CLASSIFYING PENTAVALENT SYMMETRIC GRAPHS OF ORDER 40p

BO LING^{1,2} AND BEN GONG LOU^{2†}

ABSTRACT. A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 40p for each prime p. It is shown that a connected pentavalent symmetric graph of order 40p exists if and only if p=3, and up to isomorphism, there are only two such graphs.

KEYWORDS. symmetric graph; normal quotient; automorphism group.

1. Introduction

In this paper, all graphs are assumed to be finite, simple, connected and undirected.

Let Γ be a graph. We denote by $V\Gamma$, $E\Gamma$, $A\Gamma$ and $Aut\Gamma$ its vertex set, edge set, arc set and automorphism group, respectively. Then the order of Γ is the number of elements of $V\Gamma$, denoted by $|V\Gamma|$. Let s be a positive integer. An s-arc in a graph Γ is an (s+1)-tuple (v_0,v_1,\cdots,v_s) of s+1 vertices such that $(v_{i-1},v_i)\in A\Gamma$ for $1\leq i\leq s$ and $v_{i-1}\neq v_{i+1}$ for $1\leq i\leq s-1$. Let X be a subgroup of $Aut\Gamma$. We say Γ is (X,s)-arc-transitive if X is transitive on the s-arcs of Γ and we say Γ is (X,s)-transitive if it is (X,s)-arc-transitive but not (X,s+1)-arc-transitive. In the case where $X=Aut\Gamma$, we say an (X,s)-arc-transitive or (X,s)-transitive graph is an s-arc-transitive or s-transitive graph. In particular, we say 0-arc-transitive graph is s-arc-transitive graph or s-transitive graph.

Characterizing symmetric graphs with small valency is a current topic in the literature. Since cubic and tetravalent graphs have been studied extensively, it would be natural toward considering pentavalent graphs. For

^{*}This work was partially supported by the NNSF of China (11301468, 11231008, 11461004), the NSF of Yunnan Province (2013FB001,2015J006) and the Scientific Research Fund of Guangxi Provincial Education Department (YB2014007).

[†]Corresponding author. E-mails: bengong188@163.com (B. G. Lou).

example, a characterization of pentavalent graphs has been studied in [4-6, 9, 11, 14, 15, 17]. In this paper, we classify pentavalent symmetric graphs of order 40p with p a prime. By using the Magma codes in Appendices, determining graph in this paper is more simple than some relative papers.

For a given small permutation group X, we can determine all graphs which admit X as an arc-transitive automorphism group by using codes in Appendices. Then there is an unique pentavalent symmetric graph of order 120 admitting $A_5 \times D_{10} \times \mathbb{Z}_2$ as an arc-transitive automorphism group. This graph is denoted by \mathcal{C}_{120}^1 . There is an unique pentavalent symmetric graph of order 120 which admits $S_5 \times D_{10}$ as an arc-transitive automorphism group. This graph is denoted by \mathcal{C}_{120}^2 . The main result of this paper is the following theorem.

Theorem 1.1. Let Γ be a pentavalent symmetric graph of order 40p, where p is a prime. Then p=3 and, up to isomorphism, there exist two such graphs Γ . Furthermore, $\operatorname{Aut}\Gamma$, $(\operatorname{Aut}\Gamma)_v$ and Γ are described in Table 1, where $v \in V\Gamma$.

Γ	AutarGamma	$(Aut\varGamma)_v$	Girth	Diameter	Bipartite?	Cayley?
\mathcal{C}^1_{120}	$A_5 \times D_{10} \times \mathbb{Z}_2$	D_{10}	6	6	Yes	Yes
\mathcal{C}^2_{120}	$S_5 \times D_{10}$	D_{10}	4	6	Yes	Yes

TABLE 1. Pentavalent symmetric graphs of order 40p

The properties in Table 1 are determined with the help of the Magma [1]. Furthermore, \mathcal{C}^1_{120} is a Cayley graph on $A_5 \times \mathbb{Z}_2$, $A_4 \times \mathbb{Z}_{10}$ or $A_4 \times D_{10}$ and \mathcal{C}^2_{120} is a Cayley graph on S_5 , $S_4 \times \mathbb{Z}_5$ or $(A_4 \times \mathbb{Z}_5):\mathbb{Z}_2$.

2. PRELIMINARY RESULTS

We give some necessary preliminary results in this section.

For a graph Γ and a vertex-transitive subgroup $X \leq \operatorname{Aut}\Gamma$. Let N be an intransitive normal subgroup of X on $V\Gamma$. Denote V_N the set of N-orbits in $V\Gamma$. The normal quotient graph Γ_N is the graph with vertex set V_N and two N-orbits $B, C \in V_N$ are adjacent in Γ_N if and only if some vertex of B is adjacent in Γ to some vertex of C. The following lemma ([10, Lemma 2.5]) provides a basic reduction method for studying our pentavalent symmetric graphs.

Lemma 2.1. Let Γ be an X-arc-transitive graph of prime valency p > 2, where $X \leq \operatorname{Aut}\Gamma$, and let $N \subseteq X$ have at least three orbits on $V\Gamma$. Then the following statements hold.

- (i) N is semiregular on $V\Gamma$, $X/N \leq \operatorname{Aut}\Gamma_N$, and Γ_N is an X/N-arctransitive graph of valency p;
- (ii) Γ is (X, s)-transitive if and only if Γ_N is (X/N, s)-transitive, where $1 \le s \le 5$ or s = 7.

By [17, Theorem 4.1] and [4, Theorem 1.1], we have the following lemma.

Lemma 2.2. Let Γ be a pentavalent (G, s)-transitive graph for some $G \leq \operatorname{Aut}\Gamma$ and $s \geq 1$. Let $v \in V\Gamma$. Then the order of G_v is a divisor of $2^9 \cdot 3^2 \cdot 5$.

From [7, pp.12-14], we may obtain the following proposition by checking the 3-prime factor nonabelian simple groups.

Proposition 2.3. Let G be a nonabelian simple group and $|G| = 2^k \cdot 3^l \cdot 5$, then $G = A_5$, A_6 or PSU(4,2).

By checking the orders of nonabelian simple groups, see [7, pp.134-136] for example, we have the following proposition.

Proposition 2.4. Let p > 5 be a prime and let G be a $\{2,3,5,p\}$ -nonabelian simple group such that |G| divides $2^{12} \cdot 3^2 \cdot 5^2 \cdot p$ and $2^2 \cdot 5^2 \cdot p$ divides |G|. Then G = PSL(2,25), PSU(3,4) or PSp(4,4).

By [14, Theorem 1.1] and [9, Theorem 4.2] and with the help of Magma [1], we give some information of pentavalent symmetric graphs of order 10p in the following lemma. The graph C_n denotes the corresponding pentavalent symmetric graph of order n in [9]. For the graph \mathcal{CD}_{10p}^l we use the same symbols in [9, Theorem 4.2].

Lemma 2.5. Let Γ be a pentavalent symmetric graph of order 10p, where p is a prime. Then

- (1) $\Gamma \cong C_{50}$ with p = 5 and $Aut\Gamma \cong G:(\mathbb{Z}_4^2:\mathbb{Z}_2)$ is soluble, where $G = (a,b,c \mid a^5 = b^5 = c^5 = [a,c] = [b,c] = 1, [a,b] = c);$
- (2) $\Gamma \cong C_{170}$ with p = 17 and $Aut\Gamma \cong Aut(PSp(4,4))$;
- (3) $\Gamma \cong \mathcal{CD}_{10p}^l$ with $\operatorname{Aut}\Gamma \cong \operatorname{D}_{10p}:\mathbb{Z}_5$.

By [8, Theorem 1] and with the help of Magma [1], we give some information of pentavalent symmetric graphs of order 8p in the following lemma. For the graph CL_{16} and the graph $I^{(2)}$, we use the same symbols in [8, Theorem 1].

Lemma 2.6. Let Γ be a pentavalent symmetric graph of order 8p, where p is a prime. Then

- (1) $\Gamma \cong CL_{16}$ with p=2 and $Aut\Gamma \cong \mathbb{Z}_2^4:S_5$;
- (2) $\Gamma \cong I^{(2)}$ with p=3 and $Aut\Gamma \cong (A_5 \times \mathbb{Z}_2^2):\mathbb{Z}_2$;

(3) $\Gamma \cong C_{248}$ with p = 31 and $Aut\Gamma \cong PSL(2,31)$.

In the following, we need to introduce the concept of Schur multiplier. Let G be a perfect group, that is, G' = G. A central extension of G is a group H satisfying $H/N \cong G$ for $N \leq Z(H)$. If H is perfect, we call H is a covering group of G. If N is the largest abelian group such that M = N.G is perfect and the extension is a central extension, then M is called the full covering group of G and N is called the Schur Multiplier of G, written M by [13, Lemma 2.11], we have the following lemma.

Lemma 2.7. Let $M=N.T^d$ be a central extension, where $d\geq 1$ and T is a nonabelian simple group. Then M=NM' and $M'=Z.T^d$, where Z is a factor group of $\operatorname{Mult}(T)^d$ and $Z\leq N$.

The next lemma is about the solvability of a finite group of order 40p.

Lemma 2.8. Let p be a prime and let G be a finite group of order 40p. If $p \neq 3$, then G is soluble.

Proof. If $p \leq 19$, then we can check that G can not have an unsoluble composition factor, therefore G is soluble. If p > 19, then the Sylow p-subgroup of G is normal, it follows that G is soluble.

3. The proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by giving some lemmas. Now let Γ be a pentavalent symmetric graph of order 40p, where p is a prime. Let $A = \operatorname{Aut}\Gamma$. Denote by SmallGroup(n, m) the n-th group of order m in the SmallGroupDatabase in Magma [1].

The next two simple lemmas is helpful to our argument.

Lemma 3.1. Let $X \leq A$ be a subgroup of A which is arc-transitive on Γ . Let N be an insoluble normal subgroup of X. Then N has at most two orbits on $V\Gamma$. Furthermore, if $|N| \nmid 120$, then the following statements hold.

- (1) For each $v \in V\Gamma$, $5 \mid |N_v^{\Gamma(v)}|$.
- (2) $2^2 \cdot 5^2 \cdot p \mid |N|$.

Proof. Suppose that N has at least three orbits on $V\Gamma$. Lemma 2.1 implies that $N_v = 1$ for each $v \in V\Gamma$. Hence $|N| \mid 40p$. If $p \neq 3$, then by Lemma 2.8, a group of order 40p is soluble, which follows that N is soluble, a contradiction. If p = 3, then $|N| \mid 40 \cdot 3 = 120$. It implies that |N| = 60 or 120 as N is insoluble, a contradiction with N has at least three orbits on $V\Gamma$. Hence N has at most two orbits on $V\Gamma$.

- (1) For each $v \in V\Gamma$, if $N_v = 1$, then, arguing as the above paragraph, a contradiction occurs. Thus, $N_v \neq 1$. Since X is transitive on $V\Gamma$, $N \subseteq X$ and Γ is connected, so we can conclude that $|N_v^{\Gamma(v)}| \neq 1$. It follows that $||N_v^{\Gamma(v)}|| \leq 1$. It follows that $||N_v^{\Gamma(v)}|| \leq 1$. It follows that $||N_v^{\Gamma(v)}|| \leq 1$.
- (2) Since N has at most two orbits on $V\Gamma$, that is, $2^2 \cdot 5 \cdot p$ divides $|N:N_v|$ and by (1), $5 \mid |N_v|$, which implies that $2^2 \cdot 5^2 \cdot p \mid |N|$, as required.

Lemma 3.2. If A has no soluble minimal normal subgroup, then for every minimal normal subgroup N of A, N is isomorphic to T, where T is nonablelian simple group.

Proof. Let N be a minimal normal subgroup of A. Then $N = T^d$ with T a nonabelian simple group. We just need to prove that d = 1. By Lemma 3.1, N has at most two orbits on $V\Gamma$, and so 20p divides |N|. It implies that $p \mid |T|$. Suppose that $d \geq 2$. Then $N = T_1 \times T_2 \times \cdots \times T_d$ and $p^d \mid |N|$, where $T_1 \cong T_2 \cong \ldots \cong T_d \cong T$. By Lemma 2.2, $|A_v| \mid 2^9 \cdot 3^2 \cdot 5$, we have $|N| \mid |A| \mid 2^{12} \cdot 3^2 \cdot 5^2 \cdot p$. Since $p \mid |N|$, we have $p \mid |T|$. It follows that $p^d \mid |N|$. Then the only possible case is d=2 and $p\leq 5$. It implies that T is a $\{2,3,5\}$ -nonabelian simple group. By Proposition 2.3, T is isomorphic to one of the following groups: A₅, A₆ or PSU(4,2). If $T \cong$ PSU(4,2), then $3^8 \mid |A|$ as $|PSU(4,2)| = 2^6 \cdot 3^4 \cdot 5$, a contradiction with $|A| |2^{12} \cdot 3^2 \cdot 5^2 \cdot p$. If $T \cong A_6$, then $3^4 |A|$ as $|A_6| = 2^3 \cdot 3^2 \cdot 5$, a contradiction with $|A| | 2^{12} \cdot 3^2 \cdot 5^2 \cdot p$. Hence $T = A_5$ and $N = A_5^2$. Let $C = C_A(N)$. Then $C \triangleleft A$ and $CN = C \times N$. If $C \neq 1$, then C is insoluble because A has no soluble minimal normal subgroup. Therefore, $3^3 \cdot 5^3 \mid |CN| \mid |A| \mid 2^{12} \cdot 3^2 \cdot 5^2 \cdot p$, a contradiction. Thus, C = 1. Hence, by 'N/C' theorem, $N \leq A \leq \operatorname{Aut}(N) = \operatorname{Aut}(T) \wr S_2$. With the help of the Magma [1], see our Magma codes in Appendices, there is no pentavalent symmetric graph of order 40p. Hence d=1, as required.

We first consider the special cases that p=2,3 and 5 in the following lemmas.

Lemma 3.3. If p = 2, then there is no pentavalent symmetric graph of order 80.

Proof. Let N be a minimal normal subgroup of A. Suppose first that N is soluble. Then N is isomorphic to \mathbb{Z}_r^d for some prime r. On the other hand, for each $v \in V\Gamma$, $|v^N|$ is a prime power and a divisor of 80, N has at least three orbits on $V\Gamma$. By Lemma 2.1, N is semiregular on $V\Gamma$. It follows that $|N| \mid |V\Gamma| = 2^4 \cdot 5$ and so $N \cong \mathbb{Z}_2, \mathbb{Z}_2^2, \mathbb{Z}_2^3, \mathbb{Z}_2^4$ or \mathbb{Z}_5 . If $N \cong \mathbb{Z}_2^4$, then Lemma 2.1 implies that Γ_N is a pentavalent symmetric graph of odd order, a contradiction. If $N \cong \mathbb{Z}_2^2$ or \mathbb{Z}_2 , then Lemma 2.1 implies that Γ_N is a

pentavalent symmetric graph of order 20 or 40. However, by Lemma 2.5 and Lemma 2.6, there is no pentavalent symmetric graph of order 20 or 40.

If $N\cong\mathbb{Z}_5$, then Γ_N is a pentavalent symmetric graph of order 16. By Lemma 2.6, $\Gamma_N\cong \mathrm{CL}_{16}$ and $\mathrm{Aut}\Gamma\cong\mathbb{Z}_2^4{:}\mathbb{Z}_5$. By Magma [1], every arctransitive subgroups of $\mathrm{Aut}\Gamma_N$ contains $\mathbb{Z}_2^4{:}\mathbb{Z}_5$. By Magma [1], $\mathbb{Z}_2^4{:}\mathbb{Z}_5$ is arcregular on Γ_N . Therefore, A/N contains $H/N\cong\mathbb{Z}_2^4{:}\mathbb{Z}_5$, that is, A contains an arc-transitive subgroup $H\cong\mathbb{Z}_5.(\mathbb{Z}_2^4{:}\mathbb{Z}_5)$. By Magma [1] (see our Magma codes in Appendices), $H\cong\mathrm{SmallGroup}(400,52)$ or SmallGroup(400,213) and there is no pentavalent symmetric graph of order 80 for each two cases.

If $N \cong \mathbb{Z}_2^3$, then Γ_N is a pentavalent symmetric graph of order 10. By [3], $\Gamma_N \cong \mathsf{K}_{5,5}$ and $\mathsf{Aut}\Gamma_N \cong \mathsf{S}_5 \wr \mathsf{S}_2$. By Magma [1], every arc-transitive subgroups of $\mathsf{Aut}\Gamma_N$ contains one of the following arc-transitive subgroups:

$$(\mathbb{Z}_5 \times \mathbb{Z}_5): \mathbb{Z}_2 \cong D_{10} \times \mathbb{Z}_5, (\mathbb{Z}_5 \times \mathbb{Z}_5): \mathbb{Z}_4, (\mathbb{Z}_5 \times \mathbb{Z}_5): \mathbb{Z}_8.$$

Therefore, A/N contains $H/N \cong (\mathbb{Z}_5 \times \mathbb{Z}_5): \mathbb{Z}_2$, $(\mathbb{Z}_5 \times \mathbb{Z}_5): \mathbb{Z}_4$ or $(\mathbb{Z}_5 \times \mathbb{Z}_5): \mathbb{Z}_8$. By Magma [1], there is no pentavalent symmetric graph of order 80 for these three cases.

Now we suppose that A has no soluble minimal normal subgroup. Then, by Lemma 3.2, $N=T \le A$, where T is a $\{2,3,5\}$ -nonabelian simple group. By Proposition 2.3, N is isomorphic to A_5 , A_6 or PSU(4,2). If $N \cong A_5$, then Lemma 3.1 implies that N has at most two orbits on $V\Gamma$, that is, $2^3 \cdot 5 \mid |N|$, a contradiction with $|N| = 2^2 \cdot 3 \cdot 5$. If $N \cong A_6$ or PSU(4,2), then Lemma 3.1(2) implies that $2^3 \cdot 5^2 \mid |N|$, a contradiction with $|A_6| = 2^3 \cdot 3^2 \cdot 5$ and $|PSU(4,2)| = 2^6 \cdot 3^4 \cdot 5$.

Lemma 3.4. If p=3, then Γ is isomorphic to C_{120}^1 or C_{120}^2 as in Table 1.

Proof. Let N be a minimal normal subgroup of A. Then $N \cong \mathbb{Z}_2, \mathbb{Z}_2^2, \mathbb{Z}_2^3, \mathbb{Z}_3$ or \mathbb{Z}_5 . If $N \cong \mathbb{Z}_2^3$, then Lemma 2.1 implies that Γ_N is a pentavalent symmetric graph of odd order, a contradiction. If $N \cong \mathbb{Z}_2^2$ or \mathbb{Z}_3 , then Lemma 2.1 implies that Γ_N is a pentavalent symmetric graph of order 30 or 40. However, by Lemma 2.5 and Lemma 2.6, there is no pentavalent symmetric graph of order 30 or 40.

If $N \cong \mathbb{Z}_2$, then Γ_N is pentavalent symmetric graph of order 60. By [6], Γ_N is isomorphic to C_{60} and $Aut(C_{60}) \cong A_5 \times D_{10}$. By Magma [1], A/N contains an arc-regular subgroup $H/N \cong A_5 \times \mathbb{Z}_5$. Hence $H \cong \mathbb{Z}_5 \times SL(2,5)$ or $\mathbb{Z}_{10} \times A_5$ is arc-transitive on Γ . By Magma [1], $\Gamma \cong C_{120}^1$ in Table 1.

If $N \cong \mathbb{Z}_5$, then Γ_N is a pentavalent symmetric graph of order 24. By Lemma 2.6, Γ_N is isomorphic to $I^{(2)}$ with $\operatorname{Aut}\Gamma_N \cong (A_5 \times \mathbb{Z}_2^2):\mathbb{Z}_2$. By Magma [1], the arc-transitive subgroups of $\operatorname{Aut}\Gamma_N$ are one of the following

groups:

$$S_5, A_5 \times \mathbb{Z}_2, \mathbb{Z}_2 \times S_5, \mathbb{Z}_2^2 \times A_5, (A_5 \times \mathbb{Z}_2^2): \mathbb{Z}_2.$$

By Magma [1], $S_5 \leq \mathbb{Z}_2 \times S_5$ and $A_5 \times \mathbb{Z}_2 \leq \mathbb{Z}_2^2 \times A_5$. Furthermore, we have $\mathbb{Z}_5.S_5 \cong \mathbb{Z}_5 \times S_5$ or $(\mathbb{Z}_5 \times A_5):\mathbb{Z}_2$ and $\mathbb{Z}_5.(A_5 \times \mathbb{Z}_2) \cong D_{10} \times A_5$ or $\mathbb{Z}_{10} \times A_5$, where $(\mathbb{Z}_5 \times A_5):\mathbb{Z}_2$ is isomorphic to SmallGroup(600, 145). It implies that A contains an arc-transitive subgroup isomorphic to $\mathbb{Z}_5 \times S_5$, $(\mathbb{Z}_5 \times A_5):\mathbb{Z}_2$, $D_{10} \times A_5$ or $\mathbb{Z}_{10} \times A_5$. By Magma [1], $\Gamma \cong \mathcal{C}_{120}^1$ or \mathcal{C}_{120}^2 in Table 1.

Now we suppose that A has no soluble minimal normal subgroup. Then, by Lemma 3.2, $N = T \subseteq A$, where T is a $\{2, 3, 5\}$ -nonabelian simple group. By Proposition 2.3, T is isomorphic to one of the following groups: A_5 , A_6 or PSU(4,2). If $N \cong A_6$ or PSU(4,2), then Lemma 3.1 implies that $2^2 \cdot 3 \cdot 5^2 \mid |N|$, which is impossible as $|A_6| = 2^3 \cdot 3^2 \cdot 5$ and |PSU(4,2)| = $2^6 \cdot 3^4 \cdot 5$. If $N \cong A_5$, then $A/C_A(N) \lesssim Aut(N) \cong S_5$. If $C_A(N) = 1$, then $N \leq A \leq S_5$. It follows that $A \cong A_5$ or S_5 and $|A_v| = \frac{|A|}{|VI|} = \frac{1}{2}$ or 1, which is impossible. Thus, we have $C_A(N) \neq 1$. Since A has no soluble minimal normal subgroup, we have $C_A(N)$ is insoluble. On the other hand, $C_A(N) \cap N = Z(N) = 1$, we have $C_A(N)N = C_A(N) \times N$. Furthermore, $C_A(N)$ contains an insoluble normal subgroup isomorphic to A_5 as A is $\{2,3,5\}$ -group and the insoluble minimal normal subgroup of A is not isomorphic to A_6 or PSU(4,2). Hence A contains a normal subgroup isomorphic to A_5^2 . Since $C_A(A_5^2) = 1$, by 'N/C' theorem, we have $A \leq \operatorname{Aut}(A_5^2) \cong \operatorname{Aut}(A_5) \wr S_2$. By Magma [1], there is no pentavalent symmetric graph of order 80 for this case.

Lemma 3.5. If p = 5, then there is no pentavalent symmetric graph of order 200.

Proof. Let N be a minimal normal subgroup of A. Suppose first that N is soluble. Then $N \cong \mathbb{Z}_2, \mathbb{Z}_2^2, \mathbb{Z}_2^3, \mathbb{Z}_5$ or \mathbb{Z}_5^2 . If $N \cong \mathbb{Z}_2^3$, then Lemma 2.1 implies that Γ_N is a pentavalent symmetric graph of odd order, a contradiction. If $N \cong \mathbb{Z}_5$ or \mathbb{Z}_5^2 , then Lemma 2.1 implies that Γ_N is a pentavalent symmetric graph of order 40 or 8. However, by Lemma 2.5, there is no pentavalent symmetric graph of order 40. Further, by [12, p.1112], $|A_v| = 2$ or 16 of a pentavalent vertex-transitive graph of order 8. It implies that there is no pentavalent symmetric graph of order 8.

For the case $N \cong \mathbb{Z}_2$, we first prove the following claim:

Claim: There is no pentavalent symmetric graph of order 100.

Let Σ be a pentavalent symmetric graph of order 100 and let $L = \operatorname{Aut}\Sigma$. Suppose first that L has a soluble minimal normal subgroup M. With similar discussion as above, we have $M \cong \mathbb{Z}_2$ and Σ_M is pentavalent symmetric graph with order 50. By Lemma 2.5, Σ_M is isomorphic

to \mathcal{C}_{50} and $\operatorname{Aut}(\mathcal{C}_{50})\cong G:(\mathbb{Z}_4^2:\mathbb{Z}_2)$ is soluble. Then L is soluble because $A/M\lesssim\operatorname{Aut}(\mathcal{C}_{50})$. Let F be the Fitting subgroup of L, the subgroup generated by all the normal nilpotent subgroups of L. Since L is soluble, we have $F\neq 1$ and $\operatorname{C}_L(F)\leq F$ (see [16, 5.4.4] for example). Since L has no nontrivial normal 5-subgroup and F is not isomorphic to \mathbb{Z}_2^2 , we have $F=\operatorname{O}_2(L)\cong\mathbb{Z}_2$. Thus, F is abelian and $\operatorname{C}_L(F)=F$. It follows that $L/F=L/\operatorname{C}_L(F)\lesssim\operatorname{Aut}(F)=1$, which is impossible. Now we suppose that L has no soluble minimal normal subgroup. By Lemma 3.2, $M=T\leq L$ is isomorphic to A_5 , A_6 or $\operatorname{PSU}(4,2)$. By Lemma 3.1, M has at most two orbits on $V\Gamma$, which implies that $2\cdot 5^2\mid |M|$, a contradiction with $|M|=2^2\cdot 3\cdot 5$, $2^3\cdot 3^2\cdot 5$ or $2^6\cdot 3^4\cdot 5$, as we claim.

If $N \cong \mathbb{Z}_2$, then Γ_N is a pentavalent symmetric graph of order 100. By the above claim, this is impossible.

If $N \cong \mathbb{Z}_2^2$, then Γ_N is a pentavalent symmetric graph of order 50. Arguing as the above, A is soluble and the Fitting subgroup F of A is isomorphic to \mathbb{Z}_2^2 . It follows that $A/F = A/C_A(F) \lesssim \operatorname{Aut}(F) \cong \operatorname{GL}(2,2)$, which is impossible.

Now we suppose that A has no soluble minimal normal subgroup. By Lemma 3.2, $N = T \le A$ is isomorphic to A_5 , A_6 or PSU(4,2). This is impossible since N has at most two orbits on $V\Gamma$ which implies that $2^2 \cdot 5^2 \mid |N|$.

Now we consider the case when p > 5. First we suppose that A contains a soluble minimal normal subgroup N, then we have the following lemma.

Lemma 3.6. If A has a soluble minimal normal subgroup N, then no graph appears.

Proof. Let N be a soluble minimal normal subgroup, then $N \cong \mathbb{Z}_2$, \mathbb{Z}_2^3 , \mathbb{Z}_5 or \mathbb{Z}_p . If $N \cong \mathbb{Z}_2$, then Γ_N is a pentavalent symmetric graph of order 20p. However, by [15], there is no pentavalent symmetric graph of order 20p, a contradiction. If $N \cong \mathbb{Z}_2^3$, then Γ_N is a pentavalent symmetric graph of odd order, which is impossible. If $N \cong \mathbb{Z}_p$, then Γ_N is a pentavalent symmetric graph of order 40, by Lemma 2.5, which is also impossible. Hence suppose first $N \cong \mathbb{Z}_2^2$. Then Γ_N is a pentavalent symmetric graph of order 10p. By Lemma 2.5, we have $\Gamma_N \cong \mathcal{C}_{170}$ or \mathcal{CD}_{10p}^l .

If $\Gamma \cong \mathcal{CD}^l_{10p}$, then $A/N \leq \operatorname{Aut}\Gamma \cong \operatorname{D}_{10p}:\mathbb{Z}_5$. Since A/N is arc-transitive on Γ_N , we have $A/N \cong \operatorname{D}_{10p}:\mathbb{Z}_5$, which follows that $A \cong \mathbb{Z}_2^2:(\operatorname{D}_{10p}:\mathbb{Z}_5)$. Since \mathbb{Z}_p is a normal subgroup of $\operatorname{D}_{10p}:\mathbb{Z}_5$ and \mathbb{Z}_p centralizes \mathbb{Z}_2^2 , we have \mathbb{Z}_p is a normal subgroup of A. It implies that the corresponding normal quotient graph is a pentavalent symmetric graph of order 40, which is impossible by Lemma 2.5.

If $\Gamma_N\cong \mathcal{C}_{170}$, then $A/N\leq \operatorname{Aut}\Gamma_N\cong \operatorname{Aut}(\operatorname{PSp}(4,4))$ and p=17. Since A/N is arc-transitive on Γ_N , we have $5\cdot 170\mid |A/N|$. By Atlas [2], A/N contains a normal subgroup M/N isomorphic to $\operatorname{PSp}(4,4)$. By Atlas [2], the Schur multiplier of $\operatorname{PSp}(4,4)$ is 1, Lemma 2.7 implies that $M=\mathbb{Z}_2^2\times\operatorname{PSp}(4,4)$. Then $\operatorname{PSp}(4,4)\leq A$ because $M'=\operatorname{PSp}(4,4)$ is a characteristic subgroup of M and $M\leq A$. By Lemma 3.1, $\operatorname{PSp}(4,4)$ has at most two orbits on $V\Gamma$. Hence $|M_v'|=\frac{|M_v'|}{40\cdot 17}=1440$ or $|M_v'|=\frac{|M_v'|}{20\cdot 17}=2880$, which is a contradiction as $\operatorname{PSp}(4,4)$ has no subgroup of order 1440 or 2880 by Magma [1].

Suppose now $N\cong\mathbb{Z}_5$. Then, by Lemma 2.6, Γ_N is isomorphic to \mathcal{C}_{248} and p=31. Furthermore, $A/N\leq \operatorname{Aut}\Gamma_N\cong\operatorname{PSL}(2,31)$. Note that A/N acts arc-transitively on Γ_N and so $5\cdot 248\mid |A/N|$. By checking the maximal subgroup of $\operatorname{PSL}(2,31)$, we have $A/N\cong\operatorname{PSL}(2,31)$. On the other hand, by Atlas [2], the Schur multiplier of $\operatorname{PSL}(2,31)$ is isomorphic to \mathbb{Z}_2 , Lemma 2.7 implies that $A=\mathbb{Z}_5\times\operatorname{PSL}(2,31)$. Since $A'=\operatorname{PSL}(2,31)\trianglelefteq A$, Lemma 3.1 implies that $2^2\cdot 5^2\cdot 31\mid |\operatorname{PSL}(2,31)|=2^5\cdot 3\cdot 5\cdot 31$, a contradiction.

Now we may treat the case that A has no soluble minimal normal subgroup and the next lemma completes the proof of Theorem 1.1.

Lemma 3.7. If A has no soluble minimal normal subgroup, then no graph appears.

Proof. Let $N=T^d$ be an insoluble minimal normal subgroup of A. By Lemma 3.2, d=1, and so $N=T \subseteq A$. By Lemma 3.1, N has at most two orbits on $V\Gamma$ and so $20p \mid |N|$. Since p>5, we have $120 \nmid |N|$ and Lemma 3.1 implies that $2^2 \cdot 5^2 \cdot p \mid |T|$. Since $|A| \mid 2^{12} \cdot 3^2 \cdot 5^2 \cdot p$, we have |T| is a divisor of $2^{12} \cdot 3^2 \cdot 5^2 \cdot p$. By Proposition 2.4, T is isomorphic to PSL(2, 25), PSU(3, 4) or PSp(4, 4). Note that T has at most two orbits on $V\Gamma$, hence $|T_v| = \frac{|T|}{40p}$ or $|T_v| = \frac{|T|}{20p}$.

Suppose that $T \cong \mathrm{PSU}(3,4)$. Then p=13 and $|T_v|=120$ or 240. However, by Atlas [2], $\mathrm{PSU}(3,4)$ has no subgroup of order 120 or 240. Suppose that $T \cong \mathrm{PSp}(4,4)$. Then p=17 and $|T_v|=1440$ or 2880. However, $\mathrm{PSp}(4,4)$ has no subgroup of order 1440 or 2880. Suppose that $T \cong \mathrm{PSL}(2,25)$. Then p=13 and $|T_v|=15$ or 30. However, by Atlas [2], $\mathrm{PSL}(2,25)$ has no subgroup of order 15 or 30.

Appendices

Magma codes

```
Input: a positive integer n and two finite groups G, N
Output: all groups X of order n, which has the quotient group X/N iso-
morphic to G
*/
f:=function(n,G,N);
P:=SmallGroupProcess(n);
X := [];
repeat GG:=Current(P);
NN:=NormalSubgroups(GG);
for i in [1..#NN] do
if IsIsomorphic(NN[i]'subgroup,N) eq true then
F:=quo<GG|NN[i]'subgroup>;
if IsIsomorphic(F,G) eq true then
_,a:=CurrentLabel(P);
Append(^{\sim}X,SmallGroup(n,a));
end if:
end if:
end for;
Advance(~P);
until IsEmpty(P);
return X;
end function;
Input: a finite group G and a positive integer n
Output: all graphs of order |G|/n, which admit G as an arc-transitive au-
tomorphism group
*/
Graph:=function(G,n);
graph:=[];
i:=0:
H:=Subgroups(G:OrderEqual:=n);
for j in [1..#H] do
HH:=H[j]'subgroup;
CA:=CosetAction(G,HH);
O:=Orbits(CA(HH));
for k in [1..#O] do
```

```
\begin{aligned} &\text{OO} := &\text{SetToSequence}(O[k]);\\ &\text{GR} := &\text{OrbitalGraph}(CA(G),1,OO[1]);\\ &\text{if (IsConnected(GR) eq true) and (Valence(GR) eq 5) and (not exists\{t:t in graph|IsIsomorphic(GR,t) eq true\}) then}\\ &\text{Append(~graph,GR);}\\ &\text{i:=} &\text{i+1;}\\ &\text{end if;}\\ &\text{end for;}\\ &\text{end for;}\\ &\text{return i,graph;}\\ &\text{end function;} \end{aligned}
```

REFERENCES

- [1] W. Bosma, C. Cannon, C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235-265.
- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Cambridge Press, Oxford, 1985.
- [3] Y. Cheng, J. Oxley, On the weakly symmetric graphs of order twice a prime, J. Combin. Theory, Ser. B 42 (1987), 196-211.
- [4] S. T. Guo, Y. Q. Feng, A note on pentavalent s-transitive graphs, Discrete Math. 312 (2012), 2214-2216.
- [5] S. T. Guo, Y. Q. Feng, C. H. Li, The finite edge-primitive pentavalent graphs, J. Algebraic Combin. 38 (2013), 491-497.
- [6] S. T. Guo, J. X. Zhou, Y. Q. Feng, Pentavalent symmetric graphs of order 12p, Electronic J. Combin. 18 (2011), #P233.
- [7] D. Gorenstein, Finite Simple Group, Plenum Press, New York, 1982.
- [8] X. H. Hua, Y. Q. Feng, Pentavalent symmetric graphs of order 8p, J. Beijing Jiaotong University 35 (2011), 132-135, 141.
- [9] X. H. Hua, Y. Q. Feng, Pentavalent symmetric graphs of order 2pq, Discrete Math. 311 (2011), 2259-2267.
- [10] C. H. Li, J. M. Pan, Finite 2-arc-transitive abelian Cayley graphs, European J. Combin. 29 (2008), 148-158.
- [11] Y. T. Li, Y. Q. Feng, Pentavalent one-regular graphs of square-free order, Algebraic Colloquium 17 (2010), 515-524.
- [12] B. D. Mckay, Transitive graphs with fewer than 20 vertices, Math. Comp. 33 (1979), 1101-1121.
- [13] J.M. Pan, Y. Liu, Z.H. Huang and C.L. Liu, Tetravalent edgetransitive graphs of order p²q, Sci. China Math. 57 (2014), 293-302.
- [14] J.M. Pan, Z.Liu and X.F. Yu, Pentavalent graphs of order twice a prime square, *Algebraic Colloquium*, 22(2015), 383-394.
- [15] J. M. Pan, B. G. Lou, C. F. Liu, Arc-transitive pentavalent graphs of order 4pq, Electronic J. Combin. 20(1) (2013), #P36.
- [16] D. J. S. Robinson. A course in the theory of groups, Springer-Verlag New York Berlin Heidelberg, 1995.
- [17] J. X. Zhou, Y. Q. Feng, On symmetric graphs of valency five, *Discrete Math.* 310 (2010), 1725-1732.

1:SCHOOL OF MATHEMATICS AND COMPUTER SCIENCES, YUNNAN UNIVERSITY OF NATIONALITIES, KUNMING, YUNNAN 650031, P. R. CHINA

2:SCHOOL OF MATHEMATICS AND STATISTICS, YUNNAN UNIVERSITY, KUNMING, YUNNAN 650031, P. R. CHINA

E-mail address: bolinggxu@163.com (B. Ling)
E-mail address: bengong188@163.com (B. G. Lou)