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Abstract. Since the Wiener index has a successful in study of benzenoid
systems and boiling point of alkanes it is natural to examine this number for
study of fullerenes, which most of its cycles are hexagons. This topological
index is equal to the sum of distances between all pairs of vertices of the
respective graph. It was introduced in 1947 by one of the pioneer of this area
e. g, Harold Wiener who realized that there are correlations between the
boiling points of paraffin and the structure of the molecules. The present
paper is the first attempt to compute the Wiener index of an infinite class of
fullerene. Further, we obtain a correlation between the values of Wiener
index and the boiling point of such a fullerene for the first time.
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1. Introduction

The Wiener index is a distance-based topological invariant much used in
the study of the structure-property and the structure-activity relationships of various
classes of biochemically interesting compounds. It has been also much researched
from the purely mathematical viewpoint, giving rise to a vast corpus of literature
over the last decades. A number of derivative invariants have been investigated and
many formulas for particular classes of graphs were obtained. We refer the reader to
a comprehensive survey of results for trees by Dobrynin, Entringer and Gutman as
an illustration of that effort [1]. Most of the results on Wiener index are obtained by
working on other features of the graph; for more details about Wiener index see [2-
5].

The vertex and edge sets of a graph G are dencted by V(G) and E(G),
respectively. A molecular graph is a simple graph such that its vertices correspond to
the atoms and the edges to the bonds. In a molecular graph, it is convenient to omit
hydrogen atoms. The distance dg(x, y) between two vertices x and y of V(G) is
defined as the length of any shortest path in G connecting x and y. Although the
Wiener index was first defined by Wiener to obtain the sum of distances between
carbon atoms in saturated hydrocarbons, [6] it was Hosoya who introduced the
formula for Wiener index

w(G) =Y dwv).
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It is the first graph, invariant defined by distance function &: (G) x L(G)
— R applicable in chemistry. Diudea and his co—workers [7, 8] computed the
Wiener index of armchair and zig-zag polyhex nanctubes. After publication of these
papers, many researchers work on it, but the Wiener index of fullerene graphs is also
an unsolved problem. This is an attempt to solve this problem. Graovac et al, [9]
computed the Wiener index of an infinite class of fullerenes, but the methods
described here are completely different. Throughout this paper all graphs considered
are simple and connected. Our notation is standard and mainly taken from [10 — 12].

2. Main Results and Discussion

A fullerene is any molecule composed entirely of carbon, in the form of a
hollow sphere, ellipsoid, or tube. Spherical fullerenes are also called buckyballs and
cylindrical ones are called carbon nanotubes or buckytubes. Fullerenes are similar in
structure to graphite, which is composed of stacked graphene sheets of linked
hexagonal rings; but they may also contain pentagonal rings. By Euler's theorem,
one can prove that the number of pentagons and hexagons in a fullerene molecule C,
are 12 and »n/2 - 10, respectively. The first fullerene to be discovered, and the
family's namesake, was buckminsterfullerene Cg, made in 1985 by Robert Curl,
Harold Kroto and Richard Smalley, [13, 14].

The Wiener Index, or the Wiener number, is one of the quantities
associated with a molecular graph that correlates nicely to physical and chemical
properties, and has been studied in depth. In other words, some physical properties,
such as the boiling point, are related to the geometric structure of the compound. The
first investigations into the Wiener index were made by Harold Wiener in 1947 who
realized that there are correlations between the boiling points of paraffin and the
structure of the molecules. Since then it has become one of the most frequently used
topological indices in chemistry, as molecules are usually modeled as undirected
graphs, especially trees.

The goal of this paper is to compute the Wiener index of an infinite class of
fullerene graphs with exactly 12# (n = 2, 3, ...) vertices. For this we denote this
family of fullerenes by C)z.. The first member of this family can be obtained by
putting # =2, see Figure 1.

Figure 1: 2 — D graph of fullerene C,,,, n = 2.
In this paper we prove that the Wiener index of this class of fullerenes for
> 6 is as follows:

W(C)y)=48n> +828n-1632.

The Wiener index of this class of fullerene is computed for the first time in
this paper. We can also apply our method to compute the cther classes of fullerene
graphs. In [15] a method is described to obtain a fullerene graph from a zig — zag or
armchair nanotubes. Here by continuing his method we construct an infinite class of
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fullerenes and then we obtain its Wiener number. Denoted by T;[m ,n] means a zig —
zag nanotube with m rows and n columns of hexagons, see Figure 2.

An IPR fullerene is a fullerene satisfies in the isolated pentagon rule. In
other words, in this structure none of the pentagons make contact with each other,
otherwise we say the fullerene is non IPR, see Figure 4.

Combine a nanotube 75[6, n] with two copies of caps B (Figure 3) as shown
in Figure 4, the resulted graph is a non IPR fullerene, which has 12n vertices and

exactly 6n - 10 hexagonal faces.

Figure 2. 2 - D graph of zig — zag nanotube T;[m, n], for m =35, n=10.
A block matrix is a matrix whose entries are again a matrix. In other words, the
block matrix can be written in terms of smaller matrices. In the following Theorem
the Wiener index of the G = T;[6, n] nanotube for n > 7 is computed, see Figure 5.

Figure 3. Caps B.

Figure 4. Fullerene C,, constructed by combining two copies of caps B
and the zigzag nanotube T5[6, n).

Theorem 1.
W(G) = 48n° —144n* + 972n - 2136.

Proof. According to the Figure S, it is to see that there are n + 1 rows of vertices.
We suppose the vertices of the last row are U = {uy, ua, ..., uj2}. To compute the
Wiener index of this nanotube we use from a recursive sequence method. Let ¢, be



the two times of Wiener index of G = T;[6, n]. By using definition of the Wiener
index and the concept of recursive sequence one can see that:

W@ =t,= D dxy)+ D dxy)+2 D d(x,y)

x.yelU x,yeV\J xeU,yeV\l/
=432+1,,+2 ) d(x,).
xell,yeV\U

To compute the summation Z d(x,y) by using the symmetry of

xeV,yeV\U
graph we have

D d(x,y) = 6(d(w) + d(u,)),

xell, yeV \l/
where, d(u))= ZveV\U d(u;,v) and d(u,)defines similarly, see Figure 5. By
computing these values one can see that:
d(u;) = 12n* - 42n+106,
d(u;) =12n* -30n +52.

This implies that #,+; = ¢, + 432 + 12[d(u;) + d(u;)]. By solving this recursive
sequence we have:

W(G) = 48r® ~144n* +972n-2136.
Finally, by computing the Wiener index of special cases of G, namely 73[6,

n] for n =3,4,5 as reported in Table 1, the Eroof is completed.

n Wiener Index
3 1020
4 2592
5 5136

]
Table 1. The values of Wiener index for special cases.

Figure 5. 2 - D graph of nanotube T2[6, n].

Theorem 2.
W(C,,)=48n +828n-1632.

Proof. From Figure 4, one can see that the distance matrix of fullerene C,2, can be
written as a block matrix form as follows:
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Suppose {vi, v2, ..., %}, {u1, ..., 4} and {w,, ..., w,} be the set of vertices of the
first caps, vertices of 77[6, n] and vertices of the second caps, respectively. The
distance matrix D can be broken to the following form:

Vv B W
D=|B U B|,
w B V

where ¥, B and W are distances between vertices of the first caps with the
vertices of the first caps, vertices of 77[6, n] and vertices of the second caps. The
matrix U is the distance matrix of vertices {u), ..., u,;}. In other words, U is the
distance matrix of 77[6, #].This matrix computed in Theorem 1. It is easy to see that
the Wiener index is equal to the half-sum of distances of the distance matrix D
between all pairs of vertices. For any fullerene graph C,2,, the matrix V is constant
and it is as follows:

0 2464213535131
2 02 46 4113553
4 2024631133535
6 4 20245311335
4 6 42023553113
V=2464203553]1
11355302426 42
31135520246 4
531135420 24°F¢6
553113642024
3553114642710 2
135531246420

The summation of entries of matrix V is 432. Ob\;iously, the distance
matrices B, U and W are dependant to the number of rows in the nanotube 7%[6, n].
In other words, if w, and w,.| be the Wiener indices of the fullerenes C),,and Cyyp.),
respectively, then similar to the proof of the Theorem 1, for # > 6 we have

wq — wg = 6924,
wg — wo = 8940,
Wo — wyo = 11244,
Wio—-wn= 13836.

By using a recursive sequence one can deduce the following formula for the
Wiener index of fullerene Cja,:

w, —w,_ = 144n* —144n +876.
By solving this recursive sequence, it is easy to see that
W(C,;) = 48n° +828n -1632.

The Wiener indices of Cy2,for n =2, ..., 8 are reported in Table 2 and this
completes the proof.

As a result of Theorem 2, one can see that there is a correlation between the
values of Wiener indices and the boiling points of fullerene C)2,. In other words, by

179



using the values reported in Table 2 the correlation between these numbers is R =
0.868. It should be noted that, this is the first attempt to guess the boiling point of
fullerene graphs, respect to the Wiener index. We can also apply our method to
compute the Wiener index of other nanostructures.

n Wiener Number Boiling Point

2 804 443.5
3 2292 601.7
4 4788 733.6
5 8514 849

6 13704 953

7 20628 1048
8 41184 1136

=

Table 2. The Wiener indices and boiling points of C,,,, forn=2, ..., 8.
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