Panconnectedness of K-trees with Sufficiently Large Toughness Dingjun Lou and Rongsheng Zhao Department of Computer Science Sun Yat-sen University Guangzhou 510275 People's Republic of China #### Abstract In this paper, we prove that if the toughness of a k-tree G is at least (k+1)/3, then G is panconnected for $k \ge 3$, or G is vertex pancyclic for k = 2. This result improves a result of Broersma, Xiong and Yoshimoto. Keywords: Panconnectedness, toughness, k-tree. ## 1. Introduction and terminology The graphs in this paper are finite, undirected, connected and simple. For all terminology and notation not defined in this paper, the reader is referred to [4]. Let G = (V, E) be a graph. We denote |V| by $\nu(G)$. If $P = u_0u_1u_2\cdots u_k$ is a path with $x = u_0$ and $y = u_k$, we say that P is a path from x to y or P is a (x,y) path, denoted by P(x,y) or P, and we say that P is a path of length k. If $C = u_1u_2\cdots u_ku_1$ is a cycle, we say that C is a cycle of length k. Let P(x,y) and Q(y,z) be two paths which are disjoint except at y, then P(x,y) + Q(y,z) denotes the path from x to y along P and then from y to z along Q. If z = x, P(x,y) + Q(y,z) denotes the cycle from x to y along P and then from y to z (= x) along x0. Let x1 and x2 be two vertices of x3. We denote by x4 connected graph x5 is said to be panconnected if x6, for any two vertices x7 and x8 in x9. A graph x9 is called pancyclic if there is a cycle x9 of length x9 for each integer x9 from x9 to x9. In particular, if x9 has a cycle of length x9, then x9 is called Hamiltonian. A graph x9 is called vertex pancyclic if, for each vertex v in G, there is a cycle C containing v of length L for each integer L from 3 to $\nu(G)$ in G. A graph G is called edge pancyclic if, for each edge e in G, there is a cycle C containing e of length L for each integer L from 3 to $\nu(G)$ in G. Notice that a graph G to be panconnected implies that G is edge pancyclic, G to be edge pancyclic implies that G is vertex pancyclic, and G to be vertex pancyclic implies that G is pancyclic. Let G be a graph. Let $S \subseteq V(G)$ with $S \neq \emptyset$. The subgraph of G with vertex set S and edge set consisting of all edges in G with both ends in S is called the induced subgraph of G on S, denoted by G[S]. Let $S \subseteq V(G)$ and $S \neq V(G)$, the $G - S = G[V(G) \setminus S]$. If $S = \{x\}$, we use G - x to represent $G - \{x\}$. If $e \in E(G)$, we use G - e to represent the subgraph of G by deleting e from G with two ends remained. Let $\omega(G)$ denote the number of components of G. A graph G is called t-tough if $|S| \geq t\omega(G - S)$ for each subset S of V(G) with $\omega(G - S) > 1$. The toughness of G is denoted by $\tau(G)$ and is defined as follows: If G is not complete, then $\tau(G) = \min\{|S|/\omega(G - S)\}$, where the minimum is taken over all cutsets S of vertices in G, otherwise $G = K_n$ and $\tau(G) = \infty$. We denote by N(v) the set of all neighbours of vertex v in G. Let G and G be two disjoint graphs. We denote by $G \oplus H$ the graph G with G and G be two disjoint G and G we denote by $G \oplus H$ the graph G with G and G be two disjoint G and G be G and G be G with G and G be by G and G by G and G by G and G by G by G by G and are G and G and G and G and G We define a graph G to be chordal if G contains no chordless cycle of length at least 4. Then we define a k-tree as follows: K_k is the smallest k-tree, and a graph G on at least k+1 vertices is a k-tree if and only if it contains a vertex v of degree k such that the neighbours of v are mutually adjacent and G-v is a k-tree. We call v a k-simplicial vertex, or a simplicial vertex for short. Obviously, a 1-tree is just a tree. The concept of toughness was introduced by Chvátal [7] in 1973, it is clear that being 1-tough is a necessary condition for a graph to be Hamiltonian. Chvátal [7] conjectured that there exists a finite constant t_0 such that every t_0 -tough graph is Hamiltonian. It had been a long standing conjecture for $t_0 = 2$ until Bauer et al. [1] showed that for every $\varepsilon > 0$, there exists a $(\frac{9}{4} - \varepsilon)$ -tough nontraceable graph (a graph without Hamiltonian path), which disproved the conjecture. Chvátal [7] obtained $(\frac{3}{2} - \varepsilon)$ -tough graphs without a 2-factor for arbitrary $\varepsilon > 0$. These examples are all chordal. Recently Bauer et al. [2] showed that every $\frac{3}{2}$ -tough chordal graph has a 2-factor. Motivated by this result, Kratsch raised the question whether every $\frac{3}{2}$ -tough chordal graph is Hamiltonian. But, in [1], it is shown that there is an infinite class of chordal graphs with toughness close to $\frac{7}{4}$ having no Hamiltonian path, and hence no Hamiltonian cycle. However, Böhme et al. [3] showed that let G be a chordal planar graph with $\tau(G) > 1$, then G is Hamiltonian. Although $\frac{3}{2}$ -tough chordal graphs are not necessarily Hamiltonian, Chen et al. [6] proved that every 18-tough chordal graph is Hamiltonian. Recently, Broersma, Xiong and Yoshimoto [5] showed that k-trees (a subclass of chordal graphs) are Hamiltonian if the toughness is at least $\frac{k+1}{3}$ for $k \geq 2$. The authors of this paper try to extend the result of Broersma et al. [5] to panconnectedness. K-trees are not only a subclass of chordal graphs, but also an important class of graphs in computer science. Robertson and Seymour [9] introduced the concept of treewidth of graphs. According to [8], a graph G has treewidth at most k if and only if G is a partial k-tree, which is a subgraph of a k-tree. According to [8] (Chapter 10 Graphs in Computer Science), graphs with treewidth at most k are a class of recursively constructed graphs. Many NP-complete problems can be solved in linear time on these graphs. Motivated also by this fact, the authors work on the property of k-trees. ### 2. Preliminary results In this section, we introduce some basic properties and notation of k-trees obtained by Broersma et al. [5] first. Let $S_1(K_k) = \emptyset$, and for a k-tree $G \neq K_k$, let $S_1(G)$ denote the set of k-simplicial vertices of G if $G \neq K_{k+1}$ and a set of one arbitrary vertex of G if $G = K_{k+1}$. Now we give a lemma. **Lemma 1:** Let $G \neq K_k$ be a k-tree $(k \ge 2)$. Then - $(1) S_1(G) \neq \emptyset;$ - (2) $S_1(G)$ is an independent set; - (3) Every k-simplicial vertex (if any) of $G S_1(G)$ is adjacent in G to at least one vertex of $S_1(G)$; - (4) $\tau(G-v) \geq \tau(G)$ for any k-simplicial vertex $v \in S_1(G)$; - $(5) \ \tau(G-S_1(G)) \geq \tau(G).$ Proof. See [5], Lemma 6. Then we define $S_i(G)$. For a k-tree $G \neq K_k$, let $S_i(G)$ and G_i be defined as follows: $G_1 = G$, $S_1(G)$ is defined before Lemma 1, $G_i = G_{i-1} - S_1(G_{i-1})$ and $S_i(G) = S_1(G_i)$ for $i = 2, 3, \cdots$ as long as $S_i(G) \neq \emptyset$ (i.e. $G_i \neq K_k$). We denote by $N_i(v)$ the set of neighbours of v in G_i . **Lemma 2:** For any vertex $u \in S_2(G)$ (if any), there exists a vertex $v \in S_1(G)$ such that $uv \in E(G)$, and $N_1(u) \setminus N_2(u) \subseteq S_1(G)$. Proof. See [5], Lemma 8. **Lemma 3:** If $u \in S_2(G)$, then $N_1(w) \subseteq N_2(u) \cup \{u\}$ for any $w \in N_1(u) \setminus N_2(u)$. Proof. See [5], Lemma 9. Next, we introduce some basic properties of k-trees obtained by the authors of this paper. **Lemma 4:** If G is a k-tree and $G \neq K_k$ or K_{k+1} , then $|S_1(G)| \geq 2$. **Proof.** Since $G \neq K_k$ or K_{k+1} , $\nu(G) \geq k+2$. We proceed by induction on $\nu(G)$. Suppose $\nu(G) = k+2$. Then by the definition of a k-tree, G is constructed by adding a k-simplicial vertex v to K_{k+1} and connecting v to k vertices of K_{k+1} by edges. Then K_{k+1} has a vertex u not adjacent to v, and u and v are two k-simplicial vertices in $S_1(G)$. Assume that, when $\nu(G) = m \ (m \ge k + 2)$, we have $|S_1(G)| \ge 2$. Now suppose $\nu(G)=m+1$. We shall prove that $|S_1(G)|\geq 2$. By Lemma 1, there is a vertex $v\in S_1(G)$. Let H=G-v. Since H is a k-tree and $\nu(H)\geq k+2$, by induction hypothesis, $|S_1(H)|\geq 2$. If v is not adjacent to any vertex of $S_1(H)$, then $S_1(G)=S_1(H)\cup\{v\}$. So $|S_1(G)|=|S_1(H)|+1\geq 2+1>2$. If v is adjacent to a vertex v in $S_1(H)$, then $v\in S_2(G)$, by Lemma 3, $V_1(v)\subseteq V_2(v)\cup\{v\}$. Since $V_1(H)$ is independent by Lemma 1, v is not adjacent to any vertex in $V_1(H)\setminus\{v\}$ as v is a simplicial vertex of $V_1(H)\setminus\{v\}$. Then this lemma is proved. v **Lemma 5:** If G is a k-tree, $G \neq K_k$ and $G - S_1(G) \neq K_k$ or K_{k+1} , then $|S_2(G)| \geq 2$ and $S_2(G)$ is an independent set. **Proof.** Since $G \neq K_k$ and $G - S_1(G) \neq K_k$ or K_{k+1} , by Lemma 4, $H = G - S_1(G)$ satisfies that $|S_1(H)| \geq 2$. But $S_1(H) = S_2(G)$, by (2) of Lemma 1, $|S_2(G)| \geq 2$ and $S_2(G)$ is an independent set. \square **Lemma 6:** Let H be a graph of r independent vertices v_1, v_2, \dots, v_r . If a k-tree $G = K_k \oplus H$ with r < k, then G is panconnected, where $V(H) \cap V(K_k) = \emptyset$. **Proof.** Let $V(K_k) = \{u_1, u_2, \dots, u_k\}$. We just verify that, for any two vertices x and y, there is a path P from x to y of length L for each integer L from d(x, y) to $\nu(G) - 1$ in G. Case 1: $x = u_i$ and $y = v_j$ $(1 \le i \le k \text{ and } 1 \le j \le r)$. By symmetry, we can assume that $x = u_1$ and $y = v_r$ without loss of generality. We notice that d(x, y) = 1. Then $P=(x=)u_1v_1u_2v_2u_3\cdots u_mv_r(=y)$ is a path from x to y of length 2m-1 $(1\leq m\leq r);\ P=(x=)u_1v_1u_2v_2u_3\cdots u_mu_{m+1}v_r(=y)$ is a path from x to y of length 2m $(1\leq m\leq r);$ and $P=(x=)u_1v_1u_2v_2u_3\cdots u_ru_{r+1}\cdots u_{r+s}v_r(=y)$ is a path from x to y of length 2r-1+s $(1\leq s\leq k-r)$. Case $2:\ x=v_i$ and $y=v_i$ $(1\leq i< j\leq r)$ By symmetry, we can assume that $x = v_1$ and $y = v_r$ without loss of generality. We notice that d(x, y) = 2. Then $P = (x =)v_1u_1v_2u_2 \cdots v_mu_mv_r(=y)$ is a path from x to y of length 2m $(1 \le m \le r-1)$; $P = (x =)v_1u_1v_2u_2 \cdots v_mu_mu_{m+1}v_r(=y)$ is a path from x to y of length 2m+1 $(1 \le m \le r-1)$; and $P = (x =)v_1u_1v_2u_2 \cdots v_{r-1}u_{r-1}u_r \cdots u_{r-1+s}v_r(=y)$ is a path from x to y of length 2(r-1)+s $(1 \le s \le k-r+1)$. Case 3: $x = u_i$ and $y = u_j$ $(1 \le i < j \le k)$. By symmetry, we can assume that $x = u_1$ and $y = u_k$ without loss of generality. We notice that d(x, y) = 1. Then $P = (x =)u_1v_1u_2v_2u_3\cdots u_mv_mu_k (= y)$ is a path from x to y of length 2m $(1 \le m \le r)$; $P = (x =)u_1v_1u_2v_2\cdots u_mu_k (= y)$ is a path from x to y of length 2m-1 $(1 \le m \le r)$; and $P = (x =)u_1v_1u_2v_2u_3\cdots v_ru_{r+1}u_{r+2}\cdots u_{r+s}u_k (= y)$ is a path from x to y of length 2r + s $(1 \le s \le k - r - 1)$. Hence G is panconnected. The proof of this lemma is complete. **Lemma 7:** Let G = (V, E) be a k-tree $(k \ge 3)$ such that $G - S_1(G) = K_{k+1}$, $V(K_{k+1}) = \{u_0, u_1, \dots, u_k\}$ and $S_1(G) = \{v_1, v_2, v_3\}$. Suppose that v_i is adjacent to all vertices of u_0, u_1, \dots, u_k but u_i (i = 1, 2, 3). Then G is panconnected. **Proof.** We just verify that, for any two vertices x and y in G, there is a path P from x to y of length L for each integer L from d(x,y) to $\nu(G)-1$, and hence G is panconnected. Let P_r denote a path from x to y of length r. Case 1: $x = u_i$ and $y = v_j$ $(0 \le i \le k \text{ and } 1 \le j \le 3)$. By symmetry, we can assume that $y = v_1$. Case (1.1): $x = u_i$ $(i = 0, 4, 5, \dots, k)$. Without loss of generality, assume that $x = u_0$. Notice that d(x, y) = 1. Then $P_1 = (x =)u_0v_1(= y)$; $P_2 = (x =)u_0u_2v_1(= y)$; $P_3 = (x =)u_0v_2u_3v_1(= y)$; $P_4 = (x =)u_0v_2u_1u_2v_1(= y)$; $P_5 = (x =)u_0v_2u_1v_3u_2v_1(= y)$ y); $P_6 = (x =)u_0v_2u_1v_3u_2u_3v_1(= y)$; $P_{6+s} = (x =)u_0v_2u_1v_3u_2u_3 \cdots u_{3+s}v_1(= y)$ $(1 \le s \le k - 3)$. Case (1.2): $x = u_1$. Notice that d(x,y)=2. Then $P_2=(x=)u_1u_0v_1(=y)$; $P_3=(x=)u_1v_2u_0v_1(=y)$; $P_4=(x=)u_1v_2u_3u_0v_1(=y)$; $P_5=(x=)u_1v_2u_3u_2u_0v_1(=y)$; $P_6=(x=)u_1v_2u_3u_2v_3u_0v_1(=y)$; $P_{6+s}=(x=)u_1v_2u_3u_2v_3u_0u_4u_5\cdots u_{3+s}v_1(=y)$ $(1 \le s \le k-3)$. Case (1.3): $x = u_2$ or u_3 . By symmetry, we assume that $x = u_2$ without loss of generality. Notice that d(x, y) = 1. Then $P_1 = (x =)u_2v_1(= y)$; $P_2 = (x =)u_2u_0v_1(= y)$; $P_3 = (x =)u_2v_3u_0v_1(= y)$; $P_4 = (x =)u_2v_3u_0u_3v_1(= y)$; $P_5 = (x =)u_2v_3u_0u_1u_3v_1(= y)$; $P_6 = (x =)u_2v_3u_1v_2u_3u_0v_1(= y)$; $P_{6+s} = (x =)u_2v_3u_1v_2u_3u_0u_4u_5 \cdots u_{3+s}v_1(= y)$ $(1 \le s \le k - 3)$. Case 2: $x = v_i$ and $y = v_j$ $(1 \le i < j \le 3)$. By symmetry, we assume that $x = v_1$ and $y = v_3$ without loss of generality. Notice that d(x, y) = 2. Then $P_2 = (x =)v_1u_0v_3(=y)$; $P_3 = (x =)v_1u_0u_1v_3(=y)$; $P_4 = (x =)v_1u_0v_2u_1v_3(=y)$; $P_5 = (x =)v_1u_0v_2u_1u_2v_3(=y)$; $P_6 = (x =)v_1u_0v_2u_1u_3u_2v_3(=y)$; $P_{6+s} = (x =)v_1u_0v_2u_1u_3u_2u_4u_5 \cdots u_{3+s}v_3(=y)$ $(1 \le s \le k-3)$; Case 3: $x = u_i$ and $y = u_j$ $(0 \le i < j \le k)$. By symmetry, we have the following subcases. Notice that d(x,y) = 1. Case (3.1): $x = u_i$ and $y = u_j$, $i, j \in \{0, 4, 5, \dots, k\}$ and $i \neq j$. By symmetry, we assume that $x = u_0$ and $y = u_k$ without loss of generality. Then $P_1 = (x =)u_0u_k(= y)$; $P_2 = (x =)u_0v_1u_k(= y)$; $P_3 = (x =)u_0v_1u_2u_k(= y)$; $P_4 = (x =)u_0v_3u_1v_2u_k(= y)$; $P_5 = (x =)u_0v_1u_2v_3u_1u_k(= y)$; $P_6 = (x =)u_0v_1u_2v_3u_1v_2u_k(= y)$; $P_{6+s} = (x =)u_0v_1u_2v_3u_1v_2u_3u_4 \cdots u_{3+s-1}u_k(= y)$ $(1 \le s \le k-3)$. Case (3.2): $x = u_i$ and $y = u_j$, $i \in \{0, 4, 5, \dots, k\}$ and $j \in \{1, 2, 3\}$. By symmetry, assume that $x = u_0$ and $y = u_1$. Then $P_1 = (x =)u_0u_1(= y)$; $P_2 = (x =)u_0v_2u_1(= y)$; $P_3 = (x =)u_0v_1u_2u_1(= y)$; $P_4 = (x =)u_0v_1u_2v_3u_1(= y)$; $P_5 = (x =)u_0u_3v_1u_2v_3u_1(= y)$; $P_6 = (x =)u_0v_2u_3v_1u_2v_3u_1(= y)$; $P_{6+s} = (x =)u_0v_2u_3v_1u_2v_3u_4u_5 \cdots u_{3+s}u_1(= y)$ $(1 \le s \le k - 3)$. Case (3.3): $x = u_i$ and $y = u_j$ ($1 \le i < j \le 3$). By symmetry, assume that $x = u_1$ and $y = u_3$. Then $P_1 = (x =)u_1u_3(= y)$; $P_2 = (x =)u_1v_2u_3(= y)$; $P_3 = (x =)u_1v_2u_0u_3(= y)$; $P_4 = (x =)u_1v_2u_0v_1u_3(= y)$; $P_5 = (x =)u_1v_2u_0v_1u_2u_3(= y)$; $P_6 = (x =)u_1v_3u_2v_1u_0v_2u_3(= y)$; $P_{6+s} = (x =)u_1v_3u_2v_1u_0v_2u_4u_5 \cdots u_{3+s}u_3(= y)$ $(1 \le s \le k - 3)$. Hence G is panconnected. The proof of this lemma is complete. \square **Lemma 8:** Let G = (V, E) be a k-tree $(k \ge 3)$ such that $G - S_1(G) = K_{k+1}$, $V(K_{k+1}) = \{u_0, u_1, \dots, u_k\}$ and $S_1(G) = \{v_1, v_2\}$. Suppose that v_i is adjacent to all vertices of u_0, u_1, \dots, u_k but u_i (i = 1, 2). Then G is panconnected. **Proof.** The proof is similar to that of Lemma 7. We verify that, for any two vertices x and y in G, there is a path P_L from x to y of length L for each integer L from d(x,y) to $\nu(G)-1$ in G. Case 1: $x = u_i$ and $y = v_j$ $(0 \le i \le k \text{ and } 1 \le j \le 2)$. By symmetry, we can assume that $y = v_1$. Case (1.1): $x = u_i, i \in \{0, 3, 4, \dots, k\}.$ Without loss of generality, assume that $x = u_0$. Notice that d(x, y) = 1. Then $P_1 = (x =)u_0v_1(= y)$; $P_2 = (x =)u_0u_2v_1(= y)$; $P_3 = (x =)u_0v_2u_3v_1(= y)$; $P_4 = (x =)u_0u_1v_2u_3v_1(= y)$; $P_{4+s} = (x =)u_0u_2u_1v_2u_3u_4 \cdot \cdot \cdot \cdot u_{2+s}v_1(= y)$ ($1 \le s \le k-2$); Case (1.2): $x = u_1$. Notice that d(x,y)=2. Then $P_2=(x=)u_1u_0v_1(=y)$; $P_3=(x=)u_1v_2u_0v_1(=y)$; $P_4=(x=)u_1v_2u_0u_2v_1(=y)$; $P_{4+s}=(x=)u_1v_2u_0u_2u_3\cdots u_{2+s}v_1(=y)$ $(1 \le s \le k-2)$. Case (1.3): $x = u_2$. Notice that d(x,y) = 1. Then $P_1 = (x =)u_2v_1(= y)$; $P_2 = (x =)u_2u_0v_1(= y)$; $P_3 = (x =)u_2u_1u_0v_1(= y)$; $P_4 = (x =)u_2u_1v_2u_0v_1(= y)$; $P_{4+s} = (x =)u_2u_1u_0v_2u_3u_4 \cdots u_{2+s}v_1(= y)$ $(1 \le s \le k-2)$. Case 2: $x = v_1$ and $y = v_2$. Notice that d(x, y) = 2. Then $P_2 = (x =)v_1u_0v_2(= y)$; $P_3 = (x =)v_1u_0u_1v_2(= y)$; $P_4 = (x =)v_1u_0u_2u_1v_2(= y)$; $P_{4+s} = (x =)v_1u_0u_1u_2u_3 \cdots$ $u_{2+s}v_2(=y) \ (1 \le s \le k-2).$ Case 3: $x = u_i$ and $y = u_j$ $(0 \le i < j \le k)$. By symmetry, we have the following subcases. Notice that d(x, y) = 1. Case (3.1): $x = u_i$ and $y = u_j$, $i, j \in \{0, 3, 4, \dots, k\}$ and $i \ne j$. By symmetry, we assume that $x = u_0$ and $y = u_k$ without loss of generality. Then $P_1 = (x =)u_0u_k(= y)$; $P_2 = (x =)u_0v_1u_k(= y)$; $P_3 = (x =)u_0u_2v_1u_k(= y)$; $P_4 = (x =)u_0v_1u_2u_1u_k(= y)$; $P_{4+s} = (x =)u_0v_1u_2u_1v_2u_3u_4$. $u_{2+s}u_k(= y)$ $(1 \le s \le k-3)$. Case (3.2): $x = u_i$ and $y = u_j$, $(i \in \{0, 3, 4, \dots, k\})$ and $j \in \{1, 2\}$. By symmetry, we assume that $x = u_0$ and $y = u_1$. Then $P_1 = (x =)u_0u_1(= y)$; $P_2 = (x =)u_0v_2u_1(= y)$; $P_3 = (x =)u_0v_2u_3u_1(= y)$; $P_4 = (x =)u_0v_1u_2u_3u_1(= y)$; $P_{4+s} = (x =)u_0v_1u_2u_3 \cdots u_{2+s}v_2u_1(= y)$ $(1 \le s \le k-2)$. Case (3.3): $x = u_1$ and $y = u_2$. Then $P_1 = (x =)u_1u_2(= y)$; $P_2 = (x =)u_1u_0u_2(= y)$; $P_3 = (x =)u_1v_2u_0u_2(= y)$; $P_4 = (x =)u_1v_2u_0v_1u_2(= y)$; $P_{4+s} = (x =)u_1v_2u_0v_1u_3u_4 \cdot \cdot \cdot u_{2+s}u_2(= y)$ $(1 \le s \le k-2)$. Hence G is panconnected. The proof of Lemma 8 is complete. \square #### 3. The main theorems In this section, we prove the main theorems of this paper that if the toughness of a k-tree G is at least (k+1)/3, then G is panconnected for $k \geq 3$, or G is vertex pancyclic for k = 2. We show the results for the cases $k \geq 3$ and k = 2 separately. **Theorem 9:** If a k-tree G $(k \ge 3)$ has toughness $\tau(G) \ge \frac{k+1}{3}$, then G is panconnected. **Proof.** Let G be a k-tree $(k \ge 3)$ with toughness $\tau(G) \ge (k+1)/3$. We proceed by induction on $\nu(G)$ to prove that G is panconnected. When $\nu(G) = k$ or k+1, G is K_k or K_{k+1} , obviously G is panconnected. Assume that, when $\nu(G) < n$, G is panconnected. Now suppose that $\nu(G) = n \ge k + 2$. First, suppose that $S_2(G)=\emptyset$. Let $K=K_k$ and H be a graph of r independent vertices v_1,v_2,\cdots,v_r such that $V(H)=S_1(G)$. Then $G=K\oplus H$. If $r\geq k$, let S=V(K), then $\omega(G-S)=\omega(G-V(K))=|\{v_1,v_2,\cdots,v_r\}|=r\geq k=|S|$, contradicting $\tau(G)\geq (k+1)/3$ for $k\geq 3$. So $r\leq k-1$. Since $G=K\oplus H$ and $r\leq k-1$, by Lemma 6, G is panconnected. Now suppose $S_2(G) \neq \emptyset$. For any $u \in S_2(G)$, by Lemma 2, there is a $v \in S_1(G)$ such that $uv \in E(G)$ and $N_1(u) \setminus N_2(u) \subseteq S_1(G)$. Since $u \in S_2(G)$, the clique $G[N_1(v)]$ contains u, $|N_2(u) \cap N_1(v)| = k-1$. Hence $|N_2(u) \setminus N_1(v)| = 1$ (1) Case 1: u has at least four neighbours in $S_1(G)$, i.e. v_1, v_2, \dots, v_r $(r \ge 4)$. Then we delete all k+1 vertices of $S = N_2(u) \cup \{u\}$, we shall obtain that $\omega(G-S) \ge r = |\{v_1, v_2, \dots, v_r\}| \ (r \ge 4)$, and we have $(k+1)/4 \ge (k+1)/r \ge |S|/\omega(G-S) \ge \tau(G) \ge (k+1)/3$, which is a contradiction. Case 2: u has exactly three neighbours in $S_1(G)$, i.e. v_1, v_2, v_3 . Then for any two vertices v_i and $v_j \in S_1(G) \cap N_1(u)$ $(1 \le i < j \le 3)$, $N_2(u) \setminus N_1(v_i) \ne N_2(u) \setminus N_1(v_j)$ (2). Otherwise, suppose $N_1(v_i) = N_1(v_i) \cap (N_2(u) \cup \{u\}) = N_1(v_j) \cap (N_2(u) \cup \{u\}) = N_1(v_j)$. Let $S = N_1(v_i) = N_1(v_j)$ and let $\{u'\} = N_2(u) \setminus N_1(v_i) = N_2(u) \setminus N_1(v_j)$. Then |S| = k and $\omega(G - S) \geq 3$ since G - S has three components v_i, v_j and the component containing u', so $k/3 \geq |S|/\omega(G - S) \geq \tau(G) \geq (k+1)/3$, which is a contradiction. By (1) and (2), let $\{u_i\} = N_2(u) \setminus N_1(v_i)$ (i = 1, 2, 3) and let $u = u_0$ and the vertices of $(N_2(u) \cup \{u\}) \cap N_1(v_i) = N(v_i)$ be u_0, u_1, \dots, u_k except u_i (i = 1, 2, 3). If $G - \{u_0, u_1, \dots, u_k\}$ has a component besides v_1, v_2, v_3 , let $S = \{u_0, u_1, \dots, u_k\}$, then $\omega(G - S) \geq 4$ and $(k + 1)/4 \geq |S|/\omega(G - S) \geq \tau(G) \geq (k + 1)/3$, which is a contradiction. See Figure 1. Figure 1 So suppose $G - \{u_0, u_1, \dots, u_k\}$ has only components v_1, v_2 , and v_3 . Then G satisfies the hypothesis of Lemma 7, by Lemma 7, we know that G is panconnected. Case 3: u has exactly one neighbour in $S_1(G)$, i. e. v_1 . By (1), assume that $\{u_1\} = N_2(u) \setminus N_1(v_1)$ and $u_0 = u$, and the vertices of $(N_2(u) \cup \{u\}) \cap N_1(v_1) = N_1(v_1)$ are u_0, u_1, \dots, u_k except u_1 . Now we prove that G is panconnected. Let x and y be two arbitrary vertices of G. See Figure 2. Case (3.1): $x, y \in V(G) \setminus \{v_1, u\}$. Let $G_1 = G - v_1$. Since $v_1 \in S_1(G)$, by Lemma 1, G_1 is a k-tree and $\tau(G_1) \geq \tau(G)$. By induction hypothesis, there is a path P from x to y of length L for each integer L from d(x,y) to $\nu(G_1) - 1$ in G_1 (and hence in G). (Notice that a shortest (x,y) path in G will not go through v_1 , so $d_G(x,y) = d_{G_1}(x,y)$). In particular, the path P_1 from x to y of length $\nu(G_1) - 1$ in G_1 must go through two edges uu_i and uu_j such that one of u_i and u_j is not u_1 . Assume that $u_i \neq u_1$ without loss of generality. By replacing uu_i by uv_1u_i on P_1 , we obtain a path P from x to y of length $\nu(G_1)-1+1=\nu(G)-1$ in G. Case (3.2): x = u and $y \in V(G) \setminus \{v_1, u\}$. Let $G_1 = G - v_1$ and $G_2 = G_1 - u$. Since $v_1 \in S_1(G)$ and u is a k-simplicial vertex of G_1 , by Lemma 1, G_1 and G_2 are k-trees and $\tau(G_2) \ge \tau(G_1) \ge \tau(G)$. By induction hypothesis, there is a path from x to y of length L for each integer L from d(x,y) to $\nu(G_1)-1$ in G_1 (and hence in G), and since $k \geq 3$, we have a vertex $x'=u_i$ such that $x'\neq y$ and $x'\neq u_1$, so by induction hypothesis, G_2 is panconnected, hence we have a path P_1 from y to x' of length $\nu(G_2)-1$ in G_2 , then we have a path $P=P_1+x'v_1u$ from y to x(=u) of length $\nu(G_2)-1+2=\nu(G_1)-1+1=\nu(G)-1$ in G. Figure 2 Case (3.3): $x = v_1$ and $y \in V(G) \setminus \{v_1, u\}$. Let $G_1 = G - v_1$. By Lemma 1, G_1 is a k-tree and $\tau(G_1) \geq \tau(G)$. If the shortest path P_1 from $x(=v_1)$ to y goes through xu_i and a shortest path from u_i to y ($i \neq 0$), then P_1 exists in G and P_1 has length d(x,y). By induction hypothesis, there is a path P_2 from u to y of length L for each integer L from d(u,y) = d(x,y) to $\nu(G_1) - 1$ in G_1 . Then $P = xu + P_2$ is a path from x to y of length L for each integer L from d(x,y) + 1 to $\nu(G_1) - 1 + 1 = \nu(G) - 1$ in G. If the shortest path from $x(=v_1)$ to y goes through xu and a shortest path from u to y, then d(x,y)=d(u,y)+1. By induction hypothesis, there is a path P_1 from u to y of length L for each integer L from d(u,y) to $\nu(G_1)-1$ in G_1 , then $P=xu+P_1$ is a path from x to y of length L for each integer L from d(x,y)=d(u,y)+1 to $\nu(G_1)-1+1=\nu(G)-1$ in G. Case (3.4): $x=v_1$ and y=u. Let $G_1 = G - v_1$. By Lemma 1, G_1 is a k-tree and $\tau(G_1) \geq \tau(G)$. First, $xy = v_1u$ is a path from x to y of length d(x, y) = 1 in G. By induction hypothesis, there is a path P_1 from u_2 to u(=y) of length L for each integer L from $d(u_2, u) = 1$ to $\nu(G_1) - 1$ in G_1 . Then $P = xu_2 + P_1$ is a path from x to y(=u) of length L for each integer L from $d(x, y) + 1 = d(u_2, u) + 1 = 2$ to $\nu(G_1) - 1 + 1 = \nu(G) - 1$ in G. Hence in all subcases of Case 3, there is a path P from x to y of length L for each integer L from d(x,y) to $\nu(G)-1$ in G. Case 4: u has exactly two neighbours in $S_1(G)$, i. e. v_1 and v_2 . By the same argument as (2) in Case (2), we have $N_2(u)\backslash N_1(v_1) \neq N_2(u)\backslash N_1(v_2)$ (3) By (1) and (3), let $\{u_i\} = N_2(u) \setminus N_1(v_i)$ (i = 1, 2) and let $u = u_0$ and the vertices of $(N_2(u) \cup \{u\}) \cap N_1(v_i)$ be u_0, u_1, \dots, u_k except u_i (i = 1, 2). See Figure 3. Figure 3 Since $u \in S_2(G)$, $G - S_1(G)$ cannot be K_k . If $G - S_1(G)$ is K_{k+1} , then the $K_{k+1} = G[\{u_0, u_1, \dots, u_k\}]$, and all vertices of $S_1(G) \setminus \{v_1, v_2\}$ are adjacent to all of u_1, u_2, \dots, u_k . If $|S_1(G)\setminus\{v_1,v_2\}| \geq 2$, assume that $v_3,v_4 \in S_1(G)\setminus\{v_1,v_2\}$. Let $S = \{u_1,u_2,\cdots,u_k\}$. Then G-S has at least 3 components v_3,v_4 and the component containing $\{u_0,v_1,v_2\}$, so $k/3 \geq |S|/\omega(G-S) \geq \tau(G) \geq (k+1)/3$, which is a contradiction. If $|S_1(G)\setminus\{v_1,v_2\}|=1$, assume that $\{v_3\}=S_1(G)\setminus\{v_1,v_2\}$. Since $k\geq 3$, by the hypothesis of this case, u_3 is adjacent to v_1,v_2 and v_3 . We relabel u_0,u_1,u_2,\cdots,u_k . Let $u_0'=u_3,u_1'=u_1,u_2'=u_2,u_3'=u_0$ and $u_i'=u_i$ $(i=4,5,\cdots,k)$. Then the graph satisfies the hypothesis of Lemma 7 with u_i' substituting u_i $(i=0,1,\cdots,k)$, by Lemma 7, we know that G is panconnected. See Figure 4. If $|S_1(G)\setminus\{v_1,v_2\}|=0$, by Lemma 8, G is panconnected. Now suppose that $G - S_1(G)$ is not K_{k+1} . By Lemma 5, $|S_2(G)| \ge 2$ and there exists a $w \in S_2(G)$ such that $w \ne u$ and $wu \notin E(G)$, i. e. $w \notin \{u_1, u_2, \dots, u_k\}$. Applying the same argument of Cases 1 to 4 on w, the only remaining case to discuss is as following: Figure 4 w has exactly two neighbours in $S_1(G)$, i.e. z_1 and z_2 , $N_2(w)\backslash N_1(z_1) \neq N_2(w)\backslash N_1(z_2)$ (4). By (1) and (4), let $\{w_i\} = N_2(w) \setminus N_1(z_i)$ (i = 1, 2) and let $w = w_0$ and the vertices of $(N_2(w) \cup \{w\}) \cap N_1(z_i)$ be w_0, w_1, \dots, w_k except w_i (i = 1, 2) and $G[\{w_0, w_1, \dots, w_k\}]$ is a clique K_{k+1} . Let x and y be two arbitrary vertices of G. By symmetry, we have the following subcases to discuss. Now the case is as Figure 3. Case (4.1): $x, y \in V(G) \setminus \{u, v_1, v_2\}$. Let $G_1 = G - v_1$. Since $v_1 \in S_1(G)$, by Lemma 1, G_1 is a k-tree and $\tau(G_1) \geq \tau(G)$. By induction hypothesis, there is a path P from x to y of length L for each integer L from d(x,y) to $\nu(G_1)-1$ in G_1 (and hence in G). (Notice that a shortest (x, y) path in G will not go through $\nu(x)$. In particular, $\nu(x)$ is a path from x to y of length $\nu(x)$ of length $\nu(x)$ in $\nu(x$ Suppose that P_1 goes through an edge uu_i such that $u_i \neq u_1$. By replacing uu_i by uv_1u_i on P_1 , we obtain a path P from x to y of length $\nu(G_1) - 1 + 1 = \nu(G) - 1$ in G. The only exceptional case for P_1 is that P_1 goes through $u_iv_2uu_1$ ($u_i \neq u_1$). But, replacing $u_iv_2uu_1$ by $u_iuv_2u_1$ on P_1 , we obtain a path P_2 from x to y of length $\nu(G_1)-1$ in G_1 , which goes through uu_i ($u_i \neq u_1$). Applying the above argument by substituting P_1 by P_2 , we can obtain a path P from x to y of length $\nu(G_1) - 1 + 1 = \nu(G) - 1$ in G. Case (4.2): $x \in V(G) \setminus \{u, v_1, v_2\}$ and $y = v_1$. Let $G_1 = G - v_2$, $G_2 = G_1 - v_1$ and $G_3 = G_2 - u$. Since $v_1, v_2 \in S_1(G)$ and $u \in S_1(G_2)$, by Lemma 1, G_1 , G_2 and G_3 are k-trees and $\tau(G_3) \ge \tau(G_2) \ge \tau(G_1) \ge \tau(G)$. By induction hypothesis, there is a path P from x to y of length L for each integer L from d(x,y) to $\nu(G_1)-1$ in G_1 (and hence in G). Suppose $x=u_3$. Let $y'=u_1$. By induction hypothesis, G_3 is panconnected, so there is a path P_1 from x to y' of length $\nu(G_3)-1$ in G_3 . Then $P=P_1+y'v_2uy$ is a path from x to y of length $\nu(G_3)-1+3=\nu(G_1)-1+1=\nu(G)-1$ in G. Otherwise, suppose that $x \neq u_3$. Let $y' = u_3$. By induction hypothesis, there is a path P_2 from x to y' of length $\nu(G_3) - 1$ in G_3 . Then $P = P_2 + y'v_2uy$ is a path from x to y of length $\nu(G_3) - 1 + 3 = \nu(G_1) - 1 + 1 = \nu(G) - 1$ in G. Case (4.3): x = u and $y = v_1$. Let $G_1 = G - v_1$. Since $v_1 \in S_1(G)$, by Lemma 1, G_1 is a k-tree and $\tau(G_1) \geq \tau(G)$. Since d(x,y)=1, $xy=uv_1$ is a path from x to y of length d(x,y)=1. Let $y'=u_3$. By induction hypothesis, there is a path P_1 from x to y' of length L for each integer L from d(x,y')=1 to $\nu(G_1)-1$ in G_1 (and hence in G). Then $P=P_1+y'y(u_3v_1)$ is a path from x to y of length L for each integer L from d(x,y')+1=2 to $\nu(G_1)-1+1=\nu(G)-1$ in G. Case (4.4): $x=v_1$ and $y=v_2$. Let $G_1 = G - v_2$. Since $v_2 \in S_1(G)$, by Lemma 1, G_1 is a k-tree and $\tau(G_1) \geq \tau(G)$. Notice that $d(x,y)=d(v_1,v_2)=2$. Let y'=u. By induction hypothesis, there is a path P_1 from x to y' of length L for each integer L from $d(x,y')=d(v_1,u)=1$ to $\nu(G_1)-1$ in G_1 (and hence in G). Then $P=P_1+y'y(uv_2)$ is a path from x to y of length L for each integer L from d(x,y)=2 to $\nu(G_1)-1+1=\nu(G)-1$ in G. Case (4.5): $x \in V(G) \setminus \{v_1, v_2, u, u_1, u_2, \dots, u_k\}$ and y = u. Let $G_1 = G - v_1$. Since $v_1 \in S_1(G)$, by Lemma 1, G_1 is a k-tree and $\tau(G_1) \geq \tau(G)$. By induction hypothesis, there is a path P from x to y (= u) of length L for each integer L from d(x,y) to $\nu(G_1)-1$ in G_1 (and hence in G). We only need to prove that there is a path P from x to y of length $\nu(G)-1=\nu(G_1)-1+1$ in G. Let $G_2 = G - \{v_1, v_2\}$ and $G_3 = (G - \{v_1, u\}) + v_2u_2$. Notice that G_2 and G_3 are isomorphic. Since $v_1, v_2 \in S_1(G)$, by Lemma 1, G_2 is a k-tree and $\tau(G_2) \geq \tau(G)$, so G_3 is a k-tree and $\tau(G_3) \geq \tau(G)$. Let $y' = u_3$. By induction hypothesis, G_3 is panconnected, so there is a path P_1 from x to y' of length $\nu(G_3) - 1$ in G_3 . Then we have the following subcases. Case (4.5.1): $P_1 = Q_1(x, u_i) + u_i v_2 y' (= u_3)$, where $u_i \neq u_2, u_3(y')$, and Q_1 is a path from x to u_i in G_3 . Then there is a path $P = Q_1(x, u_i) + u_i v_2 u_3 v_1 y = u$ from x to y of length $\nu(G_3) - 1 + 2 = \nu(G) - 1$ in G. Case (4.5.2): $P_1 = Q_1(x, u_2) + u_2 v_2 y'(= u_3)$, where Q_1 is a path from x to u_2 in G_3 . Then there is a path $P=Q_1(x,u_2)+u_2v_1u_3v_2y=u$ from x to y of length $\nu(G_3)-1+2=\nu(G)-1$ in G. Case (4.5.3): $P_1 = Q_1(x, u_i) + u_i v_2 u_j + Q_2(u_j, y'(=u_3))$, where $u_i, u_j \neq u_2$ nor $u_3(=y')$, and Q_1 is a path from x to u_i and Q_2 is a path from u_j to y' in G_3 . Then there is a path $P = Q_1(x, u_i) + u_i v_2 u_j + Q_2(u_j, u_3) + u_3 v_1 y (= u)$ from x to y of length $\nu(G_3) - 1 + 2 = \nu(G) - 1$ in G. Case (4.5.4): $P_1 = Q_1(x, u_i) + u_i v_2 u_2 + Q_2(u_2, y'(=u_3))$, where $u_i \neq u_2$ nor $u_3(=y')$, Q_1 is a path from x to u_i and Q_2 is a path from u_2 to y' in G_3 . Then there is a path $P = Q_1(x, u_i) + u_i v_2 u_3 + Q_2(u_3, u_2) + u_2 v_1 y (= u)$ from x to y of length $\nu(G_3) - 1 + 2 = \nu(G) - 1$ in G. Case (4.5.5): $P_1 = Q_1(x, u_2) + u_2v_2u_i + Q_2(u_i, y'(= u_3))$, where $u_i \neq u_2$ nor $u_3(=y')$, Q_1 is a path from x to u_2 and Q_2 is a path from u_i to y' in G_3 . Then there is a path $P = Q_1(x, u_2) + u_2v_1u_3 + Q_2(u_3, u_i) + u_iv_2y (= u)$ from x to y of length $\nu(G_3) - 1 + 2 = \nu(G) - 1$ in G. Case (4.6): $x \in \{u_1, u_2, \dots, u_k\}$ and y = u. Figure 5 Now we consider $w, z_1, z_2, w_1, w_2, \dots, w_k$. See Figure 5. By the argument of Case 4 above, $w, z_1, z_2, w_1, w_2, \dots, w_k$ are in the same situation as $u, v_1, v_2, u_1, u_2, \dots, u_k$. However, $x \in \{u_1, u_2, \dots, u_k\}, y = u$, and $w \neq u$ and $wu \notin E(G)$ (i.e. $w \notin \{u_0, u_1, \dots, u_k\}$) by the argument before. Substituting $u, v_1, v_2, u_1, u_2, \dots, u_k$ by $w, z_1, z_2, w_1, w_2, \dots, w_k$, we have Case (4.1) such that $x, y \in V(G) \setminus \{w, z_1, z_2\}$. By the argument of Case (4.1), we know that there is a path P from x to y of length L for each integer L from d(x, y) to $\nu(G) - 1$ in G. In all cases, by the argument before, there is always a path P from x to y of length L for each integer L from d(x,y) to $\nu(G)-1$ in G. Hence G is panconnected. The proof of this theorem is complete. \square Now we prove that, if a k-tree G has toughness $\tau(G) \geq (k+1)/3$ for k=2, then G is vertex pancyclic. An edge e=uv of a 2-connected graph G is called a cutting edge if $G-\{u,v\}$ is not connected. An edge not to be a cutting edge is called a noncutting edge. **Theorem 10:** A 1-tough 2-tree G with $\nu(G) \geq 3$ is vertex pancyclic. **Proof.** Let G be a 1-tough 2-tree with $\nu(G) \geq 3$. We proceed by induction on $\nu(G)$. When $\nu(G) = 3$, G is a triangle, and obviously G is vertex pancyclic and the Hamiltonian cycle C of G contains all noncutting edges of G. Now suppose that $\nu(G) \geq 4$ and assume that every 1-tough 2-tree H of order $\nu(G)-1$ is vertex pancyclic and any Hamiltonian cycle C of H contains all noncutting edges of H. By Lemma 4, $S_1(G)$ has at least two 2-simplicial vertex w_1 and w_2 . Then $G[N(w_1)]$ and $G[N(w_2)]$ are single edges e_1 and e_2 respectively. Let $G_1 = G - w_1$ and $G_2 = G - w_2$. By (4) of Lemma 1, $\tau(G_1) \geq 1$ and $\tau(G_2) \geq 1$. By induction hypothesis, every vertex v in G_1 is contained in a cycle of length L for each integer L from 3 to $\nu(G_1) = \nu(G) - 1$ in G_1 (and hence in G), particularly, v is contained in a cycle C of length $\nu(G) - 1$ (and Hamiltonian cycle in G_1). By induction hypothesis, C contains the edge $e_1 = xy$. (Notice that e_1 is a noncutting edge of G_1 , otherwise $\tau(G) < 1$). Now v is contained in a cycle $C' = (C - e_1) + xw_1y$ of length $\nu(G)$ in G, and C' goes through every noncutting edge of G. (Notice that $e_1 = xy$ is not a noncutting edge of G). So every vertex v in G_1 is contained in a cycle of length L for each integer L from 3 to $\nu(G)$ in G. By similar argument on G_2 , we can prove that every vertex v (particularly w_1) in G_2 is contained in a cycle of length L for each integer L from 3 to $\nu(G)$ in G. Then by above conclusions, every vertex v of G is contained in a cycle C of length L for each integer L from 3 to $\nu(G)$. So G is vertex pancyclic. Remark: A 1-tough 2-tree is not necessarily edge pancyclic, and hence not panconnected. We construct counterexamples as follows: Let H be a 1-tough 2-tree with $\nu(H) \geq 3$ constructed by starting from an edge e = xy and keeping e a noncutting edge of H. Let G_1 and G_2 be two copies of H and we label the vertices of G_1 differently from those of G_2 except x and y. We construct $G = G_1 \cup G_2$ by identifying the x, y in G_1 and the x, y in G_2 . Then any cycle containing e = xy in G is contained in either G_1 or G_2 . So there is not any cycle of length greater than $\nu(G_1)$ containing e = xy in G and G is not edge pancyclic. #### References - [1] D. Bauer, H. J. Broersma, H. J. Veldman, Not every 2-tough graph is hamiltonian, Discrete Appl. Math. 99(2000), 317-321. - [2] D. Bauer, G. Y. Katona, D. Kratsch, H. J. Veldman, Chordality and 2-factors in tough graphs, Discrete Appl. Math. 99(2000), 323-329. - [3] T. Böhme, J. Harant, M. Tkác, More than 1-tough chordal planar graphs are hamiltonian, J. Graph Theory 32(1999), 405-410. - [4] J. A. Bondy and U. S. R. Murty, Graph theory with applications, MacMillan Press, London, 1976. - [5] H. J. Broersma, L. Xiong and K. Yoshimoto, Toughness and hamiltonicity in k-trees, Discrete Math. 307(2007), 832-838. - [6] G. Chen, M. S. Jacobson, A. E. Kézdy and J. Lehel, Tough enough chordal graphs are hamiltonian, Networks 31(1998), 29–38. - [7] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Math. 5(1973), 215-228. - [8] J. L. Gross and J. Yellen, Handbook of graph theory, CRC Press, Boca Raton, 2004. - [9] N. Robertson and P. D. Seymour, Graph minors II. Algorithmic aspects of treewidth, J. Algorithms 7(1986), 309-322.