Partition theoretic interpretations of the ${\rm A}_2$ Rogers-Ramanujan identities

M. Rana

School of Mathematics and Computer Applications
Thapar University
Patiala-147004, Punjab, India
E-mail: mrana@thapar.edu

Abstract

Using partition theoretic methods we combinatorially interpret the four A_2 Rogers-Ramanujan identities of Andrews, Schilling and Warnaar.

AMS Subject Classification 2010. 05A17, 05A19, 11P81.

Keywords. Combinatorial interpretations; Gaussian polynomial; Convolution properties.

1 Introduction

The Rogers-Ramanujan identities [14,15,16] are given by

$$\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q;q)_n} = \prod_{n=1}^{\infty} (1 - q^{5n-1})^{-1} (1 - q^{5n-4})^{-1}$$
 (1.1)

and

$$\sum_{n=0}^{\infty} \frac{q^{n^2+n}}{(q;q)_n} = \prod_{n=1}^{\infty} (1 - q^{5n-2})^{-1} (1 - q^{5n-3})^{-1}.$$
 (1.2)

They were first discovered by Rogers [14] in 1894 and were rediscovered by Ramanujan in 1913. Ramanujan [15] published a paper in 1919 which contains two proofs (one by Ramanujan and the other by Rogers) and a note by Hardy. After the publication of this paper the Identities (1.1) and (1.2) became known as the Rogers-Ramanujan identities. The fame of these identities lies not only in their beauty and fascinating history [4,12], but also in their relevance to the theory of partitions and many other branches of mathematics and physics. In particular, MacMahon [13] and Schur [16] independently noted the number theoretic interpretations of (1.1) and (1.2) as

Theorem 1.1 For all integers n, the number of partitions λ of n where

$$\lambda_i - \lambda_{i+1} \ge 2$$
 for $1 \le i \le \ell(\lambda) - 1$

equals the number of partitions of n into parts which are congruent to $\pm 1 \pmod{5}$.

Theorem 1.2 For all integers n, the number of partitions λ of n where

$$\lambda_i - \lambda_{i+1} \ge 2$$
 for $1 \le i \le \ell(\lambda) - 1$

and the smallest part at least 2 equals the number of partitions of n into parts which are congruent to $\pm 2 \pmod{5}$.

Gordon gave the following generalization of Theorems 1.1 and 1.2 [11]:

Theorem 1.3 (B. Gordon) For $k \geq 2$ and $1 \leq i \leq k$, let $B_{k,i}(n)$ denote the number of partitions of n of the form $\lambda_1 + \lambda_2 + \cdots + \lambda_s$, where $\lambda_j - \lambda_{j+k-1} \geq 2$, and at most i-1 of the λ_j equal l. Let $A_{k,i}(n)$ denote the number of partitions of n into parts $\not\equiv 0, \pm i \pmod{2k+1}$. Then

$$A_{k,i}(n) = B_{k,i}(n)$$
 for all n .

Obviously, Theorem 1.1 is the particular case k = i = 2 of Theorem 1.3 and Theorem 1.2 is the particular case k = i + 1 = 2 of Theorem 1.3. The analytic counterpart of Theorem 1.3 was found by Andrews [5]:

Theorem 1.4 (G.E. Andrews) For $1 \le i \le k, k \ge 2$,

$$\sum_{n_1, n_2, \dots, n_{k-1} \ge 0} \frac{q^{N_1^2 + N_2^2 + \dots + N_{k-1}^2 + N_i + N_{i+1} + \dots + N_{k-1}}}{(q; q)_{n_1} (q; q)_{n_2} \cdots (q; q)_{n_{k-1}}}$$

$$= \prod_{n=1}^{\infty} (1 - q^n)^{-1}, \tag{1.3}$$

where $N_j = n_j + n_{j+1} + \cdots + n_{k-1}$.

It can be easily seen that Identities (1.1) and (1.2) are the particular cases, k = i = 2 and k = i + 1 = 2, of Theorem 1.4.

1.1 Notation

The Gaussian polynomial or q-binomial coefficient is defined as

$$\begin{bmatrix} n \\ m \end{bmatrix} = \begin{cases} \frac{(q)_n}{(q)_m(q)_{n-m}} & \text{for } 0 \le m \le n, \\ 0 & \text{otherwise,} \end{cases}$$

where
$$(a;q)_{\infty}=(a)_{\infty}=\prod_{i=0}^{\infty}(1-aq^i)$$
 and

$$(a;q)_n = (a)_n = \frac{(a)_\infty}{(aq^n)_\infty}$$
 for all integers n .

In particular, for nonnegative n

$$(q)_0 = 1$$
, and $(q)_n = (q;q)_n = (1-q)(1-q^2)\cdots(1-q^n)$.

Also note that $\binom{n}{m} = \binom{n}{n-m}$ and the degree of $\binom{n}{m}$ is m(n-m).

A partition λ of n is a weakly decreasing sequence $(\lambda_1, \lambda_2, \ldots)$ such that only finitely many λ_i are positive and such that $\sum_i \lambda_i = n$. The positive λ_i are known as the parts of λ and the number of parts is known as the length $\ell(\lambda)$. The sum of the parts of λ , denoted by $|\lambda|$, is called the weight of λ . The unique partition of weight zero is denoted by 0, and the multiplicity of the part i in the partition λ is denoted by $m_i(\lambda)$.

Fix a non-negative integer t. A partition with "n+t copies of n", $t < \infty$, is a partition in which a part of size n, $n \ge 0$, can come in n+t different colours denoted by subscripts: $n_1, n_2, \cdots, n_{n+t}$.

An analogue of Theorem 1.3 for partition with "n + t copies of n" was obtained in [2].

1.2 The A_2 Rogers–Ramanujan identities

Over the years many generalizations of both the analytic and the combinatorial statement of the Rogers-Ramanujan identities have been found, see e.g., [3,7,8,9]. All the cited analytic generalizations are accessible through the classical, or A_1 Bailey lemma and can thus be classified as " A_1 Rogers-Ramnujan-type identities". Rogers-Ramnujan-type identities and Andrews-Gordon are all identities for the Lie algebra A_1 and they were generalized to A_2 in [6] (for details of A_1 and A_2 Rogers-Ramanujan identities the reader is referred to [6]). The following four identities are A_2 Rogers-Ramanujan identities,

$$\sum_{l,k=0}^{\infty} \frac{q^{k^2 - lk + k^2}}{(q)_k} \begin{bmatrix} 2k \\ l \end{bmatrix} = \prod_{n=1}^{\infty} \frac{1}{(1 - q^{7n-1})^2 (1 - q^{7n-3})(1 - q^{7n-4})(1 - q^{7n-6})^2},$$

$$\sum_{l,k=0}^{\infty} \frac{q^{k^2 - lk + l^2 + l}}{(q)_k} \begin{bmatrix} 2k \\ l \end{bmatrix}$$

$$= \prod_{n=1}^{\infty} \frac{1}{(1 - q^{7n-1})(1 - q^{7n-2})(1 - q^{7n-3})(1 - q^{7n-4})(1 - q^{7n-5})(1 - q^{7n-6})},$$

$$\sum_{l,k=0}^{\infty} \frac{q^{k^2 - lk + l^2 + k + l}}{(q)_k} \begin{bmatrix} 2k \\ l \end{bmatrix}$$

$$= \prod_{n=1}^{\infty} \frac{1}{(1 - q^{7n-2})(1 - q^{7n-3})^2 (1 - q^{7n-4})^2 (1 - q^{7n-5})},$$
(1.5)

$$\sum_{l,k=0}^{\infty} \frac{q^{k^2 - lk + l^2 + l}}{(q)_k} {2k+1 \brack l}$$

$$= \prod_{r=1}^{\infty} \frac{1}{(1 - q^{7n-1})(1 - q^{7n-2})^2 (1 - q^{7n-5})^2 (1 - q^{7n-6})}, \quad (1.7)$$

(1.4)–(1.6) are due to Andrews et al. [6] and (1.7) is a conjectured identity due to Feigin et al. [10]. The Identity (1.4) was also proved by Warnaar [17]. But in [6,10,17] no combinatorial interpretation was provided in the spirit of "MacMahon-Schur-Gordon" and this is the purpose of our paper. Following the technique of [1], in this paper we provide combinatorial interpretations of identities "(1.4)–(1.7)" using partition theoretic methods.

2 Main Results

Let $B_1(k, n)$ count the number of partitions of n such that no part exceeds k. For integers k and l such that $0 \le l \le 2k$, we define the counting function $C_i(l, k, n)$ for i = 1, 2, 3, 4 by distinguishing the cases $0 \le l < k, l = k$ and $k < l \le 2k$ with certain conditions given in Theorem 2.1–2.4 respectively, and we now state our main results which are combinatorial interpretations of (1.4)–(1.7) respectively.

Theorem 2.1 For $0 \le l < k$, let $C_1(l, k, n)$ count the number of partitions λ of n such that $\lambda_1 \le 2k - 1$, $\ell(\lambda) \le 2k - l$ and

$$\lambda_i - \lambda_{i+1} \ge egin{cases} 2 & \textit{for } i = 1, \dots, k-l-1, \\ 1 & \textit{for } i = k-l, \\ l & \textit{for } i = k, \end{cases}$$

for l = k, let $C_1(l, l, n)$ count the number of partitions λ of n such that $\ell(\lambda) = l$, with parts not exceeding 3l - 1 and the parts differ by at least 2, for $k < l \le 2k$, let $C_1(l, k, n)$ count the number of partitions λ of n such that

 $\ell(\lambda) = l, \ k \le \lambda_i \le k + l - 1 \ and$

$$\lambda_i - \lambda_{i+1} \ge \begin{cases} 2 & \textit{for } i = 1, \dots, l-k-1, \\ 1 & \textit{for } i = l-k. \end{cases}$$

Let

$$C_1(k,n) = \sum_{l=0}^{2k} C_1(l,k,n)$$

and let $A_1(n) = \sum_{k=0}^{\infty} \sum_{j=0}^{n} B_1(k,j) C_1(k,n-j)$ and $D_1(n)$ denote the number of partitions of n with "n+t - copies of n" such that parts are congruent

to $\pm 1, \pm 3 \pmod{7}$, first two copies of parts $\pm 1 \pmod{7}$ and only first copy of parts $\pm 3 \pmod{7}$ are used. Then

$$A_1(n) = D_1(n)$$
 for all n .

Example. This example demonstrates the theorem for n = 5, by showing that $A_1(5) = D_1(5) = 11$.

First, $D_1(5) = 11$ with the following coloured partitions of 5 contributing:

$$4_1 + 1_1$$
, $4_1 + 1_2$, $3_1 + 1_1 + 1_1$, $3_1 + 1_2 + 1_1$, $3_1 + 1_2 + 1_2$,
 $1_1 + 1_1 + 1_1 + 1_1 + 1_1$, $1_2 + 1_1 + 1_1 + 1_1 + 1_1$, $1_2 + 1_2 + 1_1 + 1_1 + 1_1$,
 $1_2 + 1_2 + 1_2 + 1_1 + 1_1$, $1_2 + 1_2 + 1_2 + 1_2 + 1_1$, $1_2 + 1_2 + 1_2 + 1_2 + 1_2$.

To compute $A_1(5)$ we first note that $C_1(l,2,5) = 0$ for l = 0, 3, 4 and $C_1(1,2,5) = 1$ with 3 + 2 + 0 contributing and $C_1(2,2,5) = 1$ with 4 + 1 contributing. Hence

$$C_1(2,5) = \sum_{l=0}^{4} C_1(l,2,5) = 2$$

In a similar fashion we find that

$$C_1(0,0) = 1,$$
 $C_1(1,1) = 2, C_1(1,2) = 1, C_1(1,3) = 1,$
 $C_1(2,3) = 1, C_1(2,4) = 3, C_1(2,5) = 2$

and the rest of the C_1 's are zero.

The corresponding $B_1(k,j)$ are

$$B_1(0,0) = 1,$$

 $B_1(1,0) = 1, B_1(1,1) = 1, B_1(1,2) = 1,$
 $B_1(1,3) = 1, B_1(1,4) = 1, B_1(1,5) = 1,$
 $B_1(2,0) = 1, B_1(2,1) = 1, B_1(2,2) = 2,$
 $B_1(2,3) = 2, B_1(2,4) = 3, B_1(2,5) = 3,$

and the rest of the B_1 's are zero, hence

$$A_1(5) = \sum_{k=0}^{2} \sum_{j=0}^{5} B_1(k,j) C_1(k,5-j)$$

$$= (0+0+0+0+0+0) + (0+0+1+1+2+0) + (2+3+2+0+0+0)$$

$$= 11.$$

Theorem 2.2 For $0 \le l < k$, let $C_2(l, k, n)$ count the number of partitions λ of n such that $\lambda_1 \le 2k$, $\ell(\lambda) \le 2k - l$ and

$$\lambda_i - \lambda_{i+1} \ge \begin{cases} 2 & \textit{for } i = 1, \dots, k - l - 1, \\ 1 & \textit{for } i = k - l, \\ l & \textit{for } i = k, \\ 1 & \textit{for } i = l, \end{cases}$$

for l = k, let $C_2(l, l, n)$ count the number of partitions λ of n such that $\ell(\lambda) = l$, $2 \le \lambda_i \le 3l$ and the parts differ by at least 2,

for $k < l \le 2k$, let $C_2(l, k, n)$ count the number of partitions λ of n such that $\ell(\lambda) = l$, $k + 1 \le \lambda_i \le k + l$ and

$$\lambda_i - \lambda_{i+1} \ge \begin{cases} 2 & \text{for } i = 1, \dots, l-k-1, \\ 1 & \text{for } i = l-k. \end{cases}$$

Let

$$C_2(k,n) = \sum_{l=0}^{2k} C_2(l,k,n)$$

and let $A_2(n) = \sum_{k=0}^{\infty} \sum_{j=0}^{n} B_1(k,j) C_2(k,n-j)$ and $D_2(n)$ count the number of ordinary partitions of n such that parts are congruent to $\pm 1, \pm 3, \pm 2 \pmod{7}$. Then

$$A_2(n) = D_2(n)$$
 for all n .

Theorem 2.3 For $0 \le l < k$, let $C_3(l, k, n)$ count the number of partitions λ of n such that $\lambda_1 \le 2k + 1$, $\ell(\lambda) \le 2k - l$ and

$$\lambda_i - \lambda_{i+1} \geq egin{cases} 2 & \textit{for } i = 1, \ldots, k-l-1, \ 1 & \textit{for } i = k-l, \ l+1 & \textit{for } i = k, \ 1 & \textit{for } i = l, \end{cases}$$

for l = k, let $C_3(l, l, n)$ count the number of partitions λ of n such that $\ell(\lambda) = l$, $3 \le \lambda_i \le 3l + 1$ and the parts differ by at least 2,

for $k < l \le 2k$, let $C_3(l, k, n)$ count the number of partitions λ of n such that $\ell(\lambda) = l$, $k + 1 \le \lambda_i \le k + l + 1$ and

$$\lambda_i - \lambda_{i+1} \ge egin{cases} 2 & \textit{for } i=1,\ldots,l-k-1, \\ 1 & \textit{for } i=l-k, \\ 1 & \textit{for } i=k. \end{cases}$$

Let

$$C_3(k,n) = \sum_{l=0}^{2k} C_3(l,k,n)$$

and let $A_3(n) = \sum_{k=0}^{\infty} \sum_{j=0}^{n} B_1(k,j) C_3(k,n-j)$ and $D_3(n)$ count the number of ordinary partitions of n such that parts are congruent to $\pm 2, \pm 3 \pmod{7}$, first two copies of the part congruent to $\pm 3 \pmod{7}$ and only first copy of parts $\pm 2 \pmod{7}$ are used. Then

$$A_3(n) = D_3(n)$$
 for all n .

Theorem 2.4 For $0 \le l < k$, let $C_4(l, k, n)$ count the number of partitions λ of n such that $\lambda_1 \le 2k$, $\ell(\lambda) \le 2k - l + 1$ and

$$\lambda_i - \lambda_{i+1} \geq egin{cases} 2 & \textit{for } i=1,\ldots,k-l-1, \ 1 & \textit{for } i=k-l, \ l & \textit{for } i=k, \ 1 & \textit{for } i=l, \end{cases}$$

for l = k, let $C_4(l, l, n)$ count the number of partitions λ of n such that $\ell(\lambda) = l$, $2 \le \lambda_i \le 3l + 1$ and the parts differ by at least 2,

for $k < l \le 2k$, let $C_4(l, k, n)$ count the number of partitions λ of n such that $\ell(\lambda) = l$, $k + 1 \le \lambda_i \le k + l + 1$ and

$$\lambda_i - \lambda_{i+1} \ge \begin{cases} 2 & \text{for } i = 1, \dots, l-k-1, \\ 1 & \text{for } i = l-k. \end{cases}$$

Let

$$C_4(k,n) = \sum_{l=0}^{2k} C_4(l,k,n)$$

and let $A_4(n) = \sum_{k=0}^{\infty} \sum_{j=0}^{n} B_1(k,j) C_4(k,n-j)$ and $D_4(n)$ count the number of ordinary partitions of n such that parts are congruent to $\pm 1, \pm 2 \pmod{7}$, first two copies of the part congruent to $\pm 2 \pmod{7}$ and only first copy of parts $\pm 1 \pmod{7}$ are used. Then

$$A_4(n) = D_4(n)$$
 for all n .

In the next section we give the detailed proof of Theorem 2.1 and in Section 4 we sketch the proofs of the remaining theorems.

3 Proof of Theorem 2.1

We will prove this theorem in three steps as follows:

Step 1. It is clear that

$$\sum_{n=0}^{\infty} B_1(k,n)q^n = \frac{1}{(q;q)_k}.$$
 (3.1)

Step 2. Note that

$$\sum_{l=0}^{2k} q^{k^2+l^2-lk} {2k\brack l} = \sum_{l=0}^{k-1} q^{(k-l)^2+lk} {2k\brack l} + q^{k^2} {2k\brack l} + \sum_{l=k+1}^{2k} q^{(l-k)^2+lk} {2k\brack l}.$$

Now for $0 \leq l < k$, by the definition of the Gaussian polynomial, $\binom{2k}{l} = \binom{2k}{2k-l}$ generates partitions into at most 2k-l parts such that no part exceeds l. Multiplying $\binom{2k}{l}$ by q^{lk} may be interpreted by adding l to each of the first k parts of the partitions being generated. In other words, $q^{lk}\binom{2k}{l}$ is the generating function of partitions into at most 2k-l parts, no part exceeding 2l and the difference between the k^{th} and $(k+1)^{th}$ part is at least l. Multiplying $q^{lk}\binom{2k}{l}$ by $q^{(k-l)^2}$ means that we are adding 2(k-l)-1 to the first part, 2(k-l)-3 to the second part,..., 1 to the $(k-l)^{th}$ part. So, $q^{(k-l)^2+lk}\binom{2k}{l}$ generates partitions into at most 2k-l parts where parts do not exceed 2k-1, difference between k^{th} and $(k+1)^{th}$ parts is $\geq l$, difference between $(k-l)^{th}$ and $(k-l+1)^{th}$ parts is ≥ 1 and the first k-l parts differing by at least 2.

For l=k, by definition of Gaussian Polynomial, $\binom{2k}{k}$ generates partitions into at most k parts such that no part exceeds k. Multiplying $\binom{2k}{l}$ by q^{k^2} means that we are adding 2k-1 to the first part, 2k-3 to the second part, \cdots , 1 to the last part. In other words, $q^{k^2}\binom{2k}{l}$ generates partitions into exactly k parts, parts not exceeding 3k-1 and differing by at least 2, or it is equivalent to say that this generates partitions into exactly l parts, parts not exceeding 3l-1 and differing by at least 2.

Finally, for $k < l \le 2k$, by definition of Gaussian Polynomial, $\binom{2k}{l}$ generates partitions into at most l parts such that no part exceeds 2k-l. Multiplying $\binom{2k}{l}$ by q^{lk} may be interpreted by adding k to each of the first l parts of the partitions being generated. In other words, $q^{lk} \binom{2k}{l}$ generates partitions into exactly l parts such that parts are $\ge k$ and not exceeding 3k-l. Further multiplication of $q^{lk} \binom{2k}{l}$

by $q^{(l-k)^2}$ means that we are adding 2(l-k)-1 to the first part, 2(l-k)-3 to the second part, \cdots , 1 to the (l-k) part. So, $q^{(l-k)^2+lk}{2l \brack l}$ generates partitions into exactly l parts such that smallest part being at least k, not exceeding k+l-1 and the first l-k parts differing by at least 2, hence,

$$\sum_{n=0}^{n_1} C_1(l,k,n) q^n = q^{k^2 - lk + l^2} \begin{bmatrix} 2k \\ l \end{bmatrix}, \tag{3.2}$$

where $n_1 = k(k + l)$, now (3.2) implies

$$\sum_{n=0}^{n_2} C_1(k,n) q^n = \sum_{n=0}^{n_1} \sum_{l=0}^{\infty} C_1(l,k,n) q^n = \sum_{l=0}^{\infty} q^{k^2 - lk + l^2} {2k \brack l},$$

where $n_2 = 3k^2$ and noting $C_1(l, k, n) = 0$ for l > 2k, equivalently we may write above as

$$\sum_{n=0}^{\infty} C_1(k,n) q^n = \sum_{l=0}^{\infty} q^{k^2 - lk + l^2} \begin{bmatrix} 2k \\ l \end{bmatrix}, \tag{3.3}$$

since $C_1(k, n) = 0$ for $n > n_2$.

Step 3. As,

$$A_1(n) = \sum_{k,j} B_1(k,j) C_1(k,n-j)$$

So,

$$\begin{split} \sum_{n=0}^{\infty} A_1(n)q^n &= \sum_{k,j,n} B_1(k,j)C_1(k,n-j)q^n \\ &= \sum_{k,j,n} B_1(k,j)C_1(k,n)q^{n+j} \\ &= \sum_{k=0}^{\infty} \left(\sum_{j=0}^{\infty} B_1(k,j)q^j\right) \left(\sum_{n=0}^{\infty} C_1(k,n)q^n\right) \\ &= \sum_{k=0}^{\infty} \frac{1}{(q;q)_k} \sum_{l=0}^{\infty} q^{k^2 - lk + l^2} \begin{bmatrix} 2k \\ l \end{bmatrix} \\ &= \sum_{l,k=0}^{\infty} \frac{1}{(q)_k} q^{k^2 - lk + l^2} \begin{bmatrix} 2k \\ l \end{bmatrix} \\ &= \frac{1}{(q,q,q^3,q^4,q^6,q^6,q^7)_{\infty}} \\ &= \sum_{k=0}^{\infty} D_1(n)q^n \end{split}$$

Coefficient comparison in the extremes of the above leads to Theorem 2.1.

4 Sketch of proofs of Theorems 2.2–2.4

Since, the proofs of Theorems 2.2–2.4 are similar to that of Theorem 2.1, we omit the details and give only a brief sketch.

Following the proof of Theorem 2.1, the extra factor q^l in the left hand side of (1.5) may be interpreted by adding 1 to each of the first l parts which proves Theorem 2.2. Similarly, the extra factor q^{k+l} in the left hand side of (1.6) may be interpreted by adding 1 to each of the first l parts and then adding 1 to each of the first l parts which leads to Theorem 2.3.

Now, replacing $\binom{2k}{l}$ by $\binom{2k+1}{l}$ and then again following the steps of Theorem 2.1, extra factor q^l in the left hand side of (1.7) may be interpreted by adding 1 to each of the first l parts which proves Theorem 2.4.

5 Conclusion

In this paper we have given partition theoretic interpretations of Identities (1.4)–(1.7). The analytic generalization of (1.4)–(1.7) is available in [6]. The obvious questions which arise from this work are;

- (a) Is it possible to find a combinatorial generalization of Theorems 2.1–2.4.
- (b) Can we find the combinatorial counterpart of the generalized analytic identity available in [6].

Acknowledgment. The author is thankful to the referee for his many helpful suggestions which lead to a better presentation of the paper.

6 References

- 1. Agarwal A.K., Combinatorial interpretations of the q-analogues of L_{2n+1} , The Fibonacci Quaterly, (2) 29, (1991), 137–140.
- 2. Agarwal A.K., Andrews G.E., Rogers-Ramanujan identities for partitions with "n copies of n", J. Combin. Theory Ser. A., (1) 45, 1987, 40-49.
- 3. Andrews G.E., Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114, (1984), 267-283.
- 4. Andrews G.E., The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley, Reading, Massachusetts, 1976.

- 5. Andrews G.E., An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Prod. Nat. Acad. Sci., USA, 71 (1974), 4082-4085.
- 6. Andrews G.E., Schilling A., Warnaar S.O., An A₂ Bailey lemma and Rogers-Ramanujan-type identities, J. Amer. Math. Soc., 12, (1999), 677–702.
- 7. Bressoud D.M., An analytic generalization of the Rogers-Ramanujan identities with interpretation, Quart. J. Maths. Oxford (2) 31, (1980), 385-399.
- 8. Bressoud D.M., Analytic and combinatorial generalizations of the Rogers–Ramanujan identities, Memoirs Amer. Math. Soc. 24 (1980), 1–54.
- 9. Bressoud D.M., A generalization of the Rogers-Ramanujan identities for all moduli, J. Combin. Theory Ser. A, 27, (1979), 64-68.
- 10. Feigin B., Foda O., Welsh T., Andrews-Gordan type identities from combinations of Virasoro characters, Ramanujan J., 17, (2008), 33-52.
- 11. Gordon B., A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math., 83, (1961), 393-399
- 12. Hardy G.H., Ramanujan, Cambridge University Press, London and New York, 1940.
- 13. MacMahon P.A., Combinatoriay Analysis, Vol. 2, Cambridge University Press, London and New York, 1916.
- 14. Rogers L.J., Second memoir on the expansion of certain infinite products, Proc. London Math. Soc., 25, (1894), 318-343
- 15. Rogers L.J., Ramanujan S., Proof of certain identities in combinatory analysis, Proc. of the Cambridge Phil. Soc., 19, (1919), 211–216.
- Schur I.J., Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl., (1917), 302–321.
- 17. Warnaar S.O., Hall-Littlewood functions and the A₂ Rogers-Ramanujan identities, Adv. Math., 200 (2006), 403-434.