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Abstract

A broadcast on a graph G is a function f : V — {0,...,diam(G)}
such that for every vertex v € V(G), f(v) < e(v), where diam(G)
denotes the diameter of G and e(v) denotes the eccentricity of vertex
v. The upper broadcast domination number of a graph is the maxi-
mum value of 3 ., f(v) among all minimal broadcasts f for which
each vertex of the graph is within distance f(v) from some vertex v
having f(v) > 1. We give a new upper bound on the upper broad-
cast domination number which improves a previous result of Dunbar
et al. in [Broadcasts in graphs, Discrete Applied Mathematics 154
(2006) 59-75]. We also prove that the upper broadcast domination
number of any grid graph Gm,n = PmOP, equals m(n — 1).

Keywords: Grid graph, Broadcast, Dominating broadcast, Upper broad-
cast domination number.

1 Introduction

Let G = (V, E) be a graph of order n = |V| and size m = |E|. The eccen-
tricity e(v) of a vertex v of G is the maximum distance from v to any other
vertex of G. The minimum eccentricity in G is the radius rad(G) of G,
while the maximum eccentricity in G is its diameter diam(G). For a vertex
v € V, the open neighborhood of v is the set N(v) = {u € V : wv € E} and
the closed neighborhood of v is the set N[v] = N(v) U {v}. The degree of v
in the graph G, denoted d(v) (or dg(v) if there is a risk of confusion), is the
size of the open neighborhood of v. For a set S C V, its open neighborhood
is N(S) = U,es N(v) and its closed neighborhood is N[S] = N(S)U S. For
any v € S, the private neighborhood pn[v, S] of v with respect to S is the set
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of all vertices in N[v] that are not contained in the closed neighborhood of
any other vertex in S, i.e., pn[v,S] = N[v]| — N[S — v]. S is an irredundant
set if for every vertex v € S, pn[v, S] # 0. Let ir(G) (resp. IR(G)) equal
the minimum (resp. maximum) cardinalities of a maximal irredundant set
in G.

A function f: V — {0,...,diam(G)} is a broadcast of G if for every ver-
texveV, f(v) <e(v).

Given a broadcast f, a broadcast vertez (or f-dominating vertez) is a vertex
v for which f(v) > 0. The broadcast neighborhood of a vertex u is the set
Nffu] = {v : d(u,v) < f(u)}. The set of all broadcast vertices is denoted
V#(G), or briefly V* if there is no potential ambiguity. The broadcast
neighborhood of f is N¢[V*+] = Uyey+Ng[v]. If u € V't is a broadcast ver-
tex, v € V and d(u,v) < f(u), then the vertex v hears a broadcast from u
and u broadcasts to (or f-dominates) v. The set of vertices that a vertex
v € V can hear is defined as H(v) = {u € V* : d(u,v) < f(u)}. For a vertex
v € V'*, the private f-neighborhood png[v] is the set {u € V' : H(u) = {v}}.
A vertex v is its own private f-neighbor if v € pny[v]. The cost of a broad-
cast is f(V) =2, cy+ f(v).

A broadcast f of some type is said to be minimal (resp. mazimal) if there
does not exist a broadcast g # f of the same type such that g(u) < f(u)
(resp. g(u) > f(u)), forallue V.

A broadcast f is a dominating broadcast if every vertex in V — V* is
f-dominated by some vertex in V* or equivalently, if for every v € V,
|H(v)| = 1. The maximum (resp. minimum) cost of a minimal dominating
broadcast of a graph G is the upper broadcast domination (resp. broadcast
domination) number and is denoted I',(G) (resp. 7»(G)). A minimal domi-
nating broadcast of cost equal to I'y(G) (resp. v(G)) is a I'p-broadcast (resp.
Ys-broadcast). If f is a minimal dominating broadcast such that f(v) = 1
for each v € V', then V't is a minimal dominating set of G, and the max-
imum (resp. minimum) cost of such a broadcast is the upper domination
number I'(G) (resp. domination number v(G)).

A broadcast f is an independent broadcast if for every vertex v € VT,
N¢[v] N V+ = {v}, or equivalently, |[H(v)| = 1. The maximum (resp. min-
imum) cost of a maximal independent broadcast of G is the broadcast in-
dependence (resp. lower broadcast independence) number and is denoted
Bs(G) (resp. ip(G)). A maximal independent broadcast of cost equal to
Be(G) (resp. i(G)) is a Bp-broadcast (resp. ip-broadcast). If f is a maximal
independent broadcast such that f(v) =1 for each v € V*, then V* is a
mazimal independent set of G, and the maximum (resp. minimum) cost of
such a broadcast is the independance number Bo(G) (resp. lower indepen-
dence number i(G)).
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In 1978, Cockayne, Hedetniemi, and Miller [9, Prop. 4.2] first established
the following inequality chain. These inequalities are primarily based on two
observations: (i) every maximal independent set in a graph G is a minimal
dominating set, and (ii) every minimal dominating set in a graph G is a
maximal irredundant set.

Theorem 1. For any graph G,
ir(G) < ¥(G) < i(G) £ Bo(G) £ T(G) < IR(G).
In 1988, Favaron [15, Prop. 4] established the following result:

Theorem 2. For any graph G of order n and minimum degree 4(G),
IR(G) < n—4(G).

From Theorem 1 and Theorem 2, we deduce that I'(G) < n — 6(G). In
Section 2, we prove that n — §(G) is also an upper bound of I'y(G). Note
that the difference between I';(G) and JIR(G) can be large since the paths
P, of order n > 2 satisfy I'y(P,) =n — 1 and IR(P,) = [%].

Broadcast domination was introduced by Erwin [13] in his Ph.D. thesis,
in which he discussed several types of broadcast parameters and relation-
ships between them. Many of these results appeared later in Dunbar et al
[12]. Since then several papers have been published on various aspects of
broadcasts in graphs, including the polynomial complexity of computing
the broadcast domination number of arbitrary graphs [17, 18], the deter-
mination of the broadcast domination number for several classes of graphs
[2, 3, 6, 11, 24], and a characterization of the classes of trees for which the
broadcast domination number equals the radius [19] or equals the domina-
tion number ¥(G) [10, 20, 22]. The exact values of B [5] and 7, [12] have
been determined for arbitrary grid graphs. Other work on broadcast dom-
ination includes (7, 8, 21, 23, 24, 25]. In this paper, we give a new upper
bound for the upper broadcast domination number Iy, for arbitrary graphs,
which improves on the bound previously obtained by Dunbar et al. [12],
and we determine the value of I'y(Gm,n) for arbitrary grid graphs Gm »,
2 < m £ n, which answers a question raised in Dunbar et al [12].

2 New upper bound on the upper broadcast
domination number.

It was shown in [12, Obs. 1] that for any graph G,
7(G) < min{y(G),rad(G)} < max{['(G),diam(G)} < I'v(G).
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Concerning the upper bound on I'y(G), the size of a graph constitutes the
only known value.

Theorem 3. [12, Thm. 5] If G = (V, E) is a graph of size m = |E|, then
I'y(G) < m with equality if and only if G is a nontrivial star or path.

In this section, we shall establish a much better upper bound on I';(G) than
that given in Theorem 3. In order to do this, we will need some preliminary
results.

We say that a vertex or edge of G lies between two vertices v and v if that
vertex or edge is on some u — v geodesic (shortest u — v path).

Theorem 4. [13, Thm. 2.1.2] Let f be a dominating broadcast on a graph
G. Then f is minimal if and only if the following two conditions are satis-
fied:

1. Every vertex v with f(v) > 2 has a private f-neighbor that is at
distance f(v) from v, and

2. every vertez v with f(v) = 1 has a private f-neighbor in N[v].

Lemma 1. [13, Lem. 3.2.1] Let f be a dominating broadcast on a graph G,
u, v € V1 with u # v, and let uP, v? be private f-neighbors of (respectively)
u and v. For every pair z, y of vertices of G, if x lies between u and u?
and y lies between v and VP, then z # y.

Lemma 2. Let f be a minimal dominating broadcast on a graph G =
(V, E). If max(f) = maX,cy+ {f(v)} > 1, then

1. the broadcast g, defined as g(v) = f(v) — 1 for every v € V", and
g(v) = 0 otherwise, is a minimal dominating broadcast on the induced
subgraph G[N,[V*]], and

2 [V < VAN,V
Proof.

1. The function g is obviously a dominating broadcast on the subgraph
G[N,4[V;t]]. We only have to prove that g is minimal. Let v be a
broadcast vertex of Ny[V;t]. From Theorem 4, v has a private f-
neighbor (denoted vP) such that d(v,v?) = f(v) > 2. Let u be an
adjacent vertex to vP lying between v and vP. The vertex u is a
private g-neighbor of v, for otherwise there would exist a broadcast
vertex w, w # v, such that d(v?,w) = d(u,w)+1 L g(w)+1 = f(w)
and then w would f-dominate v, a contradiction. From Theorem 4,
we infer the minimality of g.
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2. The inequality |Vf+[ < [V \ Ng[V;t]| comes from the fact that the
number of non g-dominated vertices is at least equal to [VF|. O

In order to give an upper bound on I'y(G), let us define an elimination
process (on private neighborhoods) on a graph G = (V, E). Its principle is
to move from one iteration to the next one by deleting the set of private
neighbors and subtracting one unit to the cost of each broadcast vertex
whose the weight is different from 1. This procedure keeps the minimality
of the current dominating broadcast.

Input : A minimal dominating broadcast f on a graph G = (V, E)
with maz(f) > 1.
Output: A minimal dominating broadcast f; on G, with
maz(fi) = 1.
k = maz(f) = maxyev+ f(v) ;
Gr =G, Vi =V, fi:=f;
while £ > 1 do
ke—k-1;
forveV do
if fry1(v) > 1 then
| fi(w) = fes1(v) = 1;
else
| fe(v) =05
end
end
Vi o= ka [ka+];
G = G[Vj]
end

Theorem 5. If G is a graph of order n and minimum degree 6(G), then
I'y(G) < n — 6(G) and this bound is sharp.

Proof. Let G be a graph of order n and minimum degree §(G) and let f
be a I'y-broadcast on G. If max(f) = 1, then I'y(G) = I'(G) < n — §(G),
from Theorem 1 and Theorem 2. Let us now assume max(f) > 2 and let
Gk, ...,Gg,G; be the subgraphs obtained from the procedure above. By
Lemma 2, fi is a minimal dominating broadcast on G, and

Ve \Victl 2 V| VE=2,...,max(f).

For every v € V‘l*, fi(v) =1, da(v) = dg, (v), and v has a private neighbor
outside Vf':'. Hence,

[Vi| = 8(G) = |Vi| — d(v) = [V for every v € Vf':'.
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It follows,

n—6(G) = [Vil-8G)+(V|-|Wl)
= M|—6(G)+&"‘”|Vk\vk 1l
> eyt

Since 3per) | [ViH| = T's(G), we infer that Ty(G) < n — 6(G).

The bound is achieved for some classes of graphs. We can cite paths, stars
and complete graphs. Od

3 Upper broadcast domination number of grid
graphs.

The Cartesian product of two graphs G and H, denoted GOH, is a graph
with vertex set {(u,v) : v € V(G);v € V(H)}. Two vertices (u1,v;) and
(u2,v2) are adjacent in GOH if either u; = us and v; is adjacent to vz in
H or v; = v, and u, is adjacent to uy in G. The Cartesian product P,,,0P,
is called the m x n grid graph and is denoted G . The vertices in G, n
will be denoted v; ;, 1 <7 <m, 1 < j < n, and there is an edge between
v;,; and vy if and only if |i — k| + |j — | = 1. We will refer to the rows and
columns of a grid graph by R* = {v;1,...,v;»} and C7 = {v1,j,...,Vm ;}-
Denote by R(z) (resp. C(z)) the row (resp. column) to which a vertex z
belongs.

For m = 1, the grid graph is isomorphic to the path P,, and thanks to
Theorem 3, I'y(P,) = n — 1. Now suppose that 2 < m < n, and let S, ;
denote the square

{{vig, viger}h {vig, viers b {vit 1, Ve a1} {06541, Vit1,541}} D Gmyn. In
order to prove Theorem 6, let us start by proving the following two claims:

Claim 1. A geodesic path P, in G, n contains at most two edges from any
square S ;.

Proof. If P, contained all four sides of S; ;, then P, would contain a cycle.
Which is absurd. If P, contained three sides of S; ;, one could make P,
shorter by replacing those three sides with the other edge in the square,
which contradicts the assumption that P, is a geodesic.

Claim 2. The union of two pairwise disjoint paths P, and P, in Gmpn
contains at most two edges of any square S; ;.

Proof. If P, U P, contained three of the four sides of a square S; ;, then
P, U P, would necessarily have a common vertex. This contradicts that the
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paths P, and P, are pairwise disjoint.

Theorem 6. For every pair of integers m andn, 2 <m < n, ['y(Gm,a) =
m(n —1).

Proof. Let f be the following broadcast on G, 5, where 2 < m < n,

[ n-1if veC,
f (v)—{ 0 otherwise.

Since f is a minimal dominating broadcast, of cost f(V) = m(n — 1), it
follows that I'y(Gm,n) = m(n—1). Combining this inequality with Theorem
5, we already infer [',(G2,n) = 2(n — 1).

We now prove the inequality in the other direction for all integers m, n,
3 < m £ n (this proof is also valid for m = 2).

Let g be any minimal dominating broadcast on G, and V;t = {v1,..., v}
be the set of all broadcast vertices of Gy . In view of Theorem 4, each
v € V* has a private g-neighbor (denoted v?) such that either (i) g(v) =
d(v,vP), or (ii) g(v) = 1 and v = v”. For every broadcast vertex v, let P, be
any v —v? geodesic if g(v) > 1 and {e,}, where e, is any edge incident with
v if g(v) = 1. Dunbar et al [12] proved (see Proof of Theorem 3) that if €(v)
equals the set of all edges lying on v — vP geodesic, then e(u) Ne(v) = @ for
any two broadcast vertices, u and v. From this, we deduce that P,NP, =0
for any two geodesic paths P, and P,, that is U,cy+ P, is a collection
of pairwise disjoint geodesic paths in G, for any minimal dominating
broadcast.

From Claims 1 and 2, we can infer that |S;; N E(U,cy+P,)| < 2 for every
square S; ; in Gm n.

Now suppose that |E (Uvev;' P,}| > m(n —1) for some minimal dominating
broadcast g. Then, there are more edges in E(Uvev,+ P,) than horizontal
edges in G, ». By the pigeonhole principle, there is at least one square
S;; in G that contains at least three edges from E(Uuev;, P)), ie,
|5:,5 0 E(U, ey P)| > 2. This contradicts the fact |S;,; N E(Uyev+Py)| < 2
for every minimal dominating broadcast.

It follows, | E(Uyey+Py)| < m(n—1) for any minimal dominating broadcast
on G, n, and consequently, Ty(Gmn) < m(n—1). 0O

Remark 1. From the proof of Theorem 6, we can say:

1. If m < n, Gy n has only two distinct Ty-broadcasts f and g defined
by f(v) =n —1 (resp. gv) =n—1) if v € C! (resp. v € C*) and
Ff() =0 (resp. g(v) = 0) otherwise.

2. If m = n, Gy, has only four distinct T',-broadcasts f, g, h and i
defined by f(v) = n—1 (resp. g(v) = n—1, h(v) = n—1, i(v) = n-1) if
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v €C! (resp.v € C", v € R, v € R™), and f(v) = 0 (resp. g(v) =0,
h(v) =0, i(v) = 0) otherwise.

4 Conclusion.

We presented a new upper bound for the upper broadcast domination
number I'p for arbitrary graphs, which improves the bound established
in Dunbar et al. [12]. Among other broadcasting invariants, there is the
upper broadcast efficiency number I'ey(Gm,n). For a graph G, T'ep(G) is
defined as the maximum cost of a broadcast satisfying, for every ver-
tex v of G, |H(v)| = 1. For a grid graph, we proved that I',(Gm,n) =
m(n — 1) for every pair of integers m and n with 1 < m £ n. From
[12, Prop. 16] and [12, Cor. 19], we infer diam(Gmzn) < Tet(Gm,n) <
min{T's(Gm,n), Bo(Gm,n)}. Although I'y(Gm n) represents an upper bound
for Tes(Gm,n), Bo(Gm ) constitutes a better bound, since for every inte-
gers m and n, m £ n, Bp(Gp,n) = 2(diam(Grr ) — 1) = 2(m +n — 3) if
m < 4, and Bp(Gm,n) = [BE] if 5 < m, (m,n) # (5,5),(5,6) [5]. There-
fore, m + n — 2 < T'ep(Gm,a) < Bo(Gm,n), and in particular, for m < 4,
m+n—2 < Tep(Gmn) < 2(m +n — 3). This does not allow us to deduce
the exact value of I'ey(Gm,n), but just bounds. In fact, we shall prove that
Let(Gmn) = m+n —2, for every pair of integers mand n with1 <m <n
and m < 9 [1].

In [12], Dunbar et al. raised thirteen problems. Some of them are now
solved. For the fourth problem, Herke and Mynhardt in [19] were inter-
ested in the problem that concerns the characterization of trees satisfy-
ing 7(T') = rad(T'), while Cockayne, Herke and Mynhardt in [10], Myn-
hardt and Wodlinger in [22] and, Lunney and Mynhardt in [20] defined a
large class of trees satisfying v4(T") = v(T). Regarding the sixth problem,
Bouchemakh and Salhi in [3] determined the number of distinct efficient
broadcasts in paths. Concerning the grid graph, Dunbar et al. in [12] have
already determined the exact value of «, (see Th. 28) and 4, (see Cor. 12).
The ninth problem is the determination of the the values of each of the
broadcasting invariants for a grid graph. Bouchemakh and Zemir in [5]
solved this problem for B, in this paper Bouchemakh and Fergani deter-
mined the exact values of I'y, and for the upper broadcast efficiency number,
the paper is in preparation {1]. To conclude, we would like to present some
open problems. We are resuming the unsolved problems of Dunbar et al. in
[12] and state some new.

1. Can you characterize the class of graphs G of order n and minimum
degree §(G) with I'h(G) =n - 6(G) ?
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10.

11.

12.

13.

14.

15.
16.

. Under what conditions is I'(G) = diam(G) ?

Under what conditions is ['s(G) = I'ep(G)7

. Under what conditions is 7(G) = is(G)? [12]
. For which graphs G does v,(G) = v(G)? [12]
. For which graphs G does 7,(G) = rad(G)? [12]

For which graphs G is 75(G) < min{y(G),rad(G)}? [12]

What can you say about the class of minimum cost dominating broad-
casts, where the number of broadcast vertices is a minimum (or a
maximum)? {12]

. In a grid graph, what is the number of dominating broadcasts? inde-

pendent broadcasts ?

Can you construct linear algorithms for computing the values of each
of the broadcasting invariants for trees? [12]

Can you settle the complexity of the decision problems associated
with each of the broadcasting invariants? [12]

What are the values of each of the broadcasting invariants (not yet
determined) for an m x n grid graph? [12]

Can you develop Nordhaus-Gaddum bounds for the broadcasting in-
variants? [12]

Suppose you are allowed to assign only broadcast powers of 0, 1 or 2
to the vertices of a graph. This suggests the concept of the broadcast
domination number with limited broadcast power, say indexed by k,
which could give rise to the k-limited broadcast domination number
Yx6(G). What can you say about this invariant? [12]

Define and study irredundant broadcasts. [12]
Investigate graphs G and H of order n) and ns respectively, such that

(a) Ts(GOH) = min{n;,ne} max{T'y(G),T's(H)}. (The Cartesian
product of two graphs satisfies this equality)

(b) Ts(GOH) < min{ny, ne} max{I'y(G),I's(H)}.

(c) Ts(GOH) > min{ny, n2} max{T's(G), [s(H)}.
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