Implicit degree sum condition for long cycles™
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Abstract: For a vertex v of a graph G, Zhu, Li and Deng introduced the
concept of implicit degree id(v), according to the degrees of the neighbors
of v and the vertices at distance 2 with v in G. For a subset S of V(G),
let i{A2(S) denote the maximum value of the implicit degree sum of two
vertices of S. In this paper, we will prove: Let G be a 2-connected graph
on n > 3 vertices and d be a nonnegative integer. If iA2(S) > d for each
independent set S of order £(G) + 1, then G has a cycle of length at least
min{d, n}.
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1 Introduction

In this paper, we consider only finite, undirected and simple graphs. No-
tation and terminology not defined here can be found in [3]. Let G =
(V(G), E(G)) be a graph with vertex set V(G) and edge set E(G), and H
be a subgraph of G. For a vertex v € V(G), Ny(u) and dy(u) denote the
set and the number of vertices adjacent to u in H, respectively. We call
Ny (u) and dg(u) the neighborhood and degree of u in H, respectively. If
H = G, we use N(u) and d(u) in place of Ng(u) and dg(u), respectively.
We use Na(u) denote the set of vertices which are at distance 2 with u in
G, a(G) and «(G) denote the independence number and the connectivity
of G, respectively.
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A graph G is called hamiltonian if it contains a hamiltonian cycle, i.e a
cycle containing all vertices of G. Degree condition is an important type of
sufficient conditions for the existence of hamiltonian cycles in graphs. The
following result due to Ore is classical.

Theorem 1 ([8]). Let G be a graph on n > 3 vertices. Ifd(x) +d(y) 2 n
for every pair of nonadjacent vertices = and y, then G is hamiltonian.

By considering the relationship between the independence number and
the connectivity of a graph, Chvétal give a sufficient condition for a graph
to be hamiltonian.

Theorem 2 ([4]). Let G be a 2-connected graph. If a(G) < k(G), then G
is hamiltonian.

Next, we consider the length of a longest cycle, called circumference,
denoted by ¢(G). Many researchers have estimated the lower bound of the
circumference of graphs. The following result is famous.

Theorem 3 ([2], [5]). Let G be a 2-connected graph on n > 3 vertices.
If d(z) + d(y) = d for every pair of nonadjacent vertices  and y, then
¢(G) 2 min{d, n}.

For a nonempty subset S of V(G), let Ax(S) = max{}_ .y d(z) : X
is a subset of S with k vertices}. Yamashita [9] generalized Theorem 3 as
follows.

Theorem 4 ([9]). Let G be a 2-connected graph on n > 3 vertices. If

Az(S) > d for every independent set S of order k(G) + 1, then ¢(G) >
min{d, n}.

In order to generalize and improve the classic results of hamiltonian
problem, Zhu, Li and Deng [10] gave the concept of implicit degree of a
vertex.

Definition 1 ([10]). Let v be a vertez of a graph G and k = d(v) — 1. Set
M; = max{d(u) : u € Na(v)} and ms = min{d(u) : u € Na(v)}. Suppose
dy <dy <dzg<...<dp <diy1 < ... is the degree sequence of vertices in
N(v)U Na(v). If Na(v) # 0 and d(v) > 2, define

ma, if  di <my;
d*(v) = { dr41, if  dig1 > My
di, otherwise,

then the implicit degree of v is defined as id(v) = max{d(v),d*(v)}. If
Na(v) =0 or d(v) < 1, then id(v) = d(v).
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Clearly, id(v) > d(v) for each vertex v from the definition of implicit
degree. For S C V(G) with S # 8, let iAL(G) = max{d  cxid(z) : X
is a subset of S with k vertices}. The authors [10] used implicit degree
sum instead of degree sum in Theorem 3, and got a lower bound of the
circumference of graphs.

Theorem 5 ([10]). Let G be a 2-connected graph on n > 3 vertices. If
id(u) + id(v) > d for each pair of nonadjacent vertices u and v in G, then
¢(G) 2 min{d,n}.

In 2012, by considering the implicit degree sum of k£ + 1 independent
vertices, Li, Ning and Cai {7] gave a sufficient condition for a k-connected
graph to be hamiltonian.

Theorem 6 ([7]). Let G be a k-connected graph on n > 3 vertices. If
the implicit degree sum of any k + 1 independent vertices is more than
(k +1)(n — 1)/2, then G is hamiltonian.

Motivated by the results of Theorem 3 and Theorem 5, we use iA2(S)
in place of A(.S) and obtain the following main result.

Theorem 7. Let G be a 2-connected graph onn > 3 vertices. IfilAy(S) > d
for every independent set S of order k(G) + 1, then ¢(G) > min{d,n}.

Remark 1. Theorem 6 is a corollary of Theorem 7. ( Proof. Suppose that
G satisfies the assumption of Theorem 6, and S is any independent set in
G of order k(G) + 1. Then since the implicit degree sum of vertices in S
is more than (k(G) + 1)(n—1)/2, i{A3(S) > n. Hence G is hamiltonian by
Theorem 7.)

We postpone the proof of Theorem 7 in next section. Here we give an
example to show that Theorem 7 is much stronger than Theorem 4 and
Theorem 5.

Remark 2. The graph in Fig.1 shows that Theorem 7 is much stronger
than Theorem 4 and Theorem 5. It is easy to check that G is a 2-connected
graph on n = 14 vertices. Choose S = {vg,v3,v4}, then Ay(S) = 6 and
by using Theorem 4, we can only get that ¢(G) = 5. By the definition of
implicit degree, we can get that id(vy) = 3, id(vs) = id(vs) = 6, id(v) =
id(vs) = id(ve) = id(v7) = 5 and id(v;) = 6 for 8 < j < 14. So by using
Theorem 7, we can get that ¢(G) > 10. But by using Theorem 5, we can
only get that ¢(G) > 8.
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2 Proof of Theorem 7

A path P connecting =z and y is called an zy-path. For a subgraph H
of G, an zy-path P is called an H-path if V(P)NV(H) = {z,y} and
E(P)Nn E(H) = 0. An zy-lollipop is a graph C U P where C is a cycle
and P is an zy-path such that V(P)NV(C) = {y}. A path P is called a
maximal path of G if the order of each path in G containing P equals the
order of P.

For a cycle C in a graph G with a given orientation and a vertex z in C,
z* and £~ denote the successor and the predecessor of = in C, respectively.
Forany IC V(C),let I- ={z:zt €I} and I* = {z: z~ € I}. For
two vertices z and y in C, we define £Cy to be the path of C from z to y.
yCz denotes the path from y to z in the reversed direction of C. A similar
notation is used for paths.

For a path P = 1,2, ...x, of a graph G, let lp(z;) = max{i : z;x, €
E(G) and z; € V(P)} and lp(zp) = min{i : z;z, € E(G) and z; € V(P)}.
Set Lp(z1) = Tip(zy) and Lp(Tp) = Tip(z,)-

The proof of Theorem 7 is based on the following lemmas.

Lemma 1 ([6]). Let G be a 2-connected graph and X be a subset of V(G).
If | X| < k(G), then G has a cycle that includes every vertex of X.

Lemma 2 ([1]). Let G be a 2-connected graph and C be a longest cycle of
G with length at most d — 1. If P is an zy-path in G such that |V(C)| <
|V(P)|, then d(z) + d(y) < d.

Lemma 3 ([7]). Let G be a 2-connected graph and P = 123 ...z, be a path
of G. If zyz, ¢ E(G), and d(u) < id(z,) for any u € Ng_y(p)(z1)U {1},
then either

(1) there exists a vertexr x; € Np(z1)™ such that d(z;) > id(z1); or
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(2) Np(z1)~ = Np(z1) U {z1} — {Lp(21)}, d(z;) < id(z1) for any vertez
z; € Np(z1)~ and id(z;) = min{d(v) : v € Na(z1)}.

By similar argument as in [10], we can get the following lemma.

Lemma 4. Let G be a 2-connected graph and P = uyuz ... up (withu; =a
and up = b) be a mazimal path such that lp(a)—Ip(b) is as large as possible.
If ¢(G) < p, then Np(a)~ # Np(e)U {a} — {Lp(a)}.

Proof. Suppose to the contrary that Np(a)~ = Np(a) U {a} — {Lp(a)}.
Then Np(a) = {uz,us,...,Up(a)}- Since ¢(G) < p, lp(b) > lp(a). Since G
is 2-connected, G — {Lp(a)} is connected. Therefore, there exist some
u; € Np(a)~ and some u; € V(up(a)4+1Pb) such that uw;u; € E(G).
Then P'(u;, b) = uiui—1 ... U1%i41%i42 - .. Up is & maximal path such that
lpr(us) = Upi(b) 2 § = lp:(d) > lp(a) — lp(b). This contradicts the choice of
P. m]

Proof of Theorem 7. Suppose to the contrary that C is a longest cycle
of length at most min{d,n} — 1. Clearly, G — V(C) # §. Without loss
of generality, we give C a clockwise direction. Let k = x(G) and H be a
component of G — V(C). By Lemma 1, we have |V(C)| > k. Since G is
k-connected, [IN(H)NV(C)| > k. Let {v1,va,...,u} C N(H)NV(C) and
suppose vy, Vs,. ..,V occur on C in this order.

For 1 <i < j<k,let Q;; be a maximal C-path connecting v; and v;
such that V(Q:;) N V(H) # 0. For i = 1,2,...,k, let CU P, be an z;v}-
lollipop in G such that P; is as long as possible. Without loss of generality,
we orient P; from x; to v} fori =1,2,...,k. Thenfor 1 <i<j <k, by
the choice of P; and Q;;, Pi; = z:Pw; Cv;jQ; ;v:Cv} P;z; is a maximal
path of G such that |V(P;;)| > |V(C)|. For 1 £ i < j < k, we choose
such P;; such that lp, ,(z;) — lp, ;(z;) is as large as possible. By similar
argument as in [10], we can get the following claim.

Claim 1. V(P)NV(H) =0 and V(P)NV(P;) =P for 1 <i<j<k.

Proof. Suppose there exists a vertex x € V(P;) N V(H) for some i with
1 < i < k. Since H is connected, there exists a path P’ connecting z and
v;. Then C’' = v} Cv;P'zP,v} is a cycle longer than C, this contradicts
the choice of C. Thus V(P)NV(H) =0 foreach i with 1 <i<k.
Suppose there exists a vertex y € V(P;)NV(P;). Then C" = v} Cv;Q; ;
v;Cv} PjyP} is a cycle longer than C, this contradicts the choice of C.
Thus V(P;) NV (P;) =0 for each i,j with 1 <i < j < k. O

Claim 2. For any 1 < i < j < k, id(z;) + id(z;) < d.
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Proof. Suppose to the contrary that there exist some ¢ and j with 1 <
i < j < k such that id(z;) + id(x;) > d. Since P;; is a maximal path of G
such that [V (P, ;)| > |[V(C)|, by Lemma 2, we can assume without loss of
generality, that d(z;) < id(z:).

For convenience, set P;; = y1y2...yp With y; = z; and y, = z;. Since
lpi,j (Z,) - lPi,j (zj) is as large as pOSSible’ NP&,j (zi)- 7& NPi,j (:L‘,) U {(8;'} -
{Lp, ;(x:)} by Lemma 4. Then by Lemma 3, there exists a vertex y, €
Np, ;(z:)~ such that d(y,) > id(z;). Let

P = yapi,jylya+lpi,jypv

which is a another maximal path of G such that V(C) c V(P’). If d(y,) =
id(yp), then d(ys) +d(yp) = id(y1) +1d(yp) > d, this contradicts Lemma 2.
Next, we suppose d(y,) < id(yp). If s +1 < Ip, ;(z;), similarly, there
exists a vertex y; € Np, ,(z;)* such that d(y;) > id(x;). Then P” =
YsPi j11Ys+1P: jye—1YpPi sy is @ maximal path of G with V(C) C V(P")
and d(y,) + d(ye) > id(z;) + id(z;) > d. This contradicts Lemma 2.
So let s+ 1 > lp, ;(x;). Set

A= {y: 9141 € Np,;(z;) and | < s},

B={y:yi—1€ Np,_,(z;)and I > s+1} and
C ={yi:y141 € Np, ;(x;) > s+ 1 and [is as small as possible}.
Clearly, z; € B and [C| = 1. Then |A] + |B\ {z;}| + |C| = d(z;),
Yip, ,(z5)-1 € AN Nz(z;). Since y, ¢ N(z;), C C Na(z;). By the definition
of id(x;), there is a vertex y; € (AU B) — {z;} such that d(y:) > id(z;).
When y, € B — {.’Bj}, set )

~

P= yapi,jfviysﬂR‘,jyt-wjpi,jyt-
When u; € A, set
P= yspi,jyt+lzj-Pi,jys-}-lxiPi.jyt-

Then P is a maximal path such that V(C) C V(P) and d(y,) + d(v:) >
id(z;) + id(z;) > d. This contradicts Lemma 2. 0

Hence by Claim 2, id(x;) + id(z;) < d for any 1 < i < 7 < k. Without
loss of generality, we may assume id(z;) = max{id(z;) : 1 < ¢ < k}.
Let C U Py be an zgv;-lollipop in G, where P, is as long as possible and
zg € V(H). Without loss of generality, we orient Py from zp to v;. Then
Py = 20Pov1Cvi Pixy is 2 maximal path of G such that V(C) C V(Po,1).
We choose such Py ; such that lp, , (z0) — Ip,, (1) is as large as possible.
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Hence by similar argument as in the proof of Claim 2, we can get id(zo) +
id(z1) < d. Since id(z;) = max{id(z;) : 1 < i < k}, id(zo) + id(x;) < d
for each i = 1,2,...,k. Therefore, by Claim 1, § = {z¢,21,...,Zx} is an
independent set of G of order £+ 1 and iA3(S) < d, which contradicts the
hypothesis of Theorem 7. a
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