ON THE UNSPLITTABLE MINIMAL ZERO-SUM
SEQUENCES OVER FINITE CYCLIC GROUPS OF PRIME
ORDER
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ABSTRACT. Let p > 165 be a prime and let G be a cyclic group of
order p. Let S be a minimal zero-sum sequence with elements over
G, i.e., the sum of elements in S is zero, but no proper nontrivial
subsequence of S has sum zero. We call S unsplittable, if there do
not exist g in S and z,y € G such that g = z +y and Sg~lzy is
also a minimal zero-sum sequence. In this paper we determine the
structure of § which is an unsplittable minimal zero-sum sequence

of length L'.;l- or &;—3 Furthermore, if S is a minimal zero-sum

sequence with |S| > 1'2'—3, then ind(S) < 2.

1. INTRODUCTION AND MAIN RESULTS

Our notation and terminology are consistent with [6] and [11]. Let Np =
N U {0} and for real numbers a,b let [a,b) = {z € Z|a < z < b}.
Let G be an additive finite abelian group. Every sequence S over G can
be written in the form
S=¢g1+...-ge= ngag"a(s)’
where v4(S) € Ny denote the multiplicity of g in S. We call
supp(S) = {g € G | v4(S) > 0} the support of S;
h(S) = max{vy(S) | g € G} the mazimum of the multiplicities of g
in S;
|S] =€ =3 cc ve(S) € No the length of S;
o(S) = Yie1 9i = T gec Va(S)g € G the sum of S.
A sequence T is called a subsequence of S and denoted by T | S if vy(T) <
Vg(S) for all g € G. Whenever T | 8, let ST™! denote the subsequence
with T deleted from S. If S;, S are two disjoint subsequences of S, let
515,

denote the subsequence of S satisfying that vy (51 S2) = vg(S1) + v¢(S2) for
all g € G. Let
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E(S) = {o(T) | T is a subsequence of S with 1 < [T] < |S5]}.
The sequence S is called zero-sum if o(S) = 0 € G and zero-sum free if
0 X(S). If o(S) =0and o(T) #0 for every T | S with 1 < [T} < |S|,
then S is called minimal zero-sum.

Let G be a finite abelian group. The Davenport constant D(G) is the
smallest integer £ € N such that every sequence S over G of length |S} > £
has a zero-sum subsequence. The studies of the Davenport constant —
together with the famous Erdds-Ginzburg-Ziv Theorem — is considered as
a starting point in zero-sum theory, and it has initiated a huge variety of
further research (more information can be found in the surveys [2, 6, 11],
for recent progress see (8, 12, 14, 28]).

The associated inverse problem of Davenport constant studies the struc-
ture of sequences of length strictly smaller than D(G) which do not have
a zero-sum subsequence. The index of a sequence is a crucial invariant in
the investigation of (minimal) zero-sum sequences (resp. of zero-sum free
sequences) over cyclic groups. Recall that the index of a sequence S over
G is defined as follows.

Definition 1.1. (11, Definition 5.1.1]

1. Let g € G be a non-zero element with ord(g) < co. For a sequence
S =(z19)...-(z1g) over G, where l e Ng and 1 < z1,...,71 <
ord(g), we define ||S[l; = ZLEAE to be the g-norm of S.

2. Let S be a sequence for which (supp(S)) C G is a nontrivial finite
cyclic group. Then we call ind(S) = min{||S||y | g € G with {supp(S)) =
(g)} the index of S.

3. Let G be a finite cyclic group. |(G) denotes the smallest integer
I € N such that every minimal zero-sum sequence S of length |S| > !
has ind(S) = 1.

Clearly, S has sum zero if and only if ind(S) is an integer. There are also
slightly different definitions of the index in the literature, but they are all
equivalent (see Lemma 5.1.2 in [11]).

The index of a sequence was named by Chapman, Freeze and Smith ([3}).
It was first addressed by Kleitman-Lemke (in the Conjecture [15, page 344]),
used as a key tool by Geroldinger ({10, page 736]), and then investigated
by Gao ([5]) in a systematical way. Since then it has received a great deal
of attention (see for examples {4, 7, 9, 16, 17, 18, 19, 21, 22, 23, 24, 25, 29}).

To investigate the index of long minimal zero-sum sequences, Gao ([5])
introduced the invariant I(G) for a cyclic group of G. The precise value of
I(G) has been determined independently by Savchev and Chen ({20]), and
by Yuan ([27]) in 2007.

Theorem 1.2. [27] Let G be a finite cyclic group of order n. Then|(G) =1
ifne{1,2,3,4,5,7}, I(G) =5 ifn=6, and |(G) = |§] + 2 if n > 8.
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Let S be a minimal zero-sum (resp. zero-sum free) sequence of elements
over an abelian group G. We say that S is splittable if there exists an
element g € supp(S) and two elements r,y € Gsuch that z +y = g
and Sg~lzy is a minimal zero-sum (resp. zero-sum free) sequence as well;
otherwise we say that S is unsplittable.

Let S be a minimal zero-sum sequence of length I(G) — 1 over a finite
cyclic group G. If S is splittable, it is easy to check that ind(S) = 1. If
S is unsplittable, Gao ([5]) conjectured that ind(S) = 2. In 2010, Xia and
Yuan ([26]) showed that Gao’s conjecture is true when n is odd, and false
when n is even.

Theorem 1.3. [26, Theorem 3.1} Let G be a finite cyclic group of order n.
Let S be an unsplittable minimal zero-sum sequence of length |S| = (G) —1
over G. We have:
(1) Ifn > 9is odd, then there ezists g € G such that S = 9"1‘—2(%;39)2(11%1_9);
if n =9, then there exists g € G such that S = g% - (69)% - (4g) or
S =g-(39)%-(49) - (79). Moreover ind(S) = 2.
(2) Ifn is even, then there exists g € G such that either S = (2g) % ~!(z19)((n-
2—1z)g), where 2t 21,1 < 1 < n, z #Fn+2—-xz10r S =
g (39)((1 + 2)g)%, where t, | are positive integers with t + 20 = 3.
Moreover ind(S) > 2.

In this paper, we characterize the unsplittable minimal zero-sum se-
quences of length |S| = I(G) — 2 and I(G) — 3 over a cyclic group G of prime
order.

Theorem 1.4. Let p > 165 be a prime and let G be a cyclic group of order
p. Let S be an unsplittable minimal zero-sum sequence over G. We have:
(1) If|S| = B3, then there ezists g € G such that S = g*7- (B52g)4(251 )
_7 _
or 5 = g7 (2520)%(252). i
(2) IfIS| = p_g_lj, then there exists g € G such that S = gkﬁ_(%‘gg)e(f’;—lg)
—~9 _
or § = ¢"7 (Bflg)%(252y).
Moreover ind(S) = 2.

Theorem 1.5. Let p > 165 be a prime and let G be a cyclic group of order
p. Let T be a minimal zero-sum sequence of length |T| > I(G) — 3 = 252
over G. We have ind(T') < 2.

We remark that it would be not hard and very interesting to prove the

main theorems for all primes p € [19, 165).

The paper is organized as follows. In the next section, we provide some
preliminary results. In Section 3, we prove Theorem 1.4. In the last section,
we will prove Theorem 1.5 and give some further remarks.
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2. PRELIMINARIES

To prove the main results we need some preliminaries, beginning with
the following lemma which will be be used frequently in the sequel.

Lemma 2.1. [13, Theorem 5.3.1] Let G be an abelian group. Let S be a
zero-sum free sequence over G. Suppose S = S515;---8S;, then |2(S)| 2
a1 12(51)-

Lemma 2.2. [1} Let p be a prime and let G be a cyclic group of order p.
Suppose A C G and AN (—A) =0. Then |Z(A)| > min{p, Lﬁ%’*’—ll}.

Lemma 2.8. Let p be a prime and let G be a cyclic group of order p. Let
A be a zero-sum free subset of G, then |Z(A)| > min{p, ML(L;‘;L"'—Q}.

Proof. Since A is a zero-sum free subset, we have AN(—A) = §. Hence the
result follows from Lemma 2.2. O

Lemma 2.4. (26, Lemma 2.14] Let p be a prime and let G be a cyclic
group of order p. Suppose S is a minimal zero-sum sequence of elements
over G. Then S is unsplittable if and only if |S(Sg~1)| = p — 1 for every
g € supp(S).

Lemma 2.5. (26, Lemma 2.15) Let p be a prime and let G be a cyclic
group of order p. Let S be a minimal zero-sum sequence consisting of two
distinct elements over G. Then S is splittable.

For convenience, from Lemma 2.6 till Lemma 2.11 we always assume that
p is a prime and G is a cyclic group of order p. Let S be an unsplittable
minimal zero-sum sequence of elements over G.

Lemma 2.6. (26, Lemma 2.5] Suppose g,tg € supp(S) with t € [2,p — 1].
Then t > vg(S) + 2. Moreover t # BEL,

Lemma 2.7. (26, Lemma 2.6] Suppose g, h € supp(S) with g # h. Then
(1) Ifk € [0,v4(S)], then |Z(g*h)| = 2k + 1.
(2) If vg(S) = 2 and vi(S) > 2, then |S(g2h?)| = 8.

Lemma 2.8, Let T = g*(xg)? be a subsequence of S, where k > 3. Then
|2(T)| > 2|T|. Moreover apart from the case T = g*(Bf3g)?, |&(T)| >
2| + 1.
Proof. Since S is unsplittable, by Lemma 2.6, we have z > k + 2 and
T # %’—1
Firstly, we assume that 2z < p. Since S is minimal zero-sum, we obtain
that 2z + k < p. Then g,29,...,kg,29,(z + 1)g,...,(z + k)g, 2xg, 2 +
1)g,...,(2z+k)g are pairwise distinct and hence |X(T')| > 3k+2 > 2|T|+1.
Next assume that 2z > p. Then z > %3 Since S is a minimal zero-sum
sequence, we have z + k < p, and hence z > 2z —p+ k.
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If 2x — p > k, then g,2¢,...,k9,(2z - p)g,(2z —p+ 1)g,...,(2z —p+
k)g,zg,(x + 1)g,...,(z + k)g are pairwise distinct and hence |Z(T)| =
3k+222|T)+1.

If 22 — p < k, then g,2g,...,kg,(k + 1)g,...,(2z — p + k)g,z9, (z +
1)g,...,(z+k)g are pairwise distinct. Hence |X(T')| > (2z—p+k)+(k+1) >
2|T|, and the equality holds if and only if z = ?%'3 0

Lemma 2.9. [26, Lemma 2.11] Let T = gfgogs be a subsequence of S,
where k > 2. Then |Z(T)| = 2|T|, moreover apart from the case T =
o5 (232 a1) (B2 q1), IZ(T)| 2 2|T| + 1.

Lemma 2.10. Let T be a subsequence of S. If {supp(T)| = 2, then there
exists g € supp(T) such that |S(g~'T)| > 2|g~'T| - 1.

Proof. Since |supp(T)| > 2, T has a factorization
T=U ... .UV -...-V. W,

where Uy, Us, ..., U, are 3-subsets of G, V1, V3,...,V, are of form h2hZ
with hy,hy € supp(T) and W = hTh} with y < 1. By Lemma 2.3 we
have |Z(U;)] = 6 = 2|U;| for i = 1,2,...,t. By Lemma 2.7.2 we have
|Z(V;)| =8=2|Vj| for j =1,2,...,T.

If y = 1, then by Lemma 2.7.1 we have |E(h]'W)| > 2|h7'W| —1. Take
g = h;. Now by Lemma 2.1, we infer that

IZ(Te N 2 YIS + D IE(V5)] + |2(g7 W)
i=1 j=1

t r
>22) |Ul+2) Vil +2Wg!|-1=2[Tg~"| -1,
i=1 Jj=1
and we are done.

If y = 0, we have that either ¢ > lorr > 1. If ¢t > 1, in view of
Lemmas 2.3 and 2.9, there exists g € supp(T’) such that |[S(WUg™1)| >
2|WU,g~!| — 1. Therefore, by Lemma 2.1, we infer that |Z(Tg~!)| >
2|Tg~1| — 1, and we are done. If r > 1, then by Lemma 2.7.1, we have
|S(WV,.hz1)| > 2|[WV,h5!| — 1. Take g = hy. By Lemma 2.1, we infer
that |2(Tg~1)| > 2|Tg~!| — 1, and we are done.

This completes the proof. a
Lemma 2.11. Suppose S = g"S)(t1g) - ... - (tkg), where k > 3 and 2 <
t1 <tg<--- <ty <p-1. Ifh(S) > & — 1, we have

(1) either h(S) +2 <ty < B < B <t < <t <p-h(§) -1

or E';—a <ty <. <t < p—h(S) —1; moreover, if vy, o(S) = 2 for
some i € (1, k), then t; > B£3;
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(2) for every subset I C [1,k] with |I| = 1 (mod 2), if |I| > 3 then
L < Sieyti < WIHUR —(s).

2
Moreover ind(S) < 2.

Proof. Since S is unsplittable, by Lemma 2.6, we have that ¢, > --- > t; >
h(S)+2 > §+ 1. Since S is minimal zero-sum and £, < p—1, we infer that
tx +h(S) < p. Therefore,
2
tk_<_p—h(S)—l<—33
and thus h(S) < 252
We assert that

ti +t; > p for every 4,5 € [1, k].

Assume to the contrary that ¢; +¢; < p for some 1,5 € [1,k]. Since S is
a minimal zero-sum sequence, we infer that ¢; + t; + h(S) < p, which is
impossible.

By the assertion we infer that either t; < £ < ¢3 or t; > £. By Lem-
ma 2.6, we obtain that ¢; # %1 fori=1,2,...,k. Hence

eithertlst‘l;—l<l’*2’—35tzortl_>_2‘§_3.’

and thus (1) holds.

The proof of (2) will be given by using mathematical induction on |7|.
Suppose I C [1,k] with |I| = 3. Since t; +t; > p for every i,j € [1,k]
and ";‘—3 tg L --- <t < %{3, we have that 523 < Zie!ti < 2p. Since
S is a minimal zero-sum sequence, we infer that > . ;¢ + h(S) < 2p.
Therefore, 322 < Yierti < 2p — h(S). Suppose that (2) holds for every
subset I C [1,k] with [I| = 2£ 4+ 1, where £ > 1. If I C [1,k] with
[I| = 2(£+ 1) + 1, then we may choose I; C I with |I;| = 2¢+ 1. By
the hypothesis we have L%IB < Yienti < M;—lle — h(S). This together
with t; < tp € -+ <t < 2, t; +t; > p for every 4,5 € [1,k] and
g—l < h(S) < ?%3- give that lﬂ,} < Ziel t; < Qﬂ-'—;-l-)ﬂ. Since S is minimal
zero-sum, we infer that '% <Yerti < M%‘E — h(S) and we are done.

Note that t; < p— h(S) — 1 for every i € [1,k]. If £ =0 (mod 2), then
Y ati= ittt S B —h(S)+ (p—h(S) —1) = EL2E _2p(5) - 1.
If k=1 (mod 2), then 35, ¢; < E302 _ p(S) < L2 _ 2h(S) — 1. Let
h € G\ {0} such that g = 2h. Then S = (2R)"S)((2t1)h) - ((2t2 —p)R)-...-
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((2tx — p)h) or (2R)MS)((2t; — p)h) - ((2t2 — p)R) - ... - ((2tx — p)h). Hence
2h(S) +2 3¢ ti — (k= 1)p

ISlla <
P

< 2h(8) +2({&B2 — 2h(8) — 1) - (k— 1)p
- p

_3p— 2h(S) —2 <3

p
Therefore, ind(S) < 2.
This completes the proof. 0

3. PROOF OF THEOREM 1.4

Throughout this section, we always assume that p > 165 is a prime and
G is a cyclic group of order p and S is an unsplittable minimal zero-sum
sequence of length l;—l or &;—3 over G.

Lemma 3.1. 3 < |supp(S)] £ 5.

Proof. Since S is unsplittable, by Lemma 2.5 we have that | supp(S)| > 3.
It remains to show that |supp(S)| < 5.

Assume to the contrary that | supp(S)| > 6. Suppose S = g*gz2-...- g,
wherer; > rg > - > 7 > 1 and k > 6. Now S has a factorization

S=TU,
where T = g192-... gs and [U| > B2 —6 = P;2§ By Lemma 2.3 we have

[Z(T)] > 21.

If |supp(U)| = 2, by Lemma 2.10, there exists a € [1,k] such that
(Z(UgY)| = 2|Ug;‘1| — 1. By Lemma 2.1, we infer that |X(Sg;!)| >
|Z(D)|+ |E(UgsY)| > 21 +2|UgT Y| -1 > 21+2(Pr£ 1)—1>p, yielding
a contradiction to Lemma 2.4.

Next assume that | supp(U)| = 1. Thenk = 6 and U = g]*~'. Therefore,

S=g"(tg) ... (ts9)
withg=gand 2<¢; <.---<ts <p—1 Thenh(S)=r =|5|-52>
Ll > £—1. By Lemma 2.11.1 we may assume that &"—3 Sty <tz <ty <
ts <p h(S) 1. Then t3+t4+t5 > (&ﬂ+1)+(9+—3+2)+( B3 3) = 3pd2
But by Lemma 2.11.2 we infer that

ts+ty+ts < E-';—l)f h(S) < p;m
yielding a contradiction.
Therefore, |supp(S)| < 6. This completes the proof. a
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Lemma 3.2. Suppose S = gM5)(t,g)" (t29)™ (t39)™(tag)™, where r; >
ro 213 214 2 0and 2 < ti1,to,t3,t4 < p—1. Then ry < 17 and
T3 +14 < 2.

Proof. We first show that r; < 17. Assume to the contrary that r; > 18.
Then h(S) > r; > 18. By Lemma 2.8, we have that either |Z(g%(t19)?)| >
11 or |Z(g?%(t19)%)] = 11. Now S has a factorization

§S=T,-....Ts-U,
where T} = -+ = Tg = g%(t19)? or g*(t1g)® such that |Z(T})| > 11 for
i=12,..,6and |Ul > |S| -, |T > 252 -6x5= 252 Since
| supp(S)| = 3, we have that 7, > 1 and thus |supp(U)| > 2. By Lemma
2.10, there exists h € supp(U) such that [E(UR™1)| > 2|UR~|—1 > p—66.
By Lemma 2.1, we infer that |Z(Sh~1)| > Zf=l |Z(T3)| + |Z(UARTY)| >
6 x 11 4+ p — 66 = p, yielding a contradiction to Lemma 2.4. Therefore,
™ S 17.
Claim: r3 < 2.
Assume to the contrary that r3 > 3. Then S has a factorization
S=T-T,-T;.U,
where T} = T3 = T3 = g(t19)(t29)(t3g). By Lemma 2.3 we have |Z(T})| >
10 for i =1,2,3.

If |supp(U)| > 2, by Lemma 2.10, there exists h € supp(U) such
that [Z(UR™Y)| > 2|UR"!| -1 > p—30. By Lemma 2.1, we infer that
IZ(Sh=1)| > T3, IS(T)| + [E(UR™Y)| > 3 x 10 + p — 30 = p, yielding a
contradiction to Lemma 2.4.

If | supp(U)| = 1, then 4 = 0 and U = g"($)~3, Hence

S =g"(t19)% - (t29)° - (tag)*.
Then h(S) = |S] -9 > 2512 > . By Lemma 2.11.1 we have that 252 <
t1,t2,t3 < p—h(S)—1. Then 3t1+3t2+t3 > 3(EE2)+3(22 +1)+ (B2 +2) =
M Applying Lemma 2.11.2 to (t;9)3 - (tgg)3 (tag), we have that

Tp+19
2 ’

3ty + 3t +t3 < '(—+Tl)2—h(5')$

yielding a contradiction. This proves the claim.

In order to prove r3 + 4 < 2, we only need to show that if r3 = 2 then
r4 = 0. Next assume that r3 = 2 and 4 > 1. By Lemma 2.9, there exist
a,b € {1,2,3} such that |Z(g%(t.9)(ts9))| = 9. Now S has a factorization

S=T-T,-U,

where T} = g(t19)(t29)(tag)(tag), T2 = g*(tag)(tsg)- Then |U] > |S| -
2221 and |supp(U)| > 2. By Lemma 2.10, there exists h € supp(U) such
that [S(Uh™1)| > 2JUR™Y| -1 > p — 24. It follows from Lemmas 2.1 and
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2.3 that [Z(Sh™1)| > [Z(Th)] + |2(T2)| + |Z(UR™Y)| 2 154+ 9+p—24 = p,
yielding a contradiction to Lemma 2.4.
Therefore, r3 + r4 < 2. This completes the proof. O

Lemma 3.3. Suppose S = g"5)(t19)7 (t29)™ (t39)™* (tsg)™, where ry >
T 213 >Ty4 >0 and 2 <ty,t0,t3,t4 <p—1. Thenra=1.

Proof. By Lemma 3.3, we have 3 < |supp(S)] < 5 and thus v > 1. Assume
to the contrary that ro > 2. Then ry > 72 > 2.

We first show that ro < 8. Suppose that 7; > r, > 9. By Lemma 3.2 we
have that r3 + r4 < 2 and r, < 1y < 17. Therefore, h(S) = |S| —r1 — 72 —
(r3 +74) 2> p— -17-17-2= tzl'_ > 18. By Lemma 2.8 we have either
|Z(g%(t19)?)] > 11 or |Z(g%(t19)3)| = 11 and either |Z(g%(t29)%)| = 11 or
|Z(g%(t29)%)| 2 11. Let

S=Ty-...-Ts-U,

where Ty = Tp = T3 = g%(t19)? or 9%(t19)® such that |[Z(T;)| > 11 for
i=1,2,3and Ty = Ts = Tg = g°(t2g)? or g2(ta9)® such that |Z(T})| > 11
for i = 4,5,6. Then |V| > |S] — 30 > 252 Note that |supp(V)| > 2. By
Lemma 2.10, there exists h € supp(V) such that [E(VA~1)| > 2|[VA~!| -
1 > p—66. By Lemma 2.1, we infer that |[Z(Sh~1)| > 30 |Z(T3)| +
[E(VR~')| > 66 + p — 66 = p, yielding a contradiction to Lemma 2.4.
Therefore, 7o < 8.

Now h(S) = |S|—r —rp = (rs+74) 2 B2 —17-8-2 =2} >
max{% —1,30}. By Lemma 2.11.1, we have th
P+3
>E2 -
ti,t2 2 3

By Lemma 2.9, we have |Z(g%(¢19)(t29))| = 9. Now S has a factorization
S=T-....T; ' Uy-.... Uy - V,

where T} = -+ =T, = g*(t1ig)(teg) and 2 < z =1, < 8, Uy = +-- =

U, = g3(t19)? or g%(t19)® such that |S(U;)| > 11 for j = 1,2,...,y. Then

V] > S| — 4z — 5y > 252 — 4z — 5y.

Claim: z +y < 6.

Suppose that £ + y > 7. Since |supp(T;V)| > 2, by Lemma 2.10,
there exists h € supp(T:V) such that |E(T.Vh~1)| > 2|T; Vh"‘l -1>
p— 8x 10y +2. By Lemma 2.1, we infer that |[E(Sh~1)| > 377 |S(Ty)| +

YL IZUN +E(TVRT) 29z - 1) +1ly+p -8z~ 10y +2 > p,
yleldmg a contradiction to Lemma 2.4. This proves the claim.

By the claim we infer that r; < 6. On the other hand, y < 6—z =6—r,.
By the choice of Uy,...,U,, we infer that r; —r, — 3y < 2. It follows that

™ < 20 — 27r,.
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We will distinguish four cases according to the value of 7.

Case 1. 5 <ry <6.

Note that r; <20 — 273 < 10. Then h(S) = [S|—r1 —r2o—7r3 — 74 >
23_10-6-2= 2=3% Ifry > 6, applying Lemma 2.11.2 to (£19)°- (t29)°,
we have that

6t; + 5t < &1_1_—%—& _h(S) < .l_l.p_;-_ig.

This yields a contradiction to that 6¢; + 5t > 6(%3) + 5(";—3 +1) =
E%"-ﬂ. So ry = ro = 5. Then h(S) > L-2_21 Applying Lemma 2.11.2
to (t19)° - (t29)%, we have that 5¢) + 4t < @ﬂl’l h(S) < 21’—"—'5. But
5t + 4ty > 5(2-;—3) +4(22 +1) = M, yleldmg a contradlctlon

Case 2. 72 =4.

Note that r; < 20 — 2rp = 12. Then h(S) = |S|—r1 —ro —713 — T4 >
223 _12-4-2= %39. Similar to the proof of Case 1 we can show that
ry > 7 is impossible. So r; < 6. Then h(S) > &221 Since t1,t3 > ”—';—3,
we have either 3t; + 4t; > I&;ﬁ or 4t; + 3t > -7-142'—23. In the former
case applying Lemma 2.11.2 to (£;9)% - (t29)* we will get a contradiction;
in the later case applying Lemma 2.11.2 to (t19)* - (t29)% we will get a
contradiction, too.

Case 3. r =3.

Since 7y < 20 — 2rp, we have r; < 14. Similar to the proof of Case 1,
ifl0<r <l4or6 <7 <9o0r4<r <5, we will always have some
contradlctlons Sory =7, =3 and then h(S) = |S|—r1 —ro —1r3 —1rg >

-3-3-2= ng— Without loss of generality we assume that £; > ;.
Then 3t + 2ty > 3(L—) + 2(2-—) = P—"'l Applying Lemma 2.11.2 to
(t19)% - (t29)? we will get a contradiction.

Case 4. T = 2.

Since 7} < 20 — 27;, we have r; < 16. Similar to the proof of Case 1,
we will always have some contradictions if 13 < r; <16 0or9<r; < 12 or
7<r;<8o0r5<7r <6. So

T1 S 4.

Ifr, 23, then h(S)=|S|~r1—ro—r3—1r4 > %3 —4-2-2= 1’——212.
Now applying Lemma 2.11.2 to (t39) - (t29)2, we have that 3t; + 2t <
G _ (5) < B2H19 Since 3ty + 25 > 3(BEY) + 2(2F2 1) = 19
we have 3t + 2ts = Jng. Since S is minimal zero-sum, we infer tha.t
§ =g (t19)® - (tgg)z. Then |S| = &'ﬁ +3+2=22 andthisisa
contradiction to that |S| > 252.

Finally, we consider the case 7y = 2. Then h(S) > L’;—S. Without
loss of generality we assume that t; > t3 > %3 Applying Lemma 2.11.2
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to (t1g)? - (t2g), we obtain that 2t; + ¢, < E3U _ h(S) < 22f1% This
forces that ¢; = 2—;—5 and to = E—;'—a Since S is minimal zero-sum, we
have h(S) = 9;21_5_ and therefore 73 = r4 = 1. By Lemma 2.11.1, we
may assume that f3 > ?—;'—3 In view of t; = t"—;ﬁ and ¢ = %3, we have
t3 > L‘;Z Applying Lemma 2.11.2 to (£19)2-(t3g), we obtain that 2¢t; +¢3 <
15—*'2123 —-h(5) < §P—;£ This is a contradiction to that 2t; +t3 > 9‘”—*2'31
All in all, we have shown that 75 > 2 is impossible. This completes the
proof. O

Lemma 3.4. Suppose S = g"S)(t19)™ (t29)™2(tag)™(tag)™, where vy >
rg>r3>14>0and 2 <ty,ta,t3,t4<p—1. Thenr; 2 2.

Proof. Assume to the contrary that 7y = 1. Thenrp, =1 and r3 + 714 < 2.
Since S is an unsplittable, by Lemma 2.6, we have that ¢; > h(S) + 2 for
i=1,2,3,4. Since S is minimal zero-sum, we have that ¢t; <p—h(S) -1
fori=1,2,3,4 and

h(S) +t1+ta+rata+rats =0 (mod p).

An easy calculation shows that both r3 = 74 = 1 and r3 = r4 = 0 are
impossible. Hence we may assume that r3 =1 and r4 =0.
Since h(S) = 133 -3 = %9 > £ —1, by Lemma 2.11.1, we may assume

that 253 <ty <t3 <p—h(S)-1= 2.

Firstly we consider that case that |S| = ?;;—3- Ifty = %3 and t3 =
2—?, then t; = &}1, yielding a contradiction to Lemma 2.6. If t2 = "*2‘—3
and t3 = 27, then t; = B5! and thus S = ¢®7° (5tg)(2E3g)(2ELg).
It is easy to check that D(S(&Lg)™) = G\ {2539, 239, (p — 2)9,(p —
1)g, 0}, yielding a contradiction to Lemma 2.4. If ¢, = %5 and t3 = 2-;1,
then t; = P—;g and thus S = g%(l?g)(%sg)(%.'g). It is easy to check
that E(S(#g)‘l) =G\ {%g, (p — 1)g,0}, yielding a contradiction to

Lemma 2.4.
Similar to the case |S| = 2—'2'—3, we can always get contradictions if |S| =

p=1
-
This completes the proof. m|
Lemma 3.5. If S is of one of the following forms:
9" (B520)"(B5tg) or o°T (BF)*(B5%) or g"7 (2f29)°(250g) o
9"7 (BL9)*(%3%),
then S is unsplittable and ind(S) = 2.

Proof. Suppose S = g'ﬁu (P’;—"’g)“(&:‘;—1 g)- Using Lemma 2.4, we can easily
show that S is unsplittable. For every h € G\ {0}, there exists m € [1,p—1]
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such that g = mh. It is easy to check that [|S]|» > 2 for every h € G\ {0}.
If g = 2h, then ||S||n = 2. Hence ind(S5) = 2.
Similarly, if § = g7 (B§29)2(25%g) or § = ™7 (252g)%(23Lg) or
S = g7 (B2g)%(252g), S is unsplittable and ind(S) = 2. O
Now we are in a position to prove Theorem 1.4.

Proof of Theorem 1.4: Suppose S is an unsplittable minimal zero-sum
sequence of length 2-2'_1 or L;g By Lemma 3.5, it remains to show that S
is of one of the forms mentioned in this theorem. By Lemma 3.3, we have
3 < [supp(S)| < 5. Suppose

S = g")(t19)™ (t29)™ (t39)™ (tag)™,
where ry 219 > 713 274 2 0and 2 <iy,ts,13,t4 < p—1. By Lemmas 3.2,
3.3 and 3.4 we have 2 < r; <17, 73 =1 and r3 + r4 < 2. It follows that
h(S)=I|S|—r—ro—r3—1g 282 -17-1-2=28 5 2_1 By
Lemma 2.11.1 we have that ¢; > l"zﬁ

Claim 1: n, <12

If r, > 15, then applying Lemma 2.11.2 to (¢;9)°, we have that 15¢; <
315—;—12 —h(S) < 1—5%“'&, which yields a contradiction to that 15¢; > 1—5;";45.
Hence 7y < 14 and thus h(S) > |S|—ry—re—rs—ry 2 B2 —14-1-2=
1—’:23—7. Similarly if r; > 13, we can also obtain a contradiction. This proves
Claim 1.

Claim 2: r4 = 0.

Assume to the contrary that r4 > 1. Since 7, = 1 and r3 + r4 < 2, we
infer that r3 = r4 = 1. Since h(S) > |S|—-r1—ro—r3—74 > %3-—12—1—2 =
L‘%—’- > £ —1, by Lemma 2.11.1 we may assume that t3,t3 > &;3 If
Ty > 9, then Oty + tp + t3 > 9(BE2) + (B2 4+ 1) + (&2 +2) = Lt3
Applying Lemma 2.11.2 to (£19)° - (t29) - (tag), we have that 9¢; +t; +t3 <
&"2—1-12 —h(S) < 1112"-'3—3, yielding a contradiction. So r; < 8. Similarly
if5 <r, <£8o0r3 <7 <4orr = 2, we can always obtain some
contradictions. This proves Claim 2.

Claim 3: r3 = 0.

Assume to the contrary that r3 = 1. By Lemma 2.11.1 we may assume
that {5 > %3 Similar to the proof of Claim 2, if 10 < r; < 12 or
8<r <9%9o0r6<7r <7o0rd4d <r <5, we will always obtain some
contradictions. So we have that r; < 3. Then h(S) = |S|-r1 -0 —713 >
23 —3-1-1=2313 Applying Lemma 2.11.2 to (t,9)? - (t2g), we have
that 2¢; +t, < ZE02 _ h(S) < 32£13 Note that 2t; +to > 2(2f2) +
(%3 +1) = §%ll So 2t) +t; = QL}'—% or 2t) +tp = Q”;Lu In the former
case, gL-!E - (t19)? - (t29) is a proper zero-sum subsequence of S, yielding
a contradiction to that S is minimal zero-sum. So 2t; + t; = &;ﬁ and
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thus ¢; = 1"2','—3, ty = L‘;ﬁ, h(S) = L‘;—:’ Since S is minimal zero-sum, we
have t; = 272 and S = g%m(ﬂ’-'—g)(Lg):’(Lg) It is easy to check
that S(S(&> g) ) =G\ {tsg, (p — 1)g,0}, yielding a contradiction to
Lemma 2.4. Thls proves Claim 3.

Now h(S) = |S|—-r1—12 2 E;—a -12-1= E’,f—g. Similar to the proof
of Claim 1, if 11 < r, €120r9<r; £ 100r 7 < < 8, we will always
obtain some contradictions. So we have that

™ 56

Then we will distinguish five cases according to the value of 7.

Case 1. r; = 6. Note that h(S) =|S| —r1 — 72 > %3 -6-1= 1':21—7
Applying Lemma 2.11.2 to (£19)5, we have that 5¢; < §5_+21_m_h(3) < ép-;l
Note that 5¢; > 5(2E3) = 32315, So 5¢) = 32318, If |S| = B3, then
h(S) = "—-1—5 Hence gLr (tlg)5 is a proper zero-sum subsequence of S,
yielding a contradlctlon to that S is minimal zero-sum. If |S| = '3 == then
h(S) = L‘1—7 and t; = P—— Therefore,

Y

= " (22025 L)
and we are done.

Case 2. r; = 5. Then h(S) > 2512, Applying Lemma 2.11.2 to (t19)°,
we have that 5¢; < 15—+2123—h(5) < -5-&;—1§ Note that 5t; > 5(%3) = %ﬂ.
So 5t; = §?“’2'—15- Hence g'ﬁﬁ - (t19)° is a proper zero-sum subsequence of
S, yielding a contradiction to that S is minimal zero-sum.

Case 3. 1 = 4. Then h(S) > P—Tzig—‘ Applying Lemma 2.11.2 to (¢;9)3,

we have that 3t; < 53—"'112 h(S) < 313, Note that 3t; > 3(Eﬂ) 39

So 3t; = 282 If | S| = 252, then h(S) B2l and ¢, = 251, Therefore,
_ gt (B3 gy P-l

and we are done. If | S| = 252, then h(S) = 252 and ¢, = 21, yielding a

contradiction to Lemma 2.6.

Case 4. r; = 3. Then h(S) > 252, Note that h(S) +3t; +t2 > h(S) +
3(h(S)+2) +(h(S)+3) = 5h(S)+9 5(1S|—r1—rg) +9 > 5252 —11> 2p
and h(S)+3ty+t2 < h(S)+3(p— h(S) 1)+(p—h(S)-2) = 4p— 3h(S) 5=
4p — 3(|S| — r1 — r2) — 5 < 4p — 3251 + 7 < 3p. This is impossible since S
is zero-sum.

Case 5. r; = 2. Assume that |S| = E;—l, then h(S) = 1’;—7 So
B3 <t <p—h(§)-1= 1’;—5 Ift, = %“—%, then t; = "%l-, yielding a
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contradiction to Lemma 2.6. If t; = %”, then t; = L;j Therefore,
-7 p+5 -3
S= gz’"(p—2—g)2(p79),

and we are done. Next assume that |S| = 252, then h(S) = %9. So
&2":5’- <tz <p-h(S)-1= L}Z Ift; = ?“2*—3, then t5 = %3, yielding a con-
tradiction. If t; = %5, then t; = P—;—l and thus S = g"-rg(%sg)z(?;—lg).
But E(S(%sg)"l) =G\ {&;—3g, (p — 1)g,0}, yielding a contradiction to
Lemma 2.4. If t; = 27, then t; = 25°. Therefore,

s =g (EE19%(E3 ),

and we are done.
This completes the proof. ]

4, ProoF oF THEOREM 1.5 AND CONCLUDING REMARKS

Proof of Theorem 1.5: If |T| > 252, by Theorem 1.2, ind(T) = 1.

Next assume that |T| = ”';—1 If T is unsplittable, by Theorem 1.3.1, we
have ind(T') = 2. If T is splittable, there exists h € supp(T’) and z,y € G
such that h = z + y and 7Y = zyTh~! is a minimal zero-sum sequence of
length 242, Then by Theorem 1.2, ind(T") = 1. Clearly ||T|l, < |T"|lg for
every g € G\ {0}. Hence ind(T) < ind(T") = 1.

If|IT) = %’ or %3, similar to above we can show that ind(T) < 2. This
completes the proof. a

Definition 4.1.

1. Let n be an integer. I(n) denotes the maximal value of index of
minimal zero-sum sequences S over a cyclic group G of order n.

2. Let G be a finite cyclic group and k¥ > 1 be an integer. |(G)
denotes the smallest integer ! € N such that every minimal zero-sum
sequence S of length |S| > [ has ind(S) < k.

To determine I(n) was proposed by Gao ([5]), and he conjectured that
I(n) < clnn for some absolute constant ¢ ([5, Conjecture 4.2]). If n = 0
(mod 8), let G be a cyclic group of order n. Suppose

S=g%(39)(1+3)9)%.
Then ind(S) = § + 1. Hence the conjecture of Gao is not true for n = 0
(mod 8). In fact, the conjecture is also not true for every even n (see
Theorem 1.3.2).
Let G be a finite cyclic group of order n. Clearly, if £ > I(n), then
Ik(G) = 1. If k =1, then |;(G) = I(G). By Theorem 1.5, we infer that
2(G) £ %3, provided that n = p is prime. '
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Problem. Determine |(n) for all integers n and determine Ix(G) for all
the cyclic groups G.
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