G 1
The labels in each of the previous sets are increasing,

Figure (8) shows a combination labeling of a C, -snake , n=4.

1 2 4 5

6 7 8 9 10 11 12 13

Figure (8)

A double triangular snake consists of two triangular snakes that have a common

path.
Theorem 4.2. A double triangular snake is a combination graph ,n>3.
Proof. The graph is shown in Figure (9)

L u Uzn,-3

U; Uy Uzn-2

Figure (9)
We define the labeling function
f: V(@) - {1,2,..,3n— 2} as follows:
f@)=ii=1.n ,f(y)=n+j , j=1.2n-2
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The edge labels will be as follows:

¢ ={2,3,.,n+2}

Quar = { (MP271), (B2, (M), (M)}, i=1,.n-2

an ={ (3";3) , (3"n' z) }. The labels in each of the previous sets are increasing.
g, Ng; =@ ,j=2,..n since every label in g, is less than every label in g;
for every j=2,...n. ,q; N q;=@,i#j,i,j=2,..,n, since (ntix:z) <
(™) i=1,..,n-2,n24.

i+2
Figure (10) shows a combination labeling of a double triangular snake , n=3 .

4 6

5 7
Figure (10)

A caterpillar is a tree for which, if all leaves (vertices of degree 1 and their
associated edges) were removed, the result is a path.
Theorem 4.3. All caterpillars are combination graphs.
Proof: Let v, ,v,,..,u, be the vertices of the path and u,,u,,..,u, the
vertices of the leaves . We define the label function as follows : f(v;) =
i,i=1.,n ,f(w) =n+i,i=1,..,m Alllabels are given from left
to right.
The fan E, is defined to be the graph P, + K.
Theorem 4.4 . The graph F, is a combination graph if and only if n = 6.
Proof. The number of vertices of F, is n+1 and the number of edges is 2n — 1,
according to Theorem 3 in [4], F, is a non-combination graph ,n <5 . When
p is odd 4q > p?—1limplies 42n—1)>(n+1)* -1 , ie. n*—6n+
4<0 ,n<4.

1

2 5 7 3 6

Figure (11)
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When p is even, since 4g > p? implies 4(2n — 1)> (n + 1)? ,ie.

n? — 6n + 5<0, n<5.

For n =5 we have the number of edges = 9 > 8 , hence F; is a non-

combination graph .The labeling of F, when n=6 is as follows :

For n 2 7, F, is a subgraph of the wheel W, with the same number of vertices
and since W, is a combination graph , n = 7 [5], F,, is a combination graph ,
nx6.

Theorem 4.5. The graph 4C, is a combination graph for n>3.

Proof, Figure (12) shows the graph.

Un Up
v1 u'l
Un—q Up-1
N V2 \ Uz
-~ ~
V3 Uz
Wn In
Wy Y1
Wn-1 V-
w
N ? S Y2
Wa V3
Figure (12)

We define the function f: V(G) - {1,2,...,4n} as follows:
f)=i,i=1.,n-1,f(n)=m-2,f(y;))=n—-1+i,i=
Lon=1,f(uyp)=4n-1, f(w)=2n-2+i,i=1,..,n-
l,f(Wn)=4Tl, f(YI)=3n_3+i , i=1,.,n-1, f(yn)=
4n — 3.
The edge labels can be described as follows:
g ={2,3,..n-1},q, ={n+1,..2n-2),
g3 ={2n,...3n-3},q, ={3n-1,..,4n-3,4n -2}
-3\ dn-2\ (dn—-1\ 4n—-1 4n 4n

s {(n—l)'(n—l)’( n )‘(Zn—z '(3n—3 ‘(Zn—l }’
All edge labels are different; we need to notice only that:

4 - -

sn3) * (anz) and (7)) = (5al)

Example 4.6. Figure (13) shows a combination labeling of 4C, .
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Figure(13)

Definition 4.7.
(1) A regular or a complete binary tree is a binary tree that meets the following
conditions:

a ) There is exactly one vertex of degree two , namely the root .

b) All vertices other than the root have degree one or three.
(c) All vertices of degree one are at the same distance from the root.
(2)Let n = 4, and consider all ternary trees, i.e. on n vertices, where “internal”
vertices have degree three and “external ™ vertices have degree one.
(3) Now we consider the graph resulting from identifying the pendent vertices
of the Sy, with the paths B, , forsome n;,1< n;<m.
Theorem 4.8. (i) The trees described in Definition 4.7 are combination graphs.
(ii)The trees T, ,n < 10, obtained by joining the centers of two trees by a path
in Definition 4.7,(3) are combination graphs.
Proof. (i) According to Definition 4.7, we have:

(1) We will introduce a labeling of a full binary tree by using the Breath _First
Algorithm. We label the root by land label the vertices that are adjacent to the
root by 2 and 3, and then label the vertices that are adjacent to these vertices by
4,5 and 6,7 respectively and so on.
(2) Method of vertex labeling: The center of the star S,,, is labeled by 1, and then
label the vertices of distance 1 by 2,3, 4, the vertices of distance 2 by 5,..., 10,
the vertices of distance 3 by 11,...,22 and so on.
(3) We label the center of the star by 1, then we label the first branch by
2,3,...,n; ,the second branch by n;+1, n;+2,...,n;+n, , where n, and n, are the
number of vertices of the first and second branches respectively ,and so on.
(ii)We label the path B, by 1,2, ..., n, then we label the branches as in(3).
Survey 4.9.We label all trees of order <10 as combination trees.
1) Paths and stars can be easily labeled.
2) All caterpillars (Theorem4.3).
3) Trees in Theorem4.8,(2)and(3).
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4) The remaining trees are labeled in the following manner.
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