CLASSIFYING PENTAVALENT SYMMETRIC GRAPHS
OF ORDER 40p

BO LING}2 AND BEN GONG LOU?

ABSTRACT. A graph is said to be symmetric if its automorphism
group is transitive on its arcs. A complete classification is given of
pentavalent symmetric graphs of order 40p for each prime p. It is
shown that a connected pentavalent symmetric graph of order 40p
exists if and only if p = 3, and up to isomorphism, there are only

two such graphs.
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1. INTRODUCTION

In this paper, all graphs are assumed to be finite, simple, connected and
undirected.

Let I' be a graph. We denote by VI', EI', A" and Autl" its vertex
set, edge set, arc set and automorphism group, respectively. Then the
order of I" is the number of elements of VI", denoted by |V I'|. Let s be a
positive integer. An s-arc in a graph I' is an (s + 1)-tuple (vo,v1,: - ,¥s)
of s + 1 vertices such that (v;_1,v;) € Al for 1 <i < s and v,y # vi41
for 1 <i < s—1. Let X be a subgroup of Autl". We say I' is (X, s)-
arc-transitive if X is transitive on the s-arcs of I and we say I’ is (X, s)-
transitive if it is (X, s)-arc-transitive but not (X, s+1)-arc-transitive. In the
case where X = Autl", we say an (X, s)-arc-transitive or (X, s)-transitive
graph is an s-arc-transitive or s-transitive graph. In particular, we say O-
arc-transitive graph is vertez-transitive graph, and l-arc-transitive graph is
arc-transitive graph or symmetric graph.

Characterizing symmetric graphs with small valency is a current topic
in the literature. Since cubic and tetravalent graphs have been studied
extensively, it would be natural toward considering pentavalent graphs. For
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example, a characterization of pentavalent graphs has been studied in [4-
6,9, 11, 14, 15, 17]. In this paper, we classify pentavalent symmetric graphs
of order 40p with p a prime. By using the Magma codes in Appendices,
determining graph in this paper is more simple than some relative papers.

For a given small permutation group X, we can determine all graphs
which admit X as an arc-transitive automorphism group by using codes
in Appendices. Then there is an unique pentavalent symmetric graph of
order 120 admitting AsxDjoXZ2 as an arc-transitive automorphism group.
This graph is denoted by C}5y. There is an unique pentavalent symmetric
graph of order 120 which admits Ssx D¢ as an arc-transitive automorphism
group. This graph is denoted by C%,,. The main result of this paper is the
following theorem.

Theorem 1.1. Let I" be a pentavalent symmetric graph of order 40p, where
p is a prime. Then p = 3 and, up to isomorphism, there exist two such
graphs I'. Furthermore, Autl’, (Autl"), and I" are described in Table 1,
where v e VI.

r Autl’ (Autl’), | Girth | Diameter | Bipartite? | Cayley?
_C_' 20 A5 xD 10X Zg Dlo 6 6 Yes Yes
Cia0 SsxDio Dio 4 6 Yes Yes

TABLE 1. Pentavalent symmetric graphs of order 40p

The properties in Table 1 are determined with the help of the Magma
[1]. Furthermore, C},, is a Cayley graph on AsxZy, AgxZyo or AyxDyo
and C%,, is a Cayley graph on S5, SyxZs or (A4xZs):Z.

2. PRELIMINARY RESULTS

We give some necessary preliminary results in this section.

For a graph I" and a vertex-transitive subgroup X < Autl". Let N be an
intransitive normal subgroup of X on VI'. Denote Vv the set of N-orbits
in VI'. The normal quotient graph I'y is the graph with vertex set Vy and
two N-orbits B, C € Vy are adjacent in I'y if and only if some vertex of B is
adjacent in I' to some vertex of C. The following lemma ({10, Lemma 2.5))
provides a basic reduction method for studying our pentavalent symmetric
graphs.

Lemma 2.1. Let I be an X -arc-transitive graph of prime valency p > 2,
where X < Autl", and let N < X have at least three orbits on VI'. Then
the following statements hold.
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(i) N is semiregular on VI, X/N < Autl'y, and I'y is an X/N-arc-
transitive graph of valency p;

(ii) I is (X, s)-transitive if and only if I'y is (X/N, s)-transitive, where
1<s<S5o0rs="7.

By [17, Theorem 4.1] and [4, Theorem 1.1], we have the following lemma.

Lemma 2.2. Let I" be a pentavalent (G, s)-transitive graph for some G <
Autl’ and s > 1. Letv € VI'. Then the order of G, is a divisor of 2°-32.5.

From (7, pp.12-14], we may obtain the following proposition by checking
the 3-prime factor nonabelian simple groups.

Proposition 2.3. Let G be a nonabelian simple group and |G| = 2% .3!.5,
then G = As, Ag or PSU(4, 2).

By checking the orders of nonabelian simple groups, see [7, pp.134-136]
for example, we have the following proposition.

Proposition 2.4. Letp > 5 be a prime and let G be a {2, 3, 5, p}-nonabelian
simple group such that |G| divides 2232 .52.p and 2252 - p divides |G|.
Then G = PSL(2,25), PSU(3,4) or PSp(4,4).

By (14, Theorem 1.1] and [9, Theorem 4.2} and with the help of Magma
(1], we give some information of pentavalent symmetric graphs of order 10p
in the following lemma. The graph C,, denotes the corresponding pentava-
lent symmetric graph of order n in [9]. For the graph CDi,, we use the
same symbols in [9, Theorem 4.2].

Lemma 2.5. Let I' be a pentavalent symmetric graph of order 10p, where
p is a prime. Then

(1) T = Cso with p =5 and Autl” = G:(Z3:Z,) is soluble, where G =
(a,b,c|a® =t =c® =[a,d =[bc]=1,[a,b] =c);

(2) I' = Cy70 with p =17 and Autl” = Aut(PSp(4,4));

(3) I' = CDq, with Autl’" = Dyop:Zs.

By [8, Theorem 1] and with the help of Magma [1], we give some in-
formation of pentavalent symmetric graphs of order 8p in the following
lemma. For the graph CL;g and the graph I?), we use the same symbols
in [8, Theorem 1].

Lemma 2.6. Let I" be a pentavalent symmetric graph of order 8p, where
p is a prime. Then

(1) I = CL;¢ with p = 2 and Autl" = Z3:Ss;
(2) I =1? with p =3 and Autl" = (AsxZ3):Z,;
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(3) I' = Coys with p = 31 and Autl" = PSL(2,31).

In the following, we need to introduce the concept of Schur multiplier.
Let G be a perfect group, that is, G’ = G. A central extension of G is a
group H satisfying H/N = G for N < Z(H). If H is perfect, we call H is a
covering group of G. If N is the largest abelian group such that M = N.G
is perfect and the extension is a central extension, then M is called the
full covering group of G and N is called the Schur Multiplier of G, written
Mult(G). By (13, Lemma 2.11], we have the following lemma.

Lemma 2.7. Let M = N.T¢ be a central extension, whered > 1 and T is
a nonabelian simple group. Then M = NM' and M' = Z.T¢, where Z is
a factor group of Mult(T)? and Z < N.

The next lemma is about the solvability of a finite group of order 40p.

Lemma 2.8. Let p be a prime and let G be a finite group of order 40p. If
p # 3, then G is soluble.

Proof. If p < 19, then we can check that G can not have an unsoluble
composition factor, therefore G is soluble. If p > 19, then the Sylow p-
subgroup of G is normal, it follows that G is soluble. |

3. THE PROOF OF THEOREM 1.1

In this section, we will prove Theorem 1.1 by giving some lemmas. Now
let I’ be a pentavalent symmetric graph of order 40p, where p is a prime.
Let A = AutI". Denote by SmallGroup(n, m) the n-th group of order m in
the SmallGroupDatabase in Magma [1].

The next two simple lemmas is helpful to our argument.

Lemma 3.1. Let X < A be a subgroup of A which is arc-transitive on
I'. Let N be an insoluble normal subgroup of X. Then N has at most
two orbits on VI'. Furthermore, if |N| {120, then the following statements
hold.

(1) For eachve VT, 5 | INT®)),
(2) 22-5%-p| |N|.

Proof. Suppose that N has at least three orbits on VI'. Lemma 2.1 implies
that N, = 1 for each v € VI'. Hence |N| | 40p. If p # 3, then by Lemma
2.8, a group of order 40p is soluble, which follows that NN is soluble, a
contradiction. If p = 3, then |N| | 40-3 = 120. It implies that |N| = 60 or
120 as N is insoluble, a contradiction with N has at least three orbits on
VI'. Hence N has at most two orbits on VI.
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(1) For each v € VI, if N,, = 1, then, arguing as the above paragraph,
a contradiction occurs. Thus, N, # 1. Since X is transitiveon VI', N X
and I is connected, so we can conclude that [N{ (")l # 1. It follows that
5| INy ®)| since N7 a4 XTI and X&™ acts primitively on I'(v).

(2) Since N has at most two orbits on VI, that is, 22-5-p divides |N : N, |
and by (1), 5 | |V,|, which implies that 22.52.p | |N|, as required. |

Lemma 3.2. If A has no soluble minimal normal subgroup, then for ev-
ery minimal normal subgroup N of A, N is isomorphic to T', where T is
nonablelian simple group.

Proof. Let N be a minimal normal subgroup of A. Then N = T¢ with T
a nonabelian simple group. We just need to prove that d = 1. By Lemma
3.1, N has at most two orbits on VI, and so 20p divides |N|. It implies
that p | |T|. Suppose that d > 2. Then N =Ty xTox --- xT; and ¢ | [N,
where T} @ Tp = ... 2 Ty @ T. By Lemma 2.2, |A4,] | 29.32.5, we
have |N| | |A| | 2*2-82.5%.p. Since p | [N|, we have p | |T|. It follows
that p? | |N|. Then the only possible case is d = 2 and p < 5. It implies
that T is a {2,3,5}-nonabelian simple group. By Proposition 2.3, T is
isomorphic to one of the following groups: Ag, Ag or PSU(4,2). If T =
PSU(4,2), then 38 | |A| as |[PSU(4,2)| = 25 3% .5, a contradiction with
|A| | 2!2.32.5%2.p. If T = Ag, then 3% | |A] as |Ag| = 23-3%-5, a
contradiction with [A| | 2!2-3%.5%.p. Hence T = As and N = AZ
Let C = C4(N). Then C < A and CN = CxN. If C # 1, then C is
insoluble because A has no soluble minimal normal subgroup. Therefore,
3%.5% | |CN| | |A| | 2!2-32.52 . p, a contradiction. Thus, C = 1. Hence,
by ‘N/C’ theorem, N < A < Aut(N) = Aut(T) 1 S2. With the help of the
Magma {1], see our Magma codes in Appendices, there is no pentavalent
symmetric graph of order 40p. Hence d = 1, as required. |

We first consider the special cases that p = 2,3 and 5 in the following
lemmas.

Lemma 3.3. If p = 2, then there is no pentavalent symmetric graph of
order 80.

Proof. Let N be a minimal normal subgroup of A. Suppose first that N is
soluble. Then N is isomorphic to Z¢ for some prime 7. On the other hand,
for each v € VI, |[v"| is a prime power and a divisor of 80, N has at least
three orbits on VI'. By Lemma 2.1, N is semiregular on VI'. It follows
that [N| | [VI'| =2%-5 and so N = Z,,Z3,Z3, Z} or Zs. If N = Z3, then
Lemma 2.1 implies that 'y is a pentavalent symmetric graph of odd order,
a contradiction. If N =& Z3% or Z;, then Lemma 2.1 implies that Iy is a
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pentavalent symmetric graph of order 20 or 40. However, by Lemma 2.5
and Lemma 2.6, there is no pentavalent symmetric graph of order 20 or 40.

If N & Zs, then I'y is a pentavalent symmetric graph of order 16.
By Lemma 2.6, 'y & CL;¢ and Autl’ & Z4:Ss. By Magma [1), every arc-
transitive subgroups of Autl'y contains Z3:Zs. By Magma (1}, Z$:Zs is arc-
regular on I'y. Therefore, A/N contains H/N = Z3:Zs, that is, A contains
an arc-transitive subgroup H & Zg.(Z4:Zs). By Magma [1] (see our Magma
codes in Appendices), H = SmallGroup(400, 52) or SmallGroup(400, 213)
and there is no pentavalent symmetric graph of order 80 for each two cases.

If N = Z3, then I'y is a pentavalent symmetric graph of order 10. By
[3], I';v = Kg,5 and Autl'y 2 S50 S2. By Magma [1], every arc-transitive
subgroups of Autl'y contains one of the following arc-transitive subgroups:

(Zs XZ5)IZz = DmXZs, (Z5XZ5):Z4, (Zs XZs)ZZs.

Therefore, A/N contains H/N = (Z5xZs):Zy, (Z5xZs):Z4 or (ZsxZs):Zs.
By Magma [1], there is no pentavalent symmetric graph of order 80 for
these three cases.

Now we suppose that A has no soluble minimal normal subgroup. Then,
by Lemma 3.2, N = T 9 A, where T is a {2, 3, 5}-nonabelian simple group.
By Proposition 2.3, N is isomorphic to As, Ag or PSU(4,2). If N = A,
then Lemma 3.1 implies that N has at most two orbits on VI, that is,
2%.5 | |N|, a contradiction with | N| = 22.3-5. If N 2 Ag or PSU(4, 2), then
Lemma 3.1(2) implies that 23.52 | | N|, a contradiction with |Ag| = 23-32.5
and [PSU(4,2)| =26.34.5. |

Lemma 3.4. Ifp =3, then I' is isomorphic to Cl,y or C% as in Table 1.

Proof. Let N be a minimal normal subgroup of A. Then N & Z,,Z2, z3,
Zsz or Zg. If N = Z3, then Lemma 2.1 implies that 'y is a pentavalent
symmetric graph of odd order, a contradiction. If N = Z2% or Zj, then
Lemma 2.1 implies that Iy is a pentavalent symmetric graph of order 30
or 40. However, by Lemma 2.5 and Lemma 2.6, there is no pentavalent
symmetric graph of order 30 or 40.

If N 2 Z,, then I'y is pentavalent symmetric graph of order 60. By
[6], I'n is isomorphic to Cgo and Aut(Cep) = AsxDyo. By Magma [1], A/N
contains an arc-regular subgroup H/N = AgxZs. Hence H = Z5xSL(2,5)
or Zyox Ag is arc-transitive on I'. By Magma (1], I' = C},, in Table 1.

If N = Zg, then I'y is a pentavalent symmetric graph of order 24.
By Lemma 2.6, I'y is isomorphic to I® with Autl'y = (AsxZ2):Z;. By
Magma (1], the arc-transitive subgroups of Autl'y are one of the following
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groups:
Ss, A5><Zz, ZgXS5, Z% XA5, (A5 XZ%)ZQ

By Magma [1], S5 < Z2xSs and AsxZy < ZZxAs. Furthermore, we have

Z5.Ss = ZgxSg or (ZsxAg):.Zs and Zs-(AsXZg) & DyoxAs or ZyoxAs,

where (Zgsx As):Z; is isomorphic to SmallGroup(600, 145). It implies that

A contains an arc-transitive subgroup isomorphic to ZsxSs, (Zsx As):Z,,

DioxAs or Z1oxAs. By Magma [1], I & C},, or C% in Table 1.

Now we suppose that A has no soluble minimal normal subgroup. Then,
by Lemma 3.2, N = T' < A, where T is a {2, 3, 5}-nonabelian simple group.
By Proposition 2.3, T is isomorphic to one of the following groups: As,
Ag or PSU(4,2). If N = Ag or PSU(4,2), then Lemma 3.1 implies that
22.3.52 | |N|, which is impossible as |Ag| = 23 - 32 - 5 and [PSU(4,2)| =
26.34.5 If N = A;, then A/Ca(N) S Aut(N) = Ss. If C4(N) =1,
then N < A < Ss. It follows that A = As or Ss and |4,| = i = 1
or 1, which is impossible. Thus, we have C4(N) # 1. Since A has no
soluble minimal normal subgroup, we have C4(/NN) is insoluble. On the
other hand, C4(N) NN = Z(N) = 1, we have C4(N)N = C4(N)xN.
Furthermore, C4(N) contains an insoluble normal subgroup isomorphic
to Ag as A is {2,3,5}-group and the insoluble minimal normal subgroup
of A is not isomorphic to Ag or PSU(4,2). Hence A contains a normal
subgroup isomorphic to A2. Since Ca(A2) = 1, by ‘N/C’ theorem, we
have A < Aut(A%) = Aut(As) 2 S2. By Magma {1}, there is no pentavalent
symmetric graph of order 80 for this case. |

Lemma 3.5. If p = 5, then there is no pentavalent symmetric graph of
order 200.

Proof. Let N be a minimal normal subgroup of A. Suppose first that IV is
soluble. Then N = Z,,72,Z3, Zs or ZZ. 1f N = Z3, then Lemma 2.1 implies
that I'y is a pentavalent symmetric graph of odd order, a contradiction. If
N = Zg or Z2, then Lemma 2.1 implies that I'y is a pentavalent symmetric
graph of order 40 or 8. However, by Lemma 2.5, there is no pentavalent
symmetric graph of order 40. Further, by (12, p.1112], |A,| = 2 or 16 of a
pentavalent vertex-transitive graph of order 8. It implies that there is no
pentavalent symmetric graph of order 8.

For the case N 2 Z,, we first prove the following claim:
Claim: There is no pentavalent symmetric graph of order 100.

Let ¥ be a pentavalent symmetric graph of order 100 and let L = AutX.
Suppose first that L has a soluble minimal normal subgroup M. With
similar discussion as above, we have M = Z, and I,; is pentavalen-
t symmetric graph with order 50. By Lemma 2.5, X, is isomorphic
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to Cso and Aut(Cso) = G:(Zzzzg) is soluble. Then L is soluble because
A/M X Aut(Cso). Let F be the Fitting subgroup of L, the subgroup gen-
erated by all the normal nilpotent subgroups of L. Since L is soluble, we
have F' # 1 and C.(F) < F (see (16, 5.4.4] for example). Since L has
no nontrivial normal 5-subgroup and F is not isomorphic to Z2, we have
F = O3(L) = Z;. Thus, F is abelian and C(F) = F. It follows that
L/F = L/CL(F) £ Aut(F) = 1, which is impossible. Now we suppose that
L has no soluble minimal normal subgroup. By Lemma 3.2, M =T <L
is isomorphic to As, Ag or PSU(4,2). By Lemma 3.1, M has at most
two orbits on VI, which implies that 2 - 52 | |M|, a contradiction with
[M|=22.3.5,2%.32.50r 20.34.5, as we claim.

If N 2 Z,, then 'y is a pentavalent symmetric graph of order 100. By
the above claim, this is impossible.

If N = Z3, then I'v is a pentavalent symmetric graph of order 50.
Arguing as the above, A is soluble and the Fitting subgroup F of A is
isomorphic to Z3. It follows that A/F = A/C4(F) < Aut(F) = GL(2,2),
which is impossible.

Now we suppose that A has no soluble minimal normal subgroup. By
Lemma 3.2, N = T < A is isomorphic to As, Ag or PSU(4,2). This is
impossible since N has at most two orbits on VI" which implies that 22 .
52 | |N|. ]

Now we consider the case when p > 5. First we suppose that A contains
a soluble minimal normal subgroup N, then we have the following lemma.

Lemma 3.6. If A has a soluble minimal normal subgroup N, then no graph
appears.

Proof. Let N be a soluble minimal normal subgroup, then N = Z,, Z3, Z3,
Zs or Zp. If N = Z,, then I'y is a pentavalent symmetric graph of order
20p. However, by [15], there is no pentavalent symmetric graph of order
20p, a contradiction. If N 2 Z3, then I'y is a pentavalent symmetric graph
of odd order, which is impossible. If N & Z,, then I'y is a pentavalent
symmetric graph of order 40, by Lemma 2.5, which is also impossible.
Hence suppose first N & Z3. Then I'y is a pentavalent symmetric graph
of order 10p. By Lemma 2.5, we have I'y = Cy7o or CDig,.

res C'D’mp, then A/N < Autl’ = Djop:Zs. Since A/N is arc-transitive
on I'y, we have A/N 2¢ Dyo,:Zs, which follows that A = Z%:(przzg,).
Since Z, is a normal subgroup of Djop:Zs and Z, centralizes Z3, we have
Z, is a normal subgroup of A. It implies that the corresponding normal
quotient graph is a pentavalent symmetric graph of order 40, which is
impossible by Lemma 2.5.
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If 'y = Cy70, then A/N < Autl'y = Aut(PSp(4,4)) and p = 17. S-
ince A/N is arc-transitive on 'y, we have 5170 | |JA/N|. By Atlas (2],
A/N contains a normal subgroup M/N isomorphic to PSp(4,4). By At-
las [2], the Schur multiplier of PSp(4,4) is 1, Lemma 2.7 implies that
M = ZZxPSp(4,4). Then PSp(4,4) < A because M’ = PSp(4,4) is a
characteristic subgroup of M and M < A. By Lemma 3.1, PSp(4, 4) has at
most two orbits on VI'. Hence |M,| = % = 1440 or |M}| = -%-3%’;—'7- = 2880,
which is a contradiction as PSp(4, 4) has no subgroup of order 1440 or 2880
by Magma [1].

Suppose now N = Zs. Then, by Lemma 2.6, I'y is isomorphic to Ca4s
and p = 31. Furthermore, A/N < Autl'y = PSL(2,31). Note that A/N
acts arc-transitively on I'y and so 5-248 | |A/N]. By checking the maximal
subgroup of PSL(2,31), we have A/N = PSL(2,31). On the other hand,
by Atlas [2], the Schur multiplier of PSL(2,31) is isomorphic to Z3, Lemma
2.7 implies that A = ZsxPSL(2,31). Since A’ = PSL(2,31) < A, Lemma
3.1 implies that 2252 - 31 | |PSL(2,31)| =2°-3.5- 31, a contradiction. §

Now we may treat the case that A has no soluble minimal normal sub-
group and the next lemma completes the proof of Theorem 1.1.

Lemma 3.7. If A has no soluble minimal normal subgroup, then no graph
appears.

Proof. Let N = T¢ be an insoluble minimal normal subgroup of A. By
Lemma 3.2, d=1, and so N =T < A. By Lemma 3.1, N has at most two
orbits on VI and so 20p | |N|. Since p > 5, we have 120 { |[N| and Lemma
3.1 implies that 22 .52 p | |T|. Since |4| | 2!2-32.52.p, we have |T| is a
divisor of 2!2.32.52. p. By Proposition 2.4, T is isomorphic to PSL(2, 25),
PSU(3,4) or PSp(4,4). Note that T has at most two orbits on VF hence

IT,| = &L or [T = &L

Suppose that T = PSU(3,4). Then p = 13 and |7,| = 120 or 240.
However, by Atlas (2], PSU(3,4) has no subgroup of order 120 or 240.
Suppose that T" = PSp(4,4). Then p = 17 and |T,| = 1440 or 2880.
However, PSp(4,4) has no subgroup of order 1440 or 2880. Suppose that
T = PSL(2,25). Then p = 13 and |T3,| = 15 or 30. However, by Atlas (2],
PSL(2,25) has no subgroup of order 15 or 30. ]
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Appendices

Magma codes

/*

Input : a positive integer n and two finite groups G, N
Output: all groups X of order n, which has the quotient group X/N iso-
morphic to G

*/

f:=function(n,G,N);
P:=SmallGroupProcess(n);

X:=[;

repeat GG:=Current(P);
NN:=NormalSubgroups(GG);

for i in [1..#NN] do

if IsIsomorphic(NN[i}‘subgroup,N) eq true then
F:=quo<GG|NN]|i)‘subgroup>;

if IsIsomorphic(F,G) eq true then
-,a:=CurrentLabel(P);
Append(~X,SmallGroup(n,a));

end if;

end if;

end for;

Advance("P);

until IsEmpty(P);

return X;

end function;

/*

Input : a finite group G and a positive integer n
Output: all graphs of order |G|/n, which admit G as an arc-transitive au-
tomorphism group

*/

Graph:=function(G,n);

graph:=[};

i:=0;

H:=Subgroups(G:OrderEqual:=n);

for j in [1..#H] do

HH:=H{j]‘subgroup;

CA:=CosetAction(G,HH);
O:=Orbits(CA(HH));

for k in [1..#0] do
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00:=SetToSequence(O[k]);
GR:=OrbitalGraph(CA(G),1,00(1});

if (IsConnected(GR) eq true) and (Valence(GR) eq 5) and (not exists{t:t
in graph|IsIsomorphic(GR,t) eq true}) then
Append(“graph,GR);

i=i+1;

end if;

end for;

end for;

return i,graph;

end function;
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