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Abstract. Let T be an isosceles right triangle and let S}, Sz, Ss,. .. be
the homothetic copies of a square S. In this paper we consider the parallel
covering and packing of T with the sequences {S,} of squares.
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1 Introduction

By a conver body we mean a compact convex set with non-empty interior.
Let us recall some definitions from [8]. Let Cy,C2,Cs,... be plane convex
bodies. We say that the sequence {C,} permits a translative covering
of a plane convex body C if there exist translations ¢, such that C C
UonCr. We say that {Cr} can be translatively packed into C if there exist
translations o, such that C D |J0,C, and that they have pairwise disjoint
interiors. In particular, a covering or packing of a polygon P with squares
{S,} is parallel if there is a side of P such that each square 0,,S,, has a side
parallel to this side of P.

Denote by A(C) the area of a plane convex body C. Let D and K be
two plane convex bodies. Denote by f(D, K) the smallest positive number
such that any sequence of positive homothetic copies of K whose total area
is not less than f(D, K) - A(D) permits a translative covering of D and
denote by p(D, K) the greatest number such that any sequence of positive
homothetic copies of K whose total area does not exceed p(D, K) - A(D)
can be translatively packed into D (see [8]).
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There are many results about covering of some special convex bodies,
such as squares and triangles, for these results one can refer to (3], [5], [10],
and [12]. For packing of squares and triangles one can see [6], [7], and [10].
In addition, various results concerning packing and covering are discussed
in (1], (2], [4), [8], 9], and [11].

Let T be an isosceles right triangle and let S be a square. The aim of
this paper is to show that f(T,S) = 4 and p(T,S) = §.

2 Parallel covering of an isosceles right trian-
gle with squares

Moon and Moser gave the following lemma (see [10]).

Lemma 1. Assume that S is a square and that {S,} is a sequence of
squares. If 3 A(S,) > 3A(S), then {S,} permits a parallel covering of S.

The following lemma is a direct consequence of Lemma 1 (see [8]).

Lemma 2. Suppose that S is a square and that {S,} is a sequence of
squares of side lengths not greater than a. Moreover, let 3~ A(S,) > 3A(S).
Then there ezists an integer k such that it is possible to parallel cover S

k
with 81, Sa,...,Sk and that 3 A(Sn) < 3A(S) +a°.
n=1

2.1 The square S has a side parallel to the hypotenuse
of T

Without loss of generality we may assume that the hypotenuse length of T
is 2. Then the area A(T) of T is 1.

Theorem 1. Any (finite or infinite) sequence of squares permits a parallel
covering of T' provided the total area of the squares is not less than 4.

Proof. Let S be a square with a side parallel to the hypotenuse of T (where
the hypotenuse length of T is 2), let {S,} be the homothetic copies of S,
and let 3~ A(S,) > 4. Denote by a,, the side length of S, forn=1,2,....
Without loss of generality we may assume that a; > a; > .... We claim
that {S,} permits a parallel covering of T.

We may assume that a; < 2, otherwise T can be covered with S7, then
we need to consider the following two cases.

Case 1: 1<a; <2.

We place S; as in Figure 1. The remaining squares are used for the
covering of the square Ry D T \ 0185 of side length 2 — a;. By Lemma 1
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Figure 1: 1 <a; <2

we deduce that if T cannot be covered, then
D A(Sa) < af +3(2 — a1)? = 4af — 120, +12.

This upper bound does not exceed 4, which is a contradiction.
Case 2 0 <a; <1.

A covering method used in this case is based on the method from [8]
and [10], which is illustrated in Figure 2. The hypotenuse of T' parallel to
a side of S is called the base. The remaining sides of T are called the left
and the right side, respectively. We place the squares from the sequence
in layers, whose bases are paralle] to the base of T. The base of the first
layer contains the base of T. The first square is placed as far to the right as
possible but so that ¢1.5; covers the common point of the left side of T and
the base of the first layer. We place the squares, side by side, beginning
from the left side of T along the base of the layer. If a square S, is not the
last in the sequence and if 0,, S, covers the common point of the base and
the right side of T, then the new layer is created directly above 0,,S,,. The
square S,y is placed as far to the right as possible but so that gp4+1S5n+1
covers the common point of the left side of T and the base of the layer. We
stop the covering process when T is covered.

Contrary to the statement, we assume that it is impossible to cover T'
with the sequence {S.} by this method. Denote by On;Sn; the last square
lying in the j-th layer.

We first consider the case that there is a finite number of created layers.
A layer is full if each point of its base that is contained in T is covered by
a placed square. Denote by k the number of full layers.
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Figure 2: 0 <a; <1

Clearly,
any, +an, +--+apn, <1 (1)

The total area of the squares lying in the first layer is less than 2.4, + aﬁl.
The total area of the squares lying in the j-th layer, for j € {2,3,...,k},
is less than

(2—-2a,, —2ap, — -+ —2an;_,)an,_, + a.?,j.

Moreover, the total area of the squares lying in the (k + 1)-th layer, if it
has been created, is less than

(2 -2an, —2an, — - — 2ap, )an,.
By (1), we know that the sum
(2= 2an,)an, + 6% + (2 — 280, — 284,)0n, + 02, + -
+(2 — 2an, — 2an, — -+ — 200, )an, + a2,

does not exceed the area of a right triangle of leg lengths 1 and 2, that is,
does not exceed 1.
Hence,

ST A(Sn) <2 +1.

This upper bound is less than 3 provided a; < 1, which is a contradiction.
Then we consider the case that there are infinitely many created layers.
Also in this case the sum

(2 - 2anl )a'nl + a’?ll + (2 - 2a7l1 - 2an2 )an2 + a?l'.‘ + M



does not exceed the area of a right triangle of leg lengths 1 and 2, that is,
does not exceed 1.
Hence,

> A(Sn) < 2a1+1<3,

which is a contradiction. The proof is complete. 0

2.2 The square S has a side parallel to some leg of T

Without loss of generality we suppose that the leg length of T is 1. Then
the area A(T) of T is 4.

R,

S

-]

R,

=20

a; 1-a,
Figure 3: % <a; <1

Theorem 2. Any (finite or infinite) sequence of squares permits a parallel
covering of T provided the total area of the squares is not less than 2.

Proof. Let {S,} be a sequence of squares, let 3 A(S,) = 2, and let S be
a square with a side parallel to some leg of T (where the leg length of T
is 1). Denote by a, the side length of S,, for n = 1,2,.... Without loss
of generality we can assume that a; > a2 > ... and that each S, is a
homothetic copy of S. We show that {S,} permits a parallel covering of
T.

We may assume that a; < 1, otherwise T' can be covered by S5;. We
need to consider the following two cases.

Case I: %Sa1<1.

We place S) as in Figure 3. The remaining squares are used for the
coverings of the squares R; and R of side length 1 —a;. If T cannot be



covered and if R; C Sy, then by Lemma 1 we have
) A(Sn) < af +af +3(1 — a1)? < 50} — 6ay + 3.

This upper bound does not exceed 2, which is a contradiction.
If T cannot be covered and if S does not contain R;, then, by Lemma 1
and Lemma 2, we get

D A(S,) < af +af +6(1 — a1)? < 8af — 120, +6.

This upper bound does not exceed 2, which is a contradiction.

Case 2 0 < a; < 3.

In this case the covering method is the same as that of case 2 in Theorem
1, we omit it here.

We first consider the case that there is a finite number of created layers.
By Figure 4 we know that

b \

T

Figure 4: 0 <a; < -é-

Qn, + G, + -+ an, <1. (2)

The total area of the squares lying in the first layer is less than 1-a; + a?,l.
The total area of the squares in the j-th layer, for j € {2,3,...,k}, is less
than

2
(1=an, —@n, =+ —an;_,)an;_, +ag..

Moreover, the total area of the squares lying in the (k + 1)-th layer, if it
has been created, is less than

(1—-@an, —an, — -+ —ap,)an,.



By (2), we know that the sum

1 1
(1 - anl)am + Eail + (1 —Q8n; — aﬂz)an2 + 50,2‘2 + .-

1
+(1- Gn, —@Qng = *** — G, )ank + Ea?lk

does not exceed the area of a right triangle of leg length 1, that is, does
not exceed -;-
Hence,

1
ST AS)) < a1+ 5+ 5(ad, +ad, +kad,)

1,1
S a1+ 5+ 5an, (Gn, +an, +-o- +an,)

1 1 1 1 5
S0'1+-2-+§am $a1+§+§a1<z<2,
which is a contradiction.
Now consider the case that there are infinitely many created layers.
Also in this case the sum

1 1
(1 - a‘nl)a"x + Eagu + (1 —Qn, — ang)anz + Eaﬁz + -
does not exceed the area of a right triangle of leg length 1, that is, does
not exceed %
Hence,

1 1 5
ZA(SR)5a1+§+-2-a1<Z<2,

which is a contradiction. O

Remark 1. Without loss of generality we may assume that the hypotenuse
length of T is 2. When the sides of the squares are paralle] to the hypotenuse
of T, observe that no square with side length less than 2 can parallel cover
T. Therefore, from Theorem 1 we have f(T,S)- A(T) = 4. Since A(T) =1,
we obtain f(T,S) = 4. Similarly, we may assume that the leg length of T
is 1. When the sides of the squares are parallel to the leg of T, observe that
two squares of side lengths less than 1 cannot parallel cover T'. Hence, by
Theorem 2 we get f(T,S)- A(T) = 2. Since A(T) = §, we get f(T,S) = 4.
Corollary 1. If a side of a square S is parallel to a side of T, then
f(T,S) =4.



3 Parallel packing of an isosceles right trian-
gle with squares

In this section we consider the parallel packing of T with squares.

3.1 The square S has a side parallel to the hypotenuse
of T

Lemma 3. Let T'(b) be an isosceles right triangle with hypotenuse length
b and let S be a square with a side parallel to the hypotenuse of T(b).
Moreover, let {S,} be a sequence of homothetic copies of S such that a; >
as 2> ..., where a, denotes the side length of S,,, forn=1,2,.... If

S A(Sa) < a2 + %(b ~ 3a1)?

and if a; < %, then the squares can be parallel packed into T'(b).

,,, N

Figure 5: T(b) with hypotenuse length b

Proof. We describe a method of packing S, Ss,. .. into T'(b). This method
is based on the method from (8] and [10]. The hypotenuse of T'(b) that
is parallel to a side of S is called the base. The other sides of T(b) are
called the left and the right side, respectively. We pack the squares from
the sequence in layers, whose bases are parallel to the base of T'(b) (see
Figure 5). We pack the squares into T'(b), side by side, beginning from the
left side of T'(b) along the base of the layer. The base of the first layer is the
base of T'(b). The assumption a; < % guarantees that S; can be parallel
packed in the first layer. If a square cannot be packed into T'(b) in a layer,
then the new layer is created directly above the first square lying in the
preceding layer. This packing process is terminated either as long as all
squares have been packed or as long as there is a square which cannot be
packed into T'(b) by this method.

10



We are going to prove the lemma indirectly. Assume on the contrary
that the sequences {S, } does not permit a packing into T'(b) by the method
described in the preceding paragraph.

Denote by k the number of created layers in which at least one square
is packed. Denote by o, S, the first square lying in the (j + 1)-th layer
for j =1,2,...,k — 1. Furthermore, let S,, be the square which stops the
packing process.

We get
b

1
al +an1+"'+ank+"ank >§-

2
Consequently,

1 1 1
Ony + -+ ny, > 50 —an) - a1 2 5(b-am) —a1 = 5(b-3m). (3)

It is easy to see that

:V_): A(S,) > (b—3ay)a,,,

n=2

ng
D" A(Sn) > (b - 201 — 3an,)an, 2 (b— 301 ~ 2an,)an,,

n=ni+l

and so on.
By (3), we know that the total area of S, S3,...,Ss, is greater than
the area of a right triangle of leg lengths b — 3a; and -é—(b —3a,), hence

Nk
> A(Sn) >a} + i(b —3a;)?,

n=1
which is contradiction. O

Without loss of generality we suppose that the hypotenuse length of T
is 2.
Theorem 3. Any (finite or infinite) sequence of squares can be parallel
packed into T provided the total area of the squares does not exceed %.

Proof. Let {S,} be a sequence of squares, let )  A(S,) < s = ;‘—,, and
let $§ be a square with a side parallel to the hypotenuse of T (where the

hypotenuse length of T is 2).
Denote by a, the side length of S, for n = 1,2,.... Without loss of
generality we assume that a; > as > ... and that each S, is a homothetic

copy of S.

11



Obviously, a? < s, i.e., a; < %

Assume that it is impossible to pack S;,Ss,... into T by the method
described in the proof of Lemma 3. Let S, be the square which stops the
packing process.

Denote by k the number of created layers in which at least one square is
packed. Moreover, denote by 0,,; Sy, the first square lying in the (5 +1)-th
layer for j € {1,...,k — 1} and let z = n;.

If S; cannot be packed into T, then 3a; > 2, and thus a? > %, which is
a contradiction. Otherwise, we place S; in this layer. If S; and S, cannot
be packed into T (see Figure 6), then 2(a; + a2) > 2, that is, az > 1 —ay.
Hence,

S, S;

a; a

Figure 6: S; and Sa cannot be packed into T

1_4
a%-!—a%_>_af+(1—af)=2a§—2a1+l2->§,

which is a contradiction.

If S; and S5 can be packed into T, then k > 2. Otherwise, we have
k =1, and thus a; + an, + %anl >1,1ie., %anl >1-a;.

Consequently,

4
af+a§+a§2af+2a3” 2a¥+2°§(1-a1)2

17 16 8
=gu-gutg2

8 4
7oy
which is a contradiction.
Therefore there are at least two layers in which at least one square has
been packed.
It is easy to see that

ZA(S,.) > (2—2a; —@n,) - Cn,.

n=2

12



By Lemma 3 we know that

i 1
> ASn) > 7(2 - 201 - 3a, )2

n=n;+1

Thus,

T
1
Y A(Sn) >} +(2- 201 —@n,) - an, + 72— 201 - 3an,)?

n=1

5
=1+ 203 + Za‘rzn —2a; —an, +a18y,.
Using standard methods of calculus, one can verify that the total area is

greater than 3 provided that 0 < a,, < a; < 2 which is a contradiction.
g P 1 3
O

3.2 The square S has a side parallel to some leg of T

We may assume that the leg length of T is 1. By a similar discussion as
that of Lemma 3 we can get the following lemma.

Lemma 4. Let T(b) be an isosceles right triangle with leg length b and let
S be a square with a side parallel to some leg of T'(b). Moreover, let {S,}
be a sequence of homothetic copies of S such that a) > a2 > ..., where a,
denotes the side length of Sp,, forn=1,2,.... If

Y A(Sa) <o} + —;—(b— 2a;)?

and if a1 < %, then the squares can be parallel packed into T'(b).

Theorem 4. Any (finite or infinite) sequence of squares can be parallel
packed into T provided the total area of the squares does not exceed %.

Proof. Let {S,} be a sequence of squares, let 3~ A(S,) < s = %, and let S
be a square with a side parallel to some leg of T' (where the leg length of
Tis1).

Denote by a, the side length of S, for n = 1,2,.... Without loss of
generality we assume that a; > a2 > ... and that each S, is a homothetic
copy of S.

Obviously, a? < s, i.e., a1 < %2

Assume that it is impossible to pack Sy, S,,... into T by the method
described in the proof of Lemma 3. Let S, be the square which stops the
packing process.



Denote by k the number of created layers in which at least one square is
packed. Moreover, denote by o, Sp; the first square lying in the (5 +1)-th
layer for j € {1,...,k — 1} and let z = n,.

If S, cannot be packed into T, then @, > }, and thus a} > > 2.
Otherwise, we place S; in this layer. If S; and S; cannot be packed into
T, then a; + 2a; > 1, that is, a; > %(1 — ay) (see Figure 7). Hence,

"IN

Figure 7: S; and S; cannot be packed into T

al+ai> af+i—(1 —a;)? = %a? - %al + %
Since 3a; > 1, we get that af +af > 3a? - Ja;+ >3- 3+3 -3+
which is a contradiction.
If S; and S; can be packed into T, then &k > 3.
Otherwise, when k = 1, we have a; + 2an, > 1, i.e,, @n, > 3(1 —a1).
Consequently,

-
il
oI

1
a? + af + a3 > a} + 242, 2a§+§(1—a.1)2

which is a contradiction.
When k = 2, we get a; +an, +2a,, > 1, and thus a,, > %(1 —aj;—ag,).
It is easy to see that

n
> A(Sn) >l +(1-a;—ap,) - an,.

n=1



Hence,

2
> A(Sn) > al+ (1 - a1 - an,) - an, +a,
n=1

1
>a?+(1—0a1—an,) " Gn, +Z(1—a1 —ap,)?

_1,5, 8, 1 .1 1
=77 1% T % T g T 5% T 500n

Using standard methods of calculus, one can verify that the total area is
greater than § > 2, which is a contradiction.

Therefore there are at least three layers in which at least one square
has been packed.

It is easy to see that

> A(Sn) > (1-a1 —an,) - an,

n=2
and that
n2
Z A(Sp) > (1 —a1 —an, —Gny) * Gn,.

n=n3+1

By Lemma 4 we know that
ne 1
> A(Sn) > 5(1—a1—an, - 2an,)%.
n=nz+1

Thus,

2y
ZA(S,,) > a2+ (1-a) —@an,)-an,

n=1

1
+(1 = @1 = @p, — py) Gy + = (1 — a1 — an, — 2a,,)2

2
1 3, 1, 9
= 3 + -2-.:11 - -2—anl +a,, — Q1 — Qn; +Q18p, + Gn, Qn,.
Using standard methods of calculus, one can verify that the total area is
greater than § > 2, which is a contradiction. O

Remark 2. We may assume that the hypotenuse length of T is 2. When
the sides of the squares are parallel to the hypotenuse of T', observe that
no square of side length greater than % can be parallel packed into T

Therefore, by Theorem 3 we have p(T,S) - A(T) = §. Since A(T) =1, we



get p(T,S) = é. Similarly, we may assume that the leg length of T is 1.
When the sides of the squares are parallel to the leg of T', observe that two
squares of side lengths greater than -;; cannot be parallel packed into T'. As
a consequence, by theorem 4 we have p(T, S) - A(T') = %. Since A(T) = 3,
we get p(T, S) = §.

Corollary 2. If a side of a square S is parallel to a side of T, then
p(T.S)=4%.
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