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Abstract: For a nonempty graph G = (V(G), E(G)), a signed cycle domi-
nating function on G is introduced by Xu in 2009 as a function f : E(G) —
{1,—1} such that 3, p(c) f(e) = 1 for any induced cycle C of G. A set
{f1, f2, ..., fa} of distinct signed cycle dominating functions on G with the
property that Z)?=1 fi(e) < 1 for each e € E(G), is called a signed cycle
dominating family (of functions) on G. The maximum number of functions
in a signed cycle dominating family on G is the signed cycle domatic number
of G, denoted by d,.(G). In this paper we study the signed cycle domatic
numbers in graphs and present sharp bounds for d, (G). In addition, we
determine the signed cycle domatic number of some special graphs.
Keywords: Induced cycle; Signed cycle dominating function; Signed cycle
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1 Introduction and Terminology

In this paper we continue the study of signed cycle dominating functions in
graphs, which was first introduced by Xu in [7]. According to different kinds
of dominating functions, one proposed corresponding domatic numbers. In
some sense, domatic number is a dual concept to the domination number.
Up to now many kinds of domatic number have been investigated, such as
signed domatic number [6], signed star domatic number (1], signed edge-
domatic number[3}, signed Roman k-domatic number (5], etc. In this paper,
we consider the signed cycle domatic number.

For graph-theoretical notation and terminology not defined here we fol-
low [2]. Specially, G = (V(G), E(G)) is a simple finite graph with vertex
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set V(G) and edge set E(G). The number of vertices (edges, respectively)
of G is called the order (size, respectively) of G. If S C V(G), then G[S]
will denote the subgraph of G induced by S. A cycle C of G is said to
be an induced cycle if G[V(C)] = C. A cycle C is called an odd (even,
respectively) cycle if its length is odd (even, respectively). We write K,
for the complete graph of order n, K, , for the complete bipartite graph, C,,
(Pn, respectively) for the cycle (path, respectively) of order n. Finally, G
will denote the complement of G.

A signed cycle dominating function (SCDF) on a nonempty graph G is
defined in (7] as a function f : E(G) — {1, —1} such that 3 .. g(c) f(e) > 1
for each induced cycle C of G. The weight of an SCDF f is the value
w(f) = L.ee(c)f(e). For any graph G, if E(G) # 0, then the signed cycle
domination number of G, denoted by v;.(G), equals the minimum weight of
an SCDF on G; if E(G) = 0, then we define v,.(G) = 0. A v;.(G)-function
is an SCDF on G with weight . _(G). The signed cycle domination number
of graphs and digraphs were investigated in [7] and [4], respectively.

A set {fi1, fa,..., fa} of distinct signed cycle dominating functions on
G with the property that Z:Ll fi(e) £ 1 for each e € E(G), is called a
signed cycle dominating family (of functions) on G. The maximum number
of functions in a signed cycle dominating family (SCD family) on G is the
signed cycle domatic numberof G, denoted by d), .(G). A d.(G)-SCD family
is an SCD family on G consisting of d}_(G) distinct signed cycle dominating
functions on G. In order to investigate the signed cycle domatic number of
G, it is reasonable to claim that E(G) # 0. Thus we assume throughout
this paper that the graphs are all nonempty. The signed cycle domatic
number is well-defined and d/ (G) > 1 for all graphs G with E(G) # 0,
since the set consisting of any SCDF forms an SCD family on G.

For an arbitrary graph G, it is very hard to determine the value of
d,.(G). Thus, determine d,.(G) for some special graphs is of interest.
Our purpose in this paper is to give an original study on the signed cycle
domatic number in graphs. We first derive basic properties and bounds for
the signed cycle domatic number of a graph, and then, we determine the
signed cycle domatic number of some special graphs, such as paths, stars,
cycles, fans, wheels, complete graphs and complete bipartite graphs.

We make use of the following results in this paper.

Theorem A ({7]) 7,.(G) = —=|E(G)| if and only if G has no cycles.

Theorem B ([7]) 7..(G) = |E(G)| if and only if G = K, for some
positive integer n.

Theorem C ([7]) Let G be a graph which is not a tree. Then«,.(G) >
IB(G)] - 2V(G)] + 4.
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2 Bounds on the signed cycle domatic num-
ber

In this section we present basic properties and sharp bounds on the signed
cycle domatic number of a graph.

Theorem 2.1 Let G be a graph without any cycle and of size m. Then
d,(G) = 2.

Proof. Since G has no cycles, for any SCDF f on G and arbitrary edge
e € E(G), f(e) may equal 1 or —1. So there are 2™ distinct signed cycle
donvlninating functions on G in all, denoted by fi, fa, ..., fam. It is clear that
Y27 file) = 0 < 1 for each e € E(G). Therefore, {f1, f2,..., fom} forms
an SCD family on G, and then, & .(G) =2™. O

Corollary 2.2 d,(P,) =21, d,(Kin)=2".

In view of Theorem 2.1, we only need to consider the graphs containing
at least one cycle in the following.

Theorem 2.3 Let G be a graph with a shortest cycle of length £. Then

, £ £=1 (mod 2);
dee(G) < { -% £=0 (mod 2).

Moreover, ifd..(G) = ¢, then ¢ is odd and for each SCD family { f1, f2, .., fa}
on G with d = d,,(G) and each shortest cycle C, 3_ .cg(c) file) =1 for

each function f; and Z?=1 fi(e) =1 for alle € E(C).

Proof. Let C be a shortest cycle of G and {f1, f2, ..., fa} be an SCD
family on G with d = d’,.(G). Then C is an induced cycle and we deduce

that
d d
d<Y " > fl= Y Do files Y 1=t (1)

i=1 e€E(C) e€E(C) i=1 e€E(C)

Specially, if £ is even, then ZeeE(C) fi(e) > 2 for each i € {1,2,...,d}.
Thus, we have

d d
20<y Y fle)= Y0 D ofile)s Y 1=t

i=1 e€ E(C) e€E(C) i=1 e€E(C)

Therefore, when ¢ is odd, d’.(G) < ¢; when £ is even, d(G) < %.
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If dy.(G) = ¢, then £ is odd and the two inequalities occurring in (1)
become equalities. Hence for the SCD family {fi, f2,..., fa} on G with
d=d, c(G’) and each shortest cycle C, 3 g ¢ fi(e) = 1 for each function

fi and 2;:1 fi(ey=1forallee E(C). O

Theorem 2.3 immediately implies the following Nordhaus-Gaddum type
result.

Corollary 2.4 If both G and G have cycles, then
d4o(G) + d3 (G) < 2|V(G)I.

The upper bound in Corollary 2.4 is sharp for G = Cs (see Theorem
3.1).

Theorem 2.5 If G is a graph of size m, then
7;c(G) : d.,sc(G) <m.

Moreover, if v, .(G) - d,.(G) = m, then G has at least one cycle and for
each SCD family { f1, f2, ..., fa} on G with d = d,(G), every function f; is
a v..(G)-function and TL_, fi(e) = 1 for all e € E(G).

Proof. Let {f1, f2,..., fa} be an SCD family on G with d = d,.(G).
Then

d-7,(G) = Zv,c(c)<2 > file= Y Zf.(e)<m ()

i=1 i=1 e€E(G) ecE(G) i=1

Ifv,.(G)-d;,.(G) = m, then by Theorem A, the graph G has at least one
cycle and the two inequalities occurring in (2) become equalities. Hence, for
the SCD family {f1, f2, ..., f4} on G and for each i, ZeeE(G) fi(e) = 75.(G).
Thus each function f; is a «,.(G)-function and Zle fi(e) = 1 for all
ec E(G). O

Corollary 2.6 Let G be a graph of size m and order n. If G has at
least one cycle and 2n — m < 3, then

d,.(G) < | J-

m— 2n+4
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Proof. From the assumption of this corollary we know that G is not a
tree. Combining Theorem C with Theorem 2.5 we deduce that

(m =2n+ 4)d.’9c(G) < 7.;c(G) ' dfvc(G) <m.

It follows from 2n—m < 3 that m—2n+4 > 1 and thus, d.(G) < | ;=53]
(]

Corollary 2.6 directly implies the following result.
Corollary 2.7 d,.(K35) <2, dj.(Ks) <2, d}o(Kn)=1forn>T17.

From Corollary 2.7 we can see that for any complete graph K, (n > 5)
the upper bound in Corollary 2.6 improves this one in Theorem 2.3.

Theorem 2.8 Let G be a graph containing at least one cycle and of
size m. Then

Ye(G) + d5(G) Sm + 1.

If v, (G)+d,.(G) = m+1, then v,.(G) =1, d,.(G) =m, and hence, G is
an odd cycle.

Proof. It follows from Theorem 2.5 that

m
Yse(G) + dge(G) < O d4e(G)-
According to Theorem 2.3, we have 1 < d .(G) < m. Using these bounds
and the fact that the function g(z) = m/z+z is decreasing for 1 <z < /m
and increasing for v/m < z < m, we obtain

Y2e(G) + do(C) S max{l +m,m + 1} =m + 1,

and the desired bound is proved.
Now assume that v/, .(G) +d}.(G) = m + 1. The above inequality leads

to
m

m+1=7(G) + d;(G) € 5= +d,.(G) <m+1.
d5c(G)
Since E(G) # 0, then v..(G) # m by Theorem B. This implies that
d\.(G) = m and v..(G) = 1. Let £ be the length of the shortest cycle
of G. 1t follows from m = d} ,(G) < £ < m that £ = m is odd and then

G=C,. O
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3 Value of d}, for some graphs

In this section we investigate the value of d, for cycles, complete graphs,
fans, complete bipartite graphs and wheels. We first consider odd cycles.

Theorem 3.1 d,(Czp+1) =2p+ 1 for pe Z*.
Proof. Let E(02p+1) = {eo,el, ...,egp} and define

file:) = -1 i=G-Dp,(j—-1p+1,..(-p+p-1;
7 1 otherwise,

for j = 1,2,...,,2p + 1, where the subscripts of e; are taken module 2p +
1. It is not difficult to check that each f; is an SCDF on Czp41 and
{fl,fz,...,f2p+1} is an SCD famlly on 02p+1. This yields d;c(02p+1) =
2p+1 by Theorem 2.3. O

Theorem 3.1 shows that the upper bound in Theorem 2.5 is sharp since
7:c(Cp) = 1 for any odd positive integer p and the upper bound in Theorem
2.3 is also sharp when ¢ is odd.

Theorem 3.2 d;.(C2p) = max{d|d < p and d is odd} for p > 2.

Proof. Let E(C3p) = {eq,e1,...,e2p—1} and denote dy = max{d | d <
p and d is odd}. Define

-1 i=0G-Dp-1),0-e-)+1,..,
filei) = G-D-1)+p-2
1 otherwise,

for j = 1,2,...,do, where the subscripts of e; are taken module 2p. It is not
difficult to check that each f; is an SCDF on Cj, and {fi, fo,..., f4,} is an
SCD family on Cy,. Hence, d} (Cap) > do.

Suppose there exists an SCD family {f1, f2,..., fa} on Ca, with d > do.
Then we construct a matrix A = (ai;)2pxd, Where a;; = f;(e;), for i =
0,1,..,2p—1and j = 1,2,...,d. Since each f; is an SCDF on Cy,, every
column of A contains at most p — 1 elements -1, and then A contains at
most (p — 1)d elements -1. On the other hand, since 5 f1, f2y oy fa} is an
SCD family on Cyp, every row of A contains at least [§] elements -1, and
thus, A contains at least | |2p elements -1. If d is even, then

d d
(p—-1d<pd= 3P = l5J2p,
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which yields a contradiction. So d is odd. Since d > dg and dp is the largest
odd number which is no more than p, we have d > p. However, Theorem
2.3 implies d < p, a contradiction. So, d}.(Csp) < do.

From the discussion above we obtain d},(Csp) = do = max{d | d <
pand disodd}. O

According to Theorem 3.2 we have d), .(Cyp42) = 2p+1 for p > 1, which
shows that the upper bound in Theorem 2.3 is sharp when £ is even.

Theorem 3.3 Ifn > 2, then

2 n=2;
di(Kn)=4¢ 3 n=3,4;
1 n>5.

Proof. Theorem 2.1, Theorem 3.1 and Corollary 2.7 imply d} (K2) = 2,
d..(K3) = 3 and d.(K,) = 1 for n > 7, respectively. So we only need to
consider the case n = 4,5, 6.

First we consider the case n = 4. Let V(K4) = {vo,v1,v2,vs} and

define
€ = YoV, V2U3;

-1

f l(e)={ 1 otherwise,
-1
1

€ = U1V2, UgVs;
otherwise,

fa(e) = {

_ | -1 e=wgvz,v1v3;
f3(e)"{ 1 otherwise.

It is not difficult to check that fi, f2, f3 are signed cycle dominating func-
tions on K4 and {fi, f2, f3} forms an SCD family on K4. Thus d;, .(K4) > 3.
Combining with Theorem 2.3 we have d} (K4) = 3.

Next we consider the case n = 5. Suppose to the contrary that d’, . (Ks) >
2. Then by Theorem 2.3, we have 2 < d} (Ks) < 3. For any SCDF on
K5, at most two edges can be assigned to —1, otherwise there must exist a
3-cycle containing at least two —1 edges, which contradicts the definition
of an SCDF. Also we note that there are altogether 10 edges in Kg. So
at least four edges are assigned to 1 by all functions in any & (Ks)-SCD
family, which contradicts the definition of an SCD family. Therefore, we
have d} (Ks) = 1.

Finally we consider the case n» = 6. By a similar argument as in case
n = 5, we deduce that d/_(Ks) = 1, where we need to note that for any
SCDF on Kjg, at most 3 edges can be assigned to —1 and there are alto-
gether 15 edges in Kg. O
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A fan of order n is a graph obtained from a path P,_; and a vertex v
by joining it to each vertex of P,_;, denoted by P,_; V K.

Theorem 3.4 Let G = P,_; V K; be a fan of order n > 3, then
dye(G) = 3.

Proof. Let V(Pn_1) = {v1,v2,...,vn-1} and V(K1) = {v}. Assume,
without loss of generality, that n is odd. Then define

file) = -1 e =v1v2,0203,..., Un—2Vn—1;
! 1 otherwise,

fale) = -1 e =wv,vvs,...,00n_2;
2 1 otherwise,

_ ] -1 e=wv,vvy,..,v05_1;
fs(e) _{ 1 otherwise.

It is easy to see that {f1, f2, f3} is an SCD family on G. Combining this
with Theorem 2.3 we deduce that d,,(G) =3. O

Theorem 3.5 d;, (Kpq) =1 for p,g > 2.

Proof. Suppose to the contrary that d; (K, ) > 2. Since the length of
the shortest cycle of K 4 is 4, it follows from Theorem 2.3 that d} (Kp,q) <
2. Therefore, d;,.(Kp,q) = 2. For any SCDF on K, 4, at most one edge can
be assigned to —1, otherwise there must exist an induced 4-cycle containing
at least two —1 edges, which contradicts the definition of an SCDF. Also
we note that there are altogether pg (> 4) edges in K, 4. So at least two
edges are assigned to 1 by all functions in any d;_(Kp,,)-SCD family, which
contradicts the definition of an SCD family. Therefore, d} (K,,q) = 1 for
pg22 0O

A wheel W,, = C,, V K of order n + 1 is a graph obtained from a cycle
C,, and a vertex v by joining it to each vertex of C,,.

Theorem 3.6 Let W,, = C, V K1 be a wheel with n > 3, then

, _J 1 n=4,5%
dsc(W'") -{ 3 otherwise.

Proof. Note that W,, have n + 1 induced cycles altogether, where one
induced n-cycle and n induced 3-cycles. Since the length of the shortest
cycle is 3, we have d, (W,) < 3.
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Firstly, we consider the case n = 4. Suppose to the contrary that
dy.(Wy) 2 2. Then 2 < d,.(W,) < 3. For any SCDF on Wy, at most two
edges can be assigned to —1, otherwise there exists either a 3-cycle or a
4-cycle containing at least two —1 edges, which contradicts the definition
of an SCDF. Also we note that there are altogether 8 edges in Wy. So
at least two edges are assigned to 1 by all functions in any d (W4)-SCD
family, which contradicts the definition of an SCD family. Therefore, we
have d, (W) = 1.

Secondly, we consider the case n = 5. By a similar argument as in
case n = 4, we deduce that d,.(Ws) = 1, where we need to note that for
any SCDF on W5, at most 3 edges can be assigned to —1 and there are
altogether 10 edges in Ws.

Thirdly, we consider the case n = 8. Note that for any SCDF on Wy,
at most 5 edges can be assigned to —1 and there are 16 edges in Wj in all.
So by a similar argument as in case n = 4, we deduce that d, (Ws) = 1.

In the following we only need to consider the case n > 3 and n # 4,5, 8.
Let V(Cr) = {vo,v1,---,Un-1} and V(K;) = {v}. We distinguish three
cases as follows.

Case 1. n =0 (mod 3).

Define

file) = -1 e =vwy,vvs,...,VV0pn—3, V102, Va¥5, ..., Un—2Un—1;
1 1 otherwise,

fale) = -1 e =uwvv,vvy4,..., VVn_2,V2U3, UsVg, ..., Un—10;
2 1 otherwise,

fale) = -1 e =vvz,vvs,...,VUn_1,YoV1,U3V4, ..., Un—3VUn—2;
1 otherwise.

It is not difficult to check that {fi, f2, f3} is an SCD family on W,, for
n = 0 (mod 3). Recall d}.(W,,) < 3. So d; (W,) = 3, where n = 0 (mod 3).

Case 2. n=1 (mod 3) and n # 4.

Define

-1 e = vvg,vV3, ..., VUn_gq, U1V2, V45, ...,
fi(e) = Un—3Vn—2, Un-2Un-1;
1 otherwise,
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fa(e) = {
fa(e) = {

—1 e = vvy,vvy, .y VU3, VUn_1,V2V3,

VsV «++y Un—5Un—4;
1 otherwise,

—1 e =wvvg,vvs,..., VUn_2, VoU1, U3V4, ...,

VUn—4Un—3,Un—-1v0;
1 otherwise.

It is easy to see that {f1, f2, f3} is an SCD family on W, for n =1 (mod 3)
and n # 4. So d,.(W,,) =3, where n =1 (mod 3) and n # 4.

Case 8. n =2 (mod 3) and n # 5, 8.

Define
fi(e) ={ _i
fa(e) = { —i

-1
fa(e) = {
1

€ = VUVg, YV3, ..., VUp-2, V1V, Uq¥s, ...

otherwise,

€ = YV, VU4, ..., V-1, V2V3, Us¥s, ...

otherwise,

€ = YV, VVs, ..., VUn_3, VoV1, V34, .

Un-1Y0;
otherwise.

1 Un—4qUn-3;

1y Un—3Un—-2;

s Un—2Un—1,

It is not difficult to check that {fi, f2, fa} is an SCD family on W, for
n =2 (mod 3) and n > 11. So d},(W,) = 3, where n = 2 (mod 3) and

n#5,8 0O
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