Partition theoretic interpretations of the A, Rogers-Ramanujan identi-
ties
M. Rana
School of Mathematics and Computer Applications
Thapar University
Patiala-147004, Punjab, India
E-mail: mrana@thapar.edu
Abstract
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1 Introduction

The Rogers-Ramanujan identities [14,15,16] are given by

> - =Tla-a -y (1)
n=0 ‘D 1/7 n=1

and
f: qn2+n = ﬁ(l _ an—2)—l(1 _ q5n—3)—1 (1 2)
= (G oo ' '

They were first discovered by Rogers [14] in 1894 and were rediscovered by Ra-
manujan in 1913. Ramanujan [15] published a paper in 1919 which contains two
proofs (one by Ramanujan and the other by Rogers) and a note by Hardy. After
the publication of this paper the Identities (1.1) and (1.2) became known as the
Rogers-Ramanujan identities. The fame of these identities lies not only in their
beauty and fascinating history [4,12], but also in their relevance to the theory of
partitions and many other branches of mathematics and physics. In particular,
MacMahon [13] and Schur [16] independently noted the number theoretic inter-
pretations of (1.1) and (1.2) as

Theorem 1.1 For all integers n, the number of partitions A of n where
Ai_Ai+1 22 for 1S‘LS£(>\)—1

equals the number of partitions of n into parts which are congruent to =1 (mod 5).
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Theorem 1.2 For all integers n, the number of partitions A of n where
Ai—Aig1 > 2 for lsigtf()\)—l

and the smallest part at least 2 equals the number of partitions of 1 into parts
which are congruent to =2 (mod 5).

Gordon gave the following generalization of Theorems 1.1 and 1.2 [11]:

Theorem 1.3 (B. Gordon) For k > 2and 1 < i < k, let B ;(n) denote the
number of partitions of n of the form Ay +Ag+ -+ - + A5, where A j — Ajip—1 2 2,
and at most i — 1 of the \; equal 1. Let Ay ;(n) denote the number of partitions
of ninto parts # 0, i (mod 2k + 1). Then

Apg i(n) = By i(n) foralln.

Obviously, Theorem 1.1 is the particular case k = 7 = 2 of Theorem 1.3 and
Theorem 1.2 is the particular case k = 7 + 1 = 2 of Theorem 1.3.
The analytic counterpart of Theorem 1.3 was found by Andrews [5]:

Theorem 1.4 (G.E. Andrews) Forl <i<k,k > 2,

2

n1,n2,...,Nx-120

qN?+N§+---+N,3_1+N,»+N.~+1+---+Nk_1

(DG Dy (8 Dy

=[[a-g", (1.3)

where Nj =nj; +njp1 + -+ + gy,
It can be easily seen that Identities (1.1) and (1.2) are the particular cases, k =
i=2and k =i+ 1 =2, of Theorem 1.4.

1.1 Notation

The Gaussian polynomial or g-binomial coefficient is defined as

(Dm(@n-m
0 otherwise,

[n] _ {—@"—— for0 <m<n,

where (a; g)oo = (@)oo = [T (1 — ag") and

(@)oo
(a9™) oo

(@;@)n = (a)n = for all integers n.
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In particular, for nonnegative n
(@o=1, and (9)a=(g@)n=(1-g)(1~g°) - (1-¢")

Also note that [] = [,,”, ] and the degree of ] is m(n — m).

A partition A of n is a weakly decreasing sequence (A1, Az, ...) such that only
finitely many ); are positive and such that >, A; = n. The positive A; are known
as the parts of A and the number of parts is known as the length £(A). The sum of
the parts of ), denoted by ||, is called the weight of A. The unique partition of
weight zero is denoted by 0, and the multiplicity of the part i in the partition A is
denoted by m;(]).

Fix a non-negative integer t. A partition with “n 4 ¢ copies of n”, 1 < 00, is a
partition in which a part of size n, n > 0, can come in n + ¢ different colours
denoted by subscripts: 11,2, , 4t

An analogue of Theorem 1.3 for partition with “n + ¢ copies of n” was obtained
in [2].

1.2 The A; Rogers-Ramanujan identities

Over the years many generalizations of both the analytic and the combinatorial
statement of the Rogers—Ramanujan identities have been found, see e.g., [3,7,8,9].
All the cited analytic generalizations are accessible through the classical, or A,
Bailey lemma and can thus be classified as “A; Rogers—Ramnujan-type identi-
ties”. Rogers—Ramnujan-type identities and Andrews—Gordon are all identities
for the Lie algebra A; and they were generalized to A in [6] (for details of A
and Az Rogers—Ramanujan identities the reader is referred to [6]). The following
four identities are A Rogers—Ramanujan identities,

o k’-tlc+k2 2% 1
it (Q)k [ ] H (1 q7n— )2(1 —_ 7n—3)(1 - 7n—4)(1 — 7n-6)2’
) qk2-1k+z’+z 2% (L4

1E=0 ()« [ l ]
-1 1
o (T=g™ 1) (1 - g™ 2)(1 - ¢™=%)(1 — g™~ *)(1 ~ ¢"™*)(1 - ¢"~F)’
(1.5)
o qk2—1k+12+k+z {Zk
15=0 (9)x !
had 1
- g a—r=ra-r=—a -7
(1.6)
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o qk2_1k+t’+1 [2k + 1]
oo @k l

A 1
= nIl (1= g™ 1)1 — q™n-2)2(1 — g'n-B)2(1 — g™n-6)°

(1.7)

(1.4)-(1.6) are due to Andrews et al. [6] and (1.7) is a conjectured identity
due to Feigin et al. [10]. The Identity (1.4) was also proved by Warnaar [17].
But in [6,10,17] no combinatorial interpretation was provided in the spirit of
“MacMahon-Schur-Gordon” and this is the purpose of our paper. Following the
technique of [1], in this paper we provide combinatorial interpretations of identi-
ties “(1.4)—(1.7)” using partition theoretic methods.

2 Main Results

Let B, (k, n) count the number of partitions of n such that no part exceeds k. For
integers k and ! such that 0 < I < 2k, we define the counting function C;(l, k, n)
fori = 1, 2,3, 4 by distinguishing the cases 0 < [ < k,l = kand k < ! < 2k with
certain conditions given in Theorem 2.1-2.4 respectively, and we now state our
main results which are combinatorial interpretations of (1.4)-(1.7) respectively.

Theorem 2.1 For 0 <1 < k, let C1(l, k,n) count the number of partitions X of
n such that Ay < 2k — 1, £(A) <2k —land

2 fori=1,...,k-1-1,
Ai—=dip1 21 fori=k-—1,
l fori=k,

forl =k, let Cy(1,1,n) count the number of partitions X of n such that £()\) = |,
with parts not exceeding 3l — 1 and the parts differ by at least 2,
for k < 1 < 2k, let Cy(l, k,n) count the number of partitions X of n such that

2 fori=1,...,1-k-1,
Ai —Aip1 2
1 fori=1—-k.

Let
2k
Ci(k,n) =Y _Ci(l,k,n)
=0

and let Aj(n) = Y _poo > o Bi(k, 5)C1(k,n — j) and Dy(n) denote the num-
ber of partitions of n with “n + t - copies of n” such that parts are congruent
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to +1,+3 (mod 7), first two copies of parts £1 (mod 7) and only first copy of
parts £3 (mod 7) are used. Then

Ai(n) = Dy(n) for all n.

Example. This example demonstrates the theorem for n = 5, by showing that
A,(5) = Dy(5) =11.
First, D, (5) = 11 with the following coloured partitions of 5 contributing:

4;+1, 4 +13, 31+ 1 4+ 15, 1+ 12+ 14, 31+ 12+ 15,

L+ +1+1+1;, 10+ + 1+ 13+ 14, 1o+ 10413 +1; 4+ 14,
lo+1la+1a+1 41, 1o+ 1+ 12+ 12+ 1, 1o+ 1o+ 12+ 12+ 13,

To compute A, (5) we first note that C1(1,2,5) =0for! =0, 3,4 and Cy(1, 2, 5)
= 1 with 3 + 2 + 0 contributing and C1(2,2,5) = 1 with 4 + 1 contributing.
Hence

4
C1(2,5)=)_C1(1,2,5) =2
=0

In a similar fashion we find that
C1(0,0) =1,

Ci1(1,1) =2,01(1,2) =1,01(1,3) =1,
C1(2,3) =1,C1(2,4) = 3,C1(2,5) =2
and the rest of the C;’s are zero.
The corresponding B (k, j) are
B,(0,0) =1,
Bi(1,0) =1,By(1,1) =1,B;(1,2) = 1,
Bl(1,3) = 1,31(1, 4) = 1,31(1,5) = 1,
B(2,0) =1,B;,(2,1) =1,B:(2,2) =2,
31(2, 3) = 2, 31(2, 4) = 3, Bl(2, 5) = 3,

and the rest of the B,’s are zero, hence

2 5
A1) =YY" Bi(k,5)Ci(k,5 - 5)

k=0 j=0
=(0+0+0+0+0+0)+(0+0+1+1+2+0)
+(2+3+2+0+0+0)
=11
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Theorem 2.2 For 0 <! < k, let Ca(l, k,n) count the number of partitions A of
n such that \y < 2k, £()\) < 2k —land

2 fori=1,....k—1-1,

1 fori=k-1,
Ai — Aig1 2

l fori=k,

1 fori=|,

forl =k, let Ca(l,1,n) count the number of partitions X of . such that £(X) = [,
2 < ); < 3l and the parts differ by at least 2,

Jor k < 1 < 2k, let Co(l, k,n) count the number of partitions A of n such that
MN=Lk+1< A\ <k+!land

2 fori=1,...,1-k-1,
Ai — Aip1 2
1 fori=1-k.

Let o
Ca(k,n) =) Ca(l, k,m)

1=0
and let Aa(n) = 3724 5o Bi(k, 5)Ca(k, n— 5) and Da(n) count the number

of ordinary partitions of n such that parts are congruent to 1, £3, £2 (mod 7).
Then

Az (n) = Da(n) for all n.

Theorem 2.3 For 0 <[ < k, let C3(l, k,n) count the number of partitions A of
n such that \; < 2k + 1, (X)) <2k —land

2 fori=1,...,k—1-1,

1 fori=k—1,
Ai — Aig1 2
l+1 fori=k,

1 Jori=1|

forl =k, let C3(l,1,n) count the number of partitions X of n such that £(\) = [,
3 < X\ <31+ 1 and the parts differ by at least 2,

for k < | < 2k, let C3(l, k,n) count the number of partitions A of n such that
N=Lk+1< A\ <k+l+1land
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2 fori=1,...,01—-k-1,
Ai—Aiy12K1 fori=1l—k,
1 fori=k.
Let

Cs(k,n) =Y _ Cs(l,k,n)
1=0
and let A3(n) = Y 1o, Z '—o B1(k, 3)C3(k,n—j) and D3(n) count the number
of ordinary partitions of n such that parts are congruent to 32, +3 (mod 7), first
two copies of the part congruent to 3 (mod 7) and only first copy of parts +2
(mod 7) are used. Then

A3z(n) = D3(n) for all n.

Theorem 2.4 For 0 <! < k, let C4(l, k,n) count the number of partitions X of
n such that Ay < 2k, £(\) <2k -1+ 1and

2 fori=1,...,k—-1-1,

1 fori=k-1,
Ai = Aip1 2

I fori=k,

1 fori=|,

forl =k, let C4(l,1,n) count the number of partitions A of n such that £{(A) = |,
2 < A; < 3l + 1 and the parts differ by at least 2,

for k <l < 2k, let Cy(l, k,n) count the number of partitions A of n such that
(N =Lk+1<X<k+l+1land

2 fori=1,...,l—-k-1,
Ai — Aip1 2
1 fori=1-k.

2k
Ca(k,n) = _ Cu(l, k,n)
=0

and let Ay(n) = 32320 350 Bi(k, j)Ca(k, n— j) and Dy(n) count the number
of ordinary partitions of n such that parts are congruent to =1, 2 (mod 7), first
two copies of the part congruent to £2 (mod 7) and only first copy of parts 1
(mod 7) are used. Then

Ayq(n) = Dy(n) for ali n.
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In the next section we give the detailed proof of Theorem 2.1 and in Section 4 we
sketch the proofs of the remaining theorems.

3 Proof of Theorem 2.1

We will prove this theorem in three steps as follows:

Step 1. It is clear that

Nt 1
Bi(k,n)q" = . 3.1
,Z;, W = G

Step 2. Note that

2k k-1 2%

2k 2k 2k 2k
Z gk -tk _ Z gk ik +q° + z gl ik .
l l l l

=0 1=0 i=k+1

Now for 0 < I < k, by the definition of the Gaussian polynomial, [*f] = [,2* ]
generates partitions into at most 2k — [ parts such that no part exceeds /. Multi-
plying [%¥] by ¢’ may be interpreted by adding [ to each of the first k parts of
the partitions being generated. In other words, g'* [%'] is the generating function
of partitions into at most 2k — [ parts, no part exceeding 2! and the difference
between the k** and (k + 1)*" part is at least . Multiplying ¢'* [%¥] by g¢*—°
means that we are adding 2(k — !) — 1 to the first part, 2(k — [} — 3 to the second
part, -+, 1 to the (k — 1)** part. So, ¢*~9"+%[2%*] generates partitions into at
most 2k — [ parts where parts do not exceed 2k — 1, difference between k** and
(k+1)th parts is > {, difference between (k — {)** and (k — ! + 1)*" parts is > 1
and the first k — ! parts differing by at least 2.

For | = k, by definition of Gaussian Polynomial, [%*] generates partitions into
at most k parts such that no part exceeds k. Multiplying [%F] by ¢** means that
we are adding 2k — 1 to the first part, 2k — 3 to the second part,- - -, 1 to the last
part. In other words, g*” [2F] generates partitions into exactly k parts, parts not
exceeding 3k — 1 and differing by at least 2, or it is equivalent to say that this
generates partitions into exactly ! parts, parts not exceeding 3/ — 1 and differing
by at least 2.

Finally, for k < I < 2k, by definition of Gaussian Polynomial, [%] generates
partitions into at most [ parts such that no part exceeds 2k — I. Multiplying [2,"]
by ¢** may be interpreted by adding k to each of the first [ parts of the partitions
being generated. In other words, ¢'* [2¥] generates partitions into exactly ! parts
such that parts are > k and not exceeding 3k — . Further multiplication of ¢'* [f]
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by q"—*) means that we are adding 2(I — k) — 1 to the first part, 2( — k) — 3 to
the second part,- - -, 1 to the (I — k) part. So, g*=%)*+1%[2¥] generates partitions
into exactly ! parts such that smallest part being at least k, not exceeding k+1—1
and the first | — k parts differing by at least 2, hence,

ni
> cult ke =k ], (32)

n=0

where ny = k(k + [), now (3.2) implies

ch(k n)g" = EZCI(l k,n)q" = Z k’—tk+z=[ ]

n=0 n=0 [=0
where n = 3k2 and noting C:(l, k,n) = 0 for I > 2k, equivalently we may

write above as
2k
3 Gk mya” —z k’-’k“’[l] (3.3)

n=0

since Cy(k,n) = 0 for n > no.

Step 3. As,
Ai(n) =) _ Bi(k,§)Ci(k,n - j)
k.

So,

Y Ai(n)g* = Y Bi(k,j)Ci(k,n - j)g"

n=0 k)jv"
=Y Bi(k,5)Ci(k,n)g"
k,j,n
o0 o0 . o0
=3 (L Bk ) (X cutkum)
k=0 »j=0 n=0
o0 o0
1 kz_lk_Hz [2k]
I g T o
,,z:% (69 & l
2o @k !
_ 1
(qa a, 93: Q"‘, q6’ qss q7)oo
o0
= Di(n)g"
n=0

Coefficient comparison in the extremes of the above leads to Theorem 2.1.
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4 Sketch of proofs of Theorems 2.2-2.4

Since, the proofs of Theorems 2.2-2.4 are similar to that of Theorem 2.1, we omit
the details and give only a brief sketch.

Following the proof of Theorem 2.1, the extra factor ¢ in the left hand side of
(1.5) may be interpreted by adding 1 to each of the first { parts which proves The-
orem 2.2. Similarly, the extra factor ¢**! in the left hand side of (1.6) may be
interpreted by adding 1 to each of the first { parts and then adding 1 to each of the
first k£ parts which leads to Theorem 2.3.

Now, replacing [*F] by [?*;F'] and then again following the steps of Theorem
2.1, extra factor ¢' in the left hand side of (1.7) may be interpreted by adding 1 to
each of the first [ parts which proves Theorem 2.4.

5 Conclusion

In this paper we have given partition theoretic interpretations of Identities (1.4)-
(1.7). The analytic generalization of (1.4)—(1.7) is available in [6]. The obvious
questions which arise from this work are;

(a) Is it possible to find a combinatorial generalization of Theorems 2.1-2.4.

(b) Can we find the combinatorial counterpart of the generalized analytic identity
available in [6].

Acknowledgment. The author is thankful to the referee for his many helpful
suggestions which lead to a better presentation of the paper.
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