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Abstract. Codes in {py-spaces introduced by the author in (3] are
a natural generalization of one-dimensional codes in RT-spaces (6]
to block coding and has applications in different area of combinator-
ial/discrete mathematics, e.g. in the theory of uniform distribution,
experimental designs, cryptography etc. In this paper, we introduce
various types of weight enumerators in {py-codes viz. exact weight
enumerator, complete weight enumerator, block weight enumerator
and y-weight enumerator. We obtain the MacWilliams duality rela-
tion for the exact and complete weight enumerators of an [py-code.
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1. Introduction

K. Feng and L.Xu and F.J Hickernesll [2] initiated the concept of linear
partition block code which is a natural generalization of the Hamming-
metric codes. Also, we know that the Rosenbloom-Tsfasman metric (or
RT-metric or p-metric) is stronger than the Hamming metric (1, 6, 7).
Motivated by the idea to have linear partition block code endowed with a
metric generalizing the RT-metric, the author formulated the concept of
linear partition y-codes (or lpy-codes) in (3] and obtained basic results for
these codes including various upper and lower bounds on their parameters
for the detection and correction of random block errors. In this paper,
we introduce various types of weight enumerators in lpy-codes viz. exact
weight enumerator, complete weight enumerator, block weight enumerator
and y-weight enumerator. We obtain the MacWilliams duality relation (4,
5] for the exact and complete weight enumerators of an /py-code.

2. Definitions and notations

Let ¢,n be positive integers with ¢ = p™, a power of a prime number
p. Let F; be the finite field having g elements. A partition P of the positive

ARS COMBINATORIA 129(2016), pp. 107-122



integer n is defined as:
P:n=nj+4+ny+---+n;, 1<n1<nyg<---<ng,5>1.
The partition P is denoted s
P :n = [ny}[ng - [ng].
In the case, when

P=n=hd;ﬁ@&@"imb“h¢“hd,

—

r1- cOpies r;- copies re- copies
we write
P:n=[n]"ng]™ - [ng]™ where ny < ng < -+ < n,.

Further, given a partition P : n = [n;]{n2] - - - [n,] of a positive integer n,
the linear space F} over F, can be viewed as the direct sum
F;‘ =F:111 GBF;’ @...@F;‘-,
or equivalently
V=VieVe- -8V,
where V =F7 and V; =Fp forall i <i < s.
Consequently, each vector v € F? can be uniquely written as a v =

(v1,v2,++,vs) where v; € V; = F™ for all 1 < i < s. Here v; is called the
ith block of block size n; of the vector v.

Definition 2.1. Let v = (v,v2,---,v;) € F; =F;'oF?e---0Fp
be an s-block vector of length n over F, correspondmg to the partltlon
P :n = [ny][ng] - [n,] of n. We define the vy-weight of the block vector v
as

w(P)(v) max{z|v‘ # 0}.

The ~-distance d,(,P) (u,v) between two s-block vectors of length n viz.

u = (u1,u2, -+, us) and v = (vy,v2,+*+,Vs), Ui, v; € F7:(1 <1 < s) corre-
sponding to the partition P is defined as

&P (4,v) = wP) (u — v) = max{ilu; # v}
Then df,P) (u,v) is a metric on F;=F; oFo---0Fp.

Note. Once the partition P is specified, we will denote the y-weight w,(,P)
by w.,(v) and +y-distance d,(,,P) by d., respectively.
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Definition 2.2. A linear partition y-code (or lpy-code) V of length n
corresponding to the partition P : n = [n;][ng]--- [ns],n1 <na < --- <y
is a Fy-linear subspace of Fj = F}' ® F7? @ --- @ F}* equipped with
the y-metric and is denoted as [n, k, d; P] code where k = dimp, (V) and
d, = dy(V) = minimum <-distance of the code V.

Remark 2.1.

1. For P : n = [1])*, the y-metric (or 7-weight) reduces to the p-metric
(or p-weight) respectively [6].

2. For a partition P : n = [ny][n2]---[ns] of the positive integer n,
the v-distance (or y-weight) is always greater than or equal to the
w-distance (or m-weight) respectively, i.e.

~-distance(y-weight) > w-distance(n-weight).

3. Weight enumerators and MacWilliams duality in
lpy-codes

In this section, we define various types of weight enumerators in lp~y-
codes viz. exact weight enumerator, complete weight enumerator, block
weight enumerator and ~y-weight enumerator and obtained the exact and
complete weight distribution of the dual code of an lpy-code V' by way of
obtaining the MacWiiliams type identity. We begin with few elementary
definitions.

Definition 3.1 [5]. Let a € F,. The Hamming weight of a is defined as

1 i a#0
H(a) = {o if a=0.

Definition 3.2. Let P : n = [n;][ng] - [ns] be a partition of a positive
integer n. Let v = (v1,v2,---,v5) € Fg =Fp 0oFp2 & .. -0 Fy» where
v; € Fpi for all 1 < i < s. The Hamming block weight of the block
v;(1 <1 < s) is defined as

1 if vi#£0
Hy(w) = {o if v:io.

Definition 3.3. Let V be an [n, k, d; P] lpy-code over F, corresponding to
the partition P : n = [ni][ng] - - [ns] of n. The y-weight spectrum of the
code V is the set {Ao, Ay1,---,As} where for all 0 < r <s, A, is given by

Ar=|{ueV |wy(u) =T}
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The v-weight enumerator of the code V is defined as

W(t) = zs:A,t' =) e,

r=0 u€V
Definition 3.4. Let v = (u;,ug,---,u,) and v = (v1,vg,-+,¥;) be two
elements of F§ = F}' @ F32 @ --- ® FJ+ where for all 1 <7 < s,u; =
(ugi),ug), e ,ug,)) and v; = (v{i),vg'), e ,v,(,',.)).

The inner product of v and v is defined as
<u,v> = up.v +uUg.vz+---uUg.Us
]
= Z(ugi)vgi) + -+ uPud).
=1

The dual code of an lpy-code V C F7 = Fy' ©F? @ --- © Fy* is defined
as

v ={veF]|<u,v>=0YVueF;=F'0oF?® ---0F;}.

Then V< C F; =F'@F? @ - ©F} is also an Ipy-code.

Now we define the character of a finite Abelien group and canonical
additive character of a finite field.

Definition 3.5 [5]. Let G be a finite Abelian group with respect to addi-
tion. Let U be the multiplicative group of complex numbers having absolute

value 1 i.e.
U={zeC: |z|=1}.

A character x of G is a group homomorphism from G into U i.e. x: G — U
is a map satisfying x(g1 + g2) = x(g1)x(g2) for all 91,92 € G.

Definition 3.6 [5]. Let F, be a finite field having ¢ = p™ elements and U
be the group of complex numbers as in Definition 3.5. Consider the additive
group F} of the finite field F,.

(i) The character x : F} — U given by
x(a)=1for alla e F}
is called the trivial additive character of F.

(i) The nontrivial canonical additive character x of the finite field Fy is
a group homomorphism

x:F} = Ff. — U given by
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Po...gPm! Py...gP™!
X(a)=cos27r(a+a +p a )+isin27r(a+a toe )
p

for all a € F}.

Observations

1. For g prime, the definition of nontrivial canonical additive character
X given in Definition 3.6 (ii) reduces to

x : F}-—Uisgivenby
2 2
x(a) = cos-:—a +1 sin—Zc-l for all a € F.

2. Over F,, we have
x(0)=1, x(1)=-1.

-1 V3. -1 3,
3. Over F3,X(0) =1, X(l) = -2— + 71,,)((2) = T - —2—1_
Now, we define different types of weight enumerators for an Ipy-code

V.

Definition 3.7. Let V be an [n, k,d; P] lpy-code corresponding to the par-
tition P : n = [ny][ng] - [ns] of n. Let u = (uy,uz,--+,u,) € V where
u; = (u&’),ug')g o ut)) € F for all 1 < i < s. The ezact weight enumer-

ator of the code V is a polynomial in ny +ns +- - - +ns = n variables given
by

EWV(tllv e vtl,nnt21) e t2,n2: e atsla e ts,n,)
= D) () ) ) 5 ) B}

u€v

Definition 3.8. The complete weight enumerator of the lpy-code V' is given
by

CWV(tll’.."tlfnl’t21?..‘$t2,n21'")"'5t811" 'ts.nc)
= Z(tll)H(un) e (tl‘nl)H(ﬂl.nl)(t21)H(‘um) o
uev

R (t2'n2)H(u2.n2) e (tsl)H(u:l) e (ts,n,)H(u""‘).

Definition 3.9.The block weight enumerator of the lpy-code V is a poly-
nomial in s variables viz. ¢;,%2,---,ts and is obtained from the complete
weight enumerator of V on replacing

(ti,l)H(u"l)(ti,z)H(u“z) - (ti,ni)H(u""‘)
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ny
max{H(ui,;)}

(t;)7=1 for alll <i<s.
Thus
ny na Ty
' max{H(u,;)} ~ MaX{H(uz,;)} maxH (u,,;)}
BWy (ty,ta,+,ts) = D _ (t1) 7= (t2) 7= SO
ueV

Definition 3.10. The y-weight enumerator of the lpy-code V is obtained

from the block weight enumerator of V' on replacing each monomial of the
max{i|a; # 0}

form t31¢32 - - t2+ in BWy (t1,t2,---,t5) by t i=l .

We now illustrate different weight enumerators with the help of fol-
lowing example.

Example 3.1. Let n = 4,q = 2. Let P : 4 = [2][2] be a partition of n = 4.
Let V) and V4 be two lpy codes over Fyf = FZ @ F? given by

V1{(00:00), (10:10)}

and
V, = {(00:00), (00:01)}.

Since the codes V) and V; are over F3, therefore their exact and complete
weight enumerators are same and are given by

CWy, (tin, tiz, ta1, ta2) = EWy, (t11,t12, to1, t22)
= 891105191892 + t11t3t3,t0,
= 1+tnta,

CWy, (11, ti2, ta1, t22) = EWy, (811,812,821, t22)
= 1+41i99.

The block weight enumerator of V; and V; are given by

BWy, (t1,t2) = U3 +titd =1+ t1ts,
BWy,(t1,t2) = %3 +t3t) =1+41¢,.

The vy-weight enumerator of V; and V; are given by

Ww(t) = 1+t2,
Wy (t) = 1+t
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The dual codes of V; and V; are given by

Vit = {(pgirz) e Ff =F} @ F} |p+r =0}
{(pgirz) € Ff = F} @ F2 | either p=r=1o0r p=r = 0},
{(00:00), (01:00), (01:01), (00:01), (10:10),

(11:10), (11:11), (10:11)},
and
Vit = {(pgrz) e Ff =F; @ F} | z=0}
{(00:00), (00:10), (01:00), (01:10), (10:00),
(10:10), (11:00), (11:10)}.

The exact and complete weight enumerators of Vi* and V! are given by

EWya(ti, tiz, tar, t22) = CWypa (i, taz, t21, t22)
= 14 t12 +t12t22 + t22 + t11ta) +tnntiotor +
+t11t12t21t22 + t11t21t20,

EWyi(ti,tiz, ta1,t22) = CWyp (B, tiz, 21, 22)
= 141291 + t12 +tiato; + 11 + taator +tualiz +
+ty11t12t01.

The block weight enumerators of V;* and V;* are given by
BWVI.L (t1,t2) = 14t +tte +t2+81ta + ity +tita + it
= 14t +t2 + 5t1ta,
BWVZJ. (t1,t2) = 14ta+1t +t1ta +E1 +tita + 1 + L1t
= 14 3t +tg + 3tyto.

The ~-weight enumerators of Vi and V' are given by

Wy () = to+t' +t2 4562 =1+1t+6t%
1
Woa(8) = 104347436 = 143 + 4%

Remark 3.1. We observe from Example 3.1 that although the y-weight
enumerators of codes ¥V} and V5 are same but ~-weight enumerators of
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their duals Vi and V3' are different. Therefore, it is difficult to obtain
the y-weight enumerator of the dual of an lpy code V from the y-weight
enumerator of V. However, the same can be achieved for the exact and
complete weight enumerators. Keeping this in view, we obtain the exact
and complete weight enumerator of the dual code of an lpy-code V from
the exact and complete weight enumerator respectively of V' in the form of
MacWilliams duality relation. To prove the MacWilliams duality relation
for the exact and weight enumerators in lp7y codes, we require the following
lemmas:

Lemma 3.1 [5]. Let x be the nontrivial canonical additive character of F,,

then
Z x(a) =0.

a€F,

Lemma 3.2. Let x be the nontrivial cannonical additive character of F,,.
Let VCF; =F} @F2@--- ®Fy* be an [n, k; P] lpy code corresponding
to the partition P : n = [ny][na) - - [ns] of n. Then

}E:X(<‘u:v:>) =

u€v

0 if veg V4
VI i veVi.

Proof. If v € V1, then clearly < u,v >=0. This implies that

dDxl<uu>) = Y x(0) =V

uey u€v
If v g V4, then we claim that in the summation Zx(< u,v >), the inner

u€v
product < u, v > assumes every value of F, the same number of times. For
this, let r; > 0 be the number of elements of V' whose inner product with

v is equal to j for all 0 < j < ¢ — 1. To be more precise, let u],u}, - ~,u2'.j
be all the elements of V such that < uJ,v >=j foralli =1 to r; and for
alj=0tog=1.

Choose j such that 1 < j < g—1 and fix it. Then u{+u?,u{+ug, e ,u§+u20
are 1o distinct of V such that

<u{,v>+<u2,v>
= J40=jforalk=1torg.

<u{+u2,v>

This implies that

To S Tj. (1)
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Again, let

q-1

T = Zu'l evV.
=1
t#j

Then u{ + z, ué +z,-- ,uij + z are distinct elements of V such that for
every 1 <i <r;, we have

<uf+x,v> = <u{,v>+<x,v>
q—1
= j+<Zu'1,v>

=1
1#j

FHLI+24 G- +G+D)+--+(g—1)
= sum of all the elements of the field F,
0.

This implies that

T S To. (2)

(1) and (2) give r; = ro. But j (1 < j < g —1) is arbitrary and hence the
claim. Thus

Zx(u, v) = multiple of Z x(¢) = 0 (using Lemma 3.1)

ueV «€F,

O
Lemma 3.3. Let V be an [n, k; P] lpy code in over F, corresponding to the
8
partition P:n= [nI][nZ] tre [Tl.s]. Let f : F;‘ = @F:‘;' and C[tlh T 7t1,nn
i=1

t215 tee 1t2,‘n1 o 'tsla ce ,ts,n.} be a map where C[tlh e )tl,n11t2l; cre 7t2,n;
seets1, 0+, ban, ] 18 the polynomial ring in ny4+ng+- - -+n; = n commutating

variables with coefficients from the complez field C. Let x be the nontrivial
canonical additive character Fq. Then

1 n
> flv) = I—V—|Zf<u),

veVL ueVv

where f is the Hadamard transform of f given by

fluy= Z x(< u,v>)f(v).

n;
ved; Fq
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Proof. Consider

Sfw = > > x(<uv)>)f)

ueV “vae@;-;lF:“

= 3 S x<uus) @+ > S x(<u,v>)f(v)

u€VyeVdi ueVogVvL
VI f(») (using Lemma 3.2).

veV4e

This implies
Y 1w = w3 fw.
‘VluEV

veVL
a

The following theorem gives the duality relation for the exact weight
enumerator in [py-spaces.

Theorem 3.1. Let V' be an [n, k,; P] lpy code over Fy corresponding to the
partitz'on P:n= [n1][n2] T [ns], nyp<ng <.+ < ng. Let EW[tu, vy, tl,nu
ta1, s tom, + o a1, -, ts,n,] be the ezact weight enumerator of the code V.

Then the ezact weight enumerator of the dual code V1 is obtained from
qg-1

the exact weight enumerator of V' on replacing (t;;)"' by Z x(ui; w)(t; )
w=0

and then diving the result by |V|.

8
Proof. Take .f : F:; = @FQ' - C[t].l) e 1t1,'n)’t211 B t2,n1 KRS P PR 1t3,1‘l,]
t=1
in Lemma 3.3 as

flu) = flur,ug - -ug) = (81" - (Brn) 0m0 oo (B21) 20 - (b )*20m2
oo (ba1)*ot o (ba,n, ) 0me,

where u; = (ui1,%i,2, ", Uin,) € Fgi forall 1<s.

Then f(u) is given by
f(u) = Z x(< u,v >)f(v)

ved!., Fy'
where v = (v1,v2,+-+,V,) and v; = (Vi,1, Vi 2, -, Vin,) € Fy
foralll1 <i<s.

= Z Z Z x(ul.vl+u2.1)2+-“+us-vs)f(vla"‘,vs)

v €FJ'v€Fy?2 v, €Fy?
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v €F, Vi,ny €Fqv21€F, V2,n3 €F, v,1€F, Ve,n, EFq

(x (ii%%‘) ) f[ﬁ(tu )

1l

i=1j=1 i=1j=
s ng 8§ ng

- 25 % () Il
t'-lj—lv.»jqu i=1j=1 i=1j=1

- 3% )

s n;

= TIII D_ x(usw) (i)™

i=1j=1we€F,

s ny q—

= HH zx(uuw)(tu) (3)

i=1j=1w=0
From Lemma 3.3 and (3), we have

3 fw) = l—%zm)

veVL ueV

(i (Semrer))

ueV ‘i=lj=1 ‘w=0

O

The duality relation for the complete weight enumerator in lpy-spaces
is given by the following theorem:

Theorem 3.2. Let V be an [n, k; P) lpy code over Fy corresponding to the
partition P : n = [ny|[na] - - [ns),m1 Sn2 < - S na. Let CWy (b1, -+, tnys
a1, ,tong * bsl, * v, tsn,) be the complete weight enumerator of the code
V given by

CWV(tll) v )tl,nut217 o )tz,nz certgyy e )ts,n,)
= Z(tll)ﬁ(un) . (tl,nl)H(“”n‘) v (t21)H(u21) - (tz,’nz)H(u""’) ..

uev

.. (tsl)H(u”) e (ts’ ns)H("s,ﬂ:).
Then the complete weight enumerator of the dual code V1 is obtained from

the complete weight enumerator of V on replacing (t:;)H(%3) by P(uij,t:5),
(1<i<s,1<j<n;) and then dividing the result by |V| where P(uij, ti;)
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is given by

Proof. Take f : F} = &{.,Fp* — Clt11, 1 t1,ny,t21, 7~y tong =+ bs1, -

1+ (g—1)ts if uy; =0
Plug.ts) = {1—£ij s if uZ#O.

in Lemma 3.3 as

where

flu) = f(ur,ug, --u,)

= (tn)H(uu) o (trmy )H(u;.n,) .. (tZI)H(un) L
- (tz,n,)”(“""z) e (tsl)H(un) . (ts,n,)H(u""’),

u; = (u‘i:lv Ui, 2,0 7ui,n,-) € F‘?' foralll <s.

Then f(u) is given by

flu)

Yo x(<uv>)f(v)
ved).,Fy!

where v = (v1,v2,-++,v,) and v; = (Vi,1, V5,2, *, Vipn,)
forall 1 <i<s.

Z z Z x(u1.v1 + ugvg + -+ us ) vy, - -

!eF"‘ ”251-';'2 YVseF]e

POIRETED DD DINTPED SR SIS o

V11€Fg  v1,0,EFUn€F;  v2,0)€F;  vn€F; v, ,€F,

(55 T

i=lj=1 i=1j=1
3 2 sy s n;
>3 % (X wns ) )T Cor e
i=1j=1v;;€F, i=1j=1 i=1j=1

ZZ > (Hwa,,v.J)(t.,)H(v-»)

i=lj=1v;;€F, “i=1j=1

s n;

HH Z X(“ij’lﬂ)(tij)ﬁ(w)
i=lj=lweF,
8 ny

HHP(u‘j’ ti.‘i)a

i=1j=1
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where

Plug, tis) = Y x(ugw)(ts; )7,
wEF,

In view of Lemma 3.3, it now suffices to show that P(uij,t;;) is given by
expression (4). There are two cases to consider:

Case 1. When u;; = 0. In this case

Plug,ty) = Y x(uszw)(ti)H®
w€F,

= > x(0)(t:5)"™

weF,

= Y x(O)(t5)"™ +1
wEFq
wH#0

1+ (q - l)t,’j.

Case 2. When u;; # 0. In this case

Plug,ty) = Y x(uizw))(ty)H)

weF,

= 1+ ) x(uyw)(s)" ™

weFq
w0

- 1ty Y )

w€Fg
w0

= 141 Z x(a)

a€Fqg
a#0
= 1—t;; (using Lemma 3.1)
a

Example 3.2. Consider the lpy codes V} and V> of Example 3.1. over Fy
given by

V; = {00:00), (10:10)},  V, = {00:00), (00:01)}.
The complete weight enumerator of V; and V; are given by

CWy, (t11,t12,t21,822) = 1+tuta,
CWy, (t11,taz, ta1,822) = 1+1t22.
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We obtain the complete weight enumerator of the dual codes Vi*(l = 1,2)
using Theorem 3.2 on replacing (t;;)¥() by P(us,t;;) in the complete
weight enumerator of V; and then dividing the result by [Vi| (I = 1,2)
where P(uqj,ti;) is given by (4).

1
CWy. (b1, t12, 21, t22) = 3 [(1 +t11) (1 +ti2)(1 +t21)(1 +t22) +

+(1 —t11)(1 +t12)(1 = t21)(1 + tzz)]

= 1+41tnta +ti2 + titiater + 22 + t1atartas +
+tigtaz + t11t12t21t0n.

Similarly,

1
CWyy (ti,tiz, tor,t22) = 3 [(1 +t11)(1 4+ t12)(1 + t21)(1 + t22) +

+(1 4+ t11)(1 +t12)(1 + ta1)(1 — ta2)

= 14ty +t12 +tatiz + tor + tiatar + tigto; +
+t11t12821.

Example 3.3. Let n = ¢ = 3. Let P : n = 3 = [1][2] be a partition
of n = 3. Let V =< (0:12) > be a [3,1; P] lpy- code over F3. Clearly,

V = {(0:00), (0:12), (0:21)}. The dual code V+ of V is given by
v {(c:B8) € F ® F2|8 + 26 = 0}
{(c:B6) e Fy @ F3|B = 6}

{(0:00), (0:11), (0:22), (1:00), (1:11), (1:22)},

(2:00), (2:11), (2:22)}.
The exact and complete weight enumerators of V and V+ are given below:

EWy (t11,t21,t22)

1+ t2lt%2 + t%1t22-

CWy (i, tanstes) = 1+ taites +tartay = 1+ 2antys.
EWy.(tiy, tar,tes) = 1+ tarton +t5t2, + 11 + tuntarter + t11t2,t2,
+t3) + t]itartes + 385,13,
CWyy(tin,tar,t22) = 1+ tartas + tartos +t11 + tiataita + tiitarten + ¢ +

+i1ta1t22 + t1ntariae
= 14 2toytas + 211 + 4t11t01t90.
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We now compute the exact and complete weight enumerators of V+ from
those of V' as shown below:

1
EWy.i(tin,t21,t22) = 3 [(1 +tn Ft3) (L4t +3)(1 4 to2 + td) +

-1 3.
+(1+tn +tf1)(1 + (—2— + %1)?521 +

(3298 (3P
+(‘?1 L3, )t22) + (L4t +83)

(o+ (3 Eys (3+598)-
(1 (G £)<— - o)

= 1+ tgytan + t2te + t1n + titarter + t11t3,t3, +
+t2) + 12 tortan + t1,2113,.

1
CWy. (t11,t21,t22) = § [(1 + 2t11)(1 + 2t21)(1 + 2t22) + 2(1 + 2t11)

}
wIH w|

(1 — t21)(1 - tgz)]

1
= §(1 + 2t11)(3 + 6t21t22)
= 14 2ta1t90 + 2t11 + 4ty1t01t00.

4. Conclusion

In this paper, we have introduced various types of weight enumerators
for lpy-codes viz. exact weight enumerator, complete weight enumerator,
block weight enumerator and y-weight enumerator. It was observed that in
spite of the fact that two lpy-codes V3 and V; are having the same y-weight
enumerator but the y-weight enumerators of their duals are different. How-
ever, the same is not true for the exact and complete weight enumerators.
In other words, if two lpy-codes have the same exact (or complete) weight
enumerator, then their duals also have the same exact (or complete) weight
enumerator. Keeping in this view, in this paper, we have obtained the
MacWilliams duality relation for the exact and complete weight enumera-
tors of lpy-codes.
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