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Abstract

In this paper, we prove that if the toughness of a k-tree G is
at least (k+1)/3, then G is panconnected for k > 3, or G is vertex
pancyclic for k = 2. This result improves a result of Broersma, Xiong
and Yoshimoto.
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1. Introduction and terminology

The graphs in this paper are finite, undirected, connected and simple. For
all terminology and notation not defined in this paper, the reader is referred
to [4].

Let G = (V, E) be a graph. We denote |V| by v(G). If P = uoujug---ux
is a path with £ = ug and y = uy, we say that P is a path from z to y or
P is a (z,y) path, denoted by P(z,y) or P, and we say that P is a path
of length k. If C = wyus - - - uxu, is a cycle, we say that C is a cycle of
length k. Let P(z,y) and Q(y,2) be two paths which are disjoint except
at y, then P(z,y) + Q(y, z) denotes the path from z to y along P and then
from y to z along Q. If z = z, P(z,y)+ Q(y, 2) denotes the cycle from z to
y along P and then from y to z (= z) along Q. Let u and v be two vertices
of G. We denote by d(z,y) the distance between u and v that is the length
of a shortest (u,v) path. A connected graph G is said to be panconnected
if , for any two vertices u and v in G, there is a path P from u to v of
length L for each integer L from d(u,v) to ¥(G) —1in G. A graph G is
called pancyclic if there is a cycle C of length L for each integer L from
3 to ¥(G) in G. In particular, if G has a cycle of length v(G), then G is
called Hamiltonian. A graph G is called vertex pancyclic if, for each vertex
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v in G, there is a cycle C containing v of length L for each integer L from
3 to ¥(G) in G. A graph G is called edge pancyclic if, for each edge e in
G, there is a cycle C containing e of length L for each integer L from 3 to
v(G) in G. Notice that a graph G to be panconnected implies that G is
edge pancyclic, G to be edge pancyclic implies that G is vertex pancyclic,
and G to be vertex pancyclic implies that G is pancyclic.

Let G be a graph. Let S C V(G) with S # . The subgraph of G with
vertex set S and edge set consisting of all edges in G with both ends in S
is called the induced subgraph of G on S, denoted by G[S]. Let S C V(G)
and § # V(G), the G- S = GIV(G)\S]. If S = {z}, we use G —z to
represent G — {z}. If e € E(G), we use G — e to represent the subgraph
of G by deleting e from G with two ends remained. Let w(G) denote the
number of components of G. A graph G is called t-tough if | S| > tw(G - S)
for each subset S of V(G) with w(G — S) > 1. The toughness of G is
denoted by 7(G) and is defined as follows: If G is not complete, then 7(G)
= min{|S|/w(G — S)}, where the minimum is taken over all cutsets S of
vertices in G, otherwise G = K, and 7(G) = oo. We denote by N(v)
the set of all neighbours of vertex v in G. Let G and H be two disjoint
graphs. We denote by G @ H the graph F with V/(F) = V(G)UV(H) and
E(F)=E(G)UEH)U {w |ueV(G)and ve V(H) }.

We define a graph G to be chordal if G contains no chordless cycle of
length at least 4. Then we define a k-tree as follows: K is the smallest
k-tree, and a graph G on at least k + 1 vertices is a k-tree if and only if it
contains a vertex v of degree k such that the neighbours of v are mutually
adjacent and G—v is a k-tree. We call v a k-simplicial vertex, or a simplicial
vertex for short. Obviously, a 1-tree is just a tree.

The concept of toughness was introduced by Chvétal [7] in 1973, it is
clear that being 1-tough is a necessary condition for a graph to be Hamilto-
nian. Chvétal [7] conjectured that there exists a finite constant t, such that
every to-tough graph is Hamiltonian. It had been a long standing conjec-
ture for o = 2 until Bauer et al. [1] showed that for every € > 0, there exists
a ( % — €)-tough nontraceable graph (a graph without Hamiltonian path),
which disproved the conjecture. Chvétal (7] obtained (% — g)-tough graphs
without a 2-factor for arbitrary ¢ > 0. These examples are all chordal.
Recently Bauer et al. [2] showed that every %-tough chordal graph has
a 2-factor. Motivated by this result, Kratsch raised the question whether
every % -tough chordal graph is Hamiltonian. But, in [1], it is shown that
there is an infinite class of chordal graphs with toughness close to  having
no Hamiltonian path, and hence no Hamiltonian cycle. However, Bshme
et al. [3] showed that let G be a chordal planar graph with 7(G) > 1, then
G is Hamiltonian. Although %-tough chordal graphs are not necessarily
Hamiltonian, Chen et al. [6] proved that every 18-tough chordal graph is
Hamiltonian. Recently, Broersma, Xiong and Yoshimoto [5] showed that
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k-trees (a subclass of chordal graphs) are Hamiltonian if the toughness is
at least "—:.'5'—1 for k > 2. The authors of this paper try to extend the result
of Broersma et al. [5] to panconnectedness.

K-trees are not only a subclass of chordal graphs, but also an important
class of graphs in computer science. Robertson and Seymour (9] intro-
duced the concept of treewidth of graphs. According to (8], a graph G
has treewidth at most k if and only if G is a partial k-tree, which is a
subgraph of a k-tree. According to [8] ( Chapter 10 Graphs in Computer
Science), graphs with treewidth at most k are a class of recursively con-
structed graphs. Many NP-complete problems can be solved in linear time
on these graphs. Motivated also by this fact, the authors work on the

property of k-trees.

2. Preliminary results

In this section, we introduce some basic properties and notation of k-trees
obtained by Broersma et al. [5] first.

Let S;(Kx) = 0, and for a k-tree G # Kj, let S1(G) denote the set of
k-simplicial vertices of G if G # Ki41 and a set of one arbitrary vertex of
G if G = Ki41. Now we give a lemma.

Lemma 1: Let G # K be a k-tree (k>2). Then

(1) $1(G) #0;

(2) 51(G) is an independent set;

(3) Every k-simplicial vertex (if any) of G — S;(G) is adjacent in G to at
least one vertex of $;(G);

(4) 7(G — v) > 7(G) for any k-simplicial vertex v € 51(G);

(5) 7(G - 51(G)) 2 7(C).

Proof. See [5], Lemma 6.

Then we define S;(G). For a k-tree G # K, let S;(G) and G; be defined
as follows: G; = G, S1(G) is defined before Lemma 1, G; = G;—1—51(Gi-1)
and S,(G) = Sl(G,) for i = 2,3,- -+ as long as S,(G) 75 0 (le Gi 7‘-‘ K};)
We denote by N;(v) the set of neighbours of v in G;.

Lemma 2: For any vertex u € S3(G) (if any), there exists a vertex v €
51(G) such that wv € E(G), and Ni(u)\N2(u) C 5:1(G).
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Proof.  See [5], Lemma 8.

Lemma 3: If v € S3(G), then Ny(w) C No(u) U {u} for any w €
N1 (w)\N2(uw).

Proof. See [5], Lemma 9.

Next, we introduce some basic properties of k-trees obtained by the
authors of this paper.

Lemma 4: If G is a k-tree and G # K}, or Ki1, then |Si(G)| > 2.

Proof. Since G # K}, or Ki41, V(G) > k + 2. We proceed by induction
on v(G). Suppose v(G) = k + 2. Then by the definition of a k-tree, G is
constructed by adding a k-simplicial vertex v to K.; and connecting v to
k vertices of Kiy1 by edges. Then Kj.; has a vertex u not adjacent to v,
and u and v are two k-simplicial vertices in S (G).

Assume that, when v(G) = m (m > k + 2), we have |$;(G)| > 2.

Now suppose v(G) = m + 1. We shall prove that |S;(G)| > 2. By
Lemma 1, there is a vertex v € S;(G). Let H = G —v. Since H is
a k-tree and v(H) > k + 2, by induction hypothesis, |S;(H)| > 2. If v
is not adjacent to any vertex of Sy(H), then S;(G) = Si1(H) U {v}. So
[S1(G)| = |S1(H)|+1 > 241 > 2. If v is adjacent to a vertex u in
S1(H), then u € S3(G), by Lemma 3, Ny(v) € Na(u) U {u}. Since S;(H)
is independent by Lemma 1, v is not adjacent to any vertex in S;(H)\{u}
as v is a simplicial vertex of G. So $1(G) = (Si1(H)\{u}) U {v}, and
[S1(G)| = |S1(H)| — 1+ 1 =|S1(H)| > 2. Then this lemma is proved. O

Lemma 5: If G is a k-tree, G # K and G — S1(G) # K. or Ki41, then
|S2(G)| > 2 and S2(G) is an independent set.

Proof. Since G # K and G — S1(G) # Kj or Kiy1, by Lemma 4,
H = G — S1(G) satisfies that |S)(H)| 2 2. But Si(H) = S2(G), by (2) of
Lemma 1, |S2(G)| > 2 and S5(G) is an independent set. O

Lemma 6: Let H be a graph of r independent vertices v;,vs,- - -, v,. If
a k-tree G = K @ H with r < k, then G is panconnected, where V(H) N
V(Kk) =0.
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Proof. Let V(K) = {u1,ua, -, ux}. We just verify that, for any two
vertices x and y, there is a path P from 2 to y of length L for each integer
L from d(z,y) to v(G) —1in G.

Casel:z=u;andy=v; (1<i<kand1<j<r).

By symmetry, we can assume that £ = u; and y = v, without loss of
generality. We notice that d(z,y) = 1.

Then P = (z =)ujv1ugvau3 - UmV-(= y) is a path from z to y of length
2m -1 (1 < m < r); P = (z =)u1v1%2v2u3 * * * UmUm41r(= ¥) is a path
from z to y of length 2m (1 < m < 7); and P = (z =)ujv1usvata - Urlry1-
-+ UpysUp(=y) is a path from z to y of length 2r —1+s (1 <s<k—7).
Case2: z=viandy=v; (1<i<j<r)

By symmetry, we can assume that £ = v; and y = v, without loss of
generality. We notice that d(z,y) = 2.

Then P = (z =)viuiv2uy - - - UmUm¥r(= y) is a path from = to y of
length 2m (1 < m < r —1); P = (T =)v1u102U2 * ‘UnUmUm4+1Vr(= ¥) is
a path from z toy of length 2m+1 (1 < m <r-1);and P = (z =
YV1UVUD * - Up— 1 Up—1 Uy - - - Up—14+sVr (= ) is & path from z to y of length
2r—-1)+s(1<s<k-r+1).

Case : z=u;andy=u; (1<i<j<k).

By symmetry, we can assume that = = u; and y = u, without loss of
generality. We notice that d(z,y) = 1.

Then P = (z =)ujvi1usvaus - - - UmUmux(= y) is a path from z to y of
length 2m (1 < m < 7); P = (z =)u1v1uV2 - - umux(= y) is 2 path from z
to y of length 2m—1 (1 £ m < 7); and P = (z =)u1v1Ug¥2u3 - Urlr41Ur42-
-~ Uppsuk(=y) is a path from z toy of length 2r + s (1 < s <k—-r—1).

Hence G is panconnected. The proof of this lemma is complete. O

Lemma 7: Let G = (V, E) be a k-tree (k > 3) such that G—5,(G) = K41,
V(Kik41) = {uo,u1,- - -,ux} and Si(G) = {v1,v2,v3}. Suppose that v; is
adjacent to all vertices of up,u1,- - -, ux but u; (i = 1,2,3). Then G is
panconnected.

Proof. We just verify that, for any two vertices z and y in G, there is a
path P from z to y of length L for each integer L from d(z,y) to ¥(G) — 1,
and hence G is panconnected. Let P, denote a path from x to y of length
T.
Casel: z=u;andy=v; (0<i<kand1<j<3).

By symmetry, we can assume that y = v;.
Case (1.1): z =u; (1 =0,4,5,---,k).

Without loss of generality, assume that z = ug. Notice that d(z,y) =
1. Then P, = (z =)uovi(= ¥); P2 = (z =)uouguvi(= y); P = (z =
Jugveuzvi(= y); Pi = (z =)uovawaugvi(= y); Ps = (z =)uovaurvsugvi(=
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vy Bs = (z =)uovourvsuguavi(= ¥); Poys = (z =)uovouyvaugus - - -
Uz sV (= y) 1<s<k- 3) .
Case (1.2): z =u,.

Notice that d(z,y) = 2. Then P, = (z =)wupvi(= y); Ps = (z =
Yurvauovi (= ¥); Py = (z =)uyvausuoui(= y); Ps = (z =)u vouzusuov; (=
¥); Ps = (z =)uivaugugvauovi(= ¥); Pots = (T =)uivousugvsuouqus - - -
uz+sv1(=y) 1 <s<k-3).

Case (1.3): z = ug or ug.

By symmetry, we assume that = = u; without loss of generality. Notice
that d(z,y) = 1.

Then P, = (z =)ugui(= y); P2 = (z =)wauouni(= y); P» = (z
Juzvsuoui (= y); Ps = (z =)ugusuousvi(= y); Ps = (z =)ugvauouiuavi(
¥); Po = (z =)uzvauyvousuovi(= ¥); Poys = (T =)uguauivauguouqus - - -
ug+sV1(=y) 1 <s<k-3).

Case2: z=v;andy=v; (1 <i<j<3I).

By symmetry, we assume that £ = v; and y = v; without loss of
generality. Notice that d(z,y) = 2.

Then P, = (z =)viugus(= y); P3 = (z =)niwowiva(=y); Py = (z =
)vluov2u1v3(= y); P5 = (:l! =)’U1'LL0'U2U1U2’U3(= y); Ps = (.'L‘ =)v1uovzu1u3u2v3(=
Y); Pors = (T =)viugvauiuguguqus - - - u34+sv3(=y) (1 < s < k—3);

Case: z=u;andy=u; (0<i<j<k).

By symmetry, we have the following subcases. Notice that d{(z,y) = 1.
Case (3.1): z =u; and y = u;, %,j € {0,4,5,---,k} and i # j.

By symmetry, we assume that £ = up and y = u; without loss of
generality.

Then P, = (z =)uour(= y); P2 = (z =)uoniuk(= y); Pz = (= =
)uovluguk(= y); P4 = (:B =)uov3u1v2uk(= y); P5 = (:B =)uov1ugv3u1uk(=
Y); Ps = (z =)uoviugusuyvoug(= y); Poys = (T =)uoviugvauivousuy - - -
u3+,_1uk(= y) (1 <s< k- 3)

Case (3.2): z =u; and y = u;, i € {0,4,5,---,k} and j € {1,2,3}.

By symmetry, assume that £ = up and y = ;.

Then P, = (z =)uoui(= y); P2 = (z =)uovoui(=y); P = (z =
Juoviugui (= y); Pa = (x =)uoviugusuy(= y); Ps = (z =)uouzviuavsu (=
y); Ps = (z =)uovauzviugusui(= y); Poys = (¢ =)uguauaviugvauqus - - -
u3+,u1(= y) (1 <s S k- 3).

Case (33 z=uw;andy=u; (1<i<j<3).

By symmetry, assume that £ = u; and y = us.

Then P, = (z =)ujuz(= y); P2 = (z =)uivous(= y); P = (=
Jurvaugus(= y); Pa = (z =)uiveuoviua(= y); Ps = (T =)ujvauoviuzus(
y); Ps = (z =)wrvausviuovaus(= y); Poys = (T =)ujvaugviuovouqus - - -
uzysus(=y) (1 <s<k~-3).

Hence G is panconnected. The proof of this lemma is complete. O
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Lemma 8: Let G = (V,E) be a k-tree (k > 3) such that G — 51(G) =
Kit1, V(Kik41) = {uo,u1,- - -,ux} and $1(G) = {v1,v2}. Suppose that
v; is adjacent to all vertices of ug,u1,- - -,ux but u; ({ = 1,2). Then G is
panconnected.

Proof. The proof is similar to that of Lemma 7. We verify that, for any
two vertices = and y in G, there is a path Py, from z to y of length L for
each integer L from d(z,y) to v(G) —1in G.
Casel: z=u;andy=v; (0<i<kand1<j<2)

By symmetry, we can assume that y = v;.
Case (1.1): z =u;, i € {0,3,4, - -, k}.

Without loss of generality, assume that z = up. Notice that d(z,y)
1. Then P, = (z =)uovi(= ¥); P2 = (z =)uouovsi(= y); P3 = (z
Yuovousvi (= y); Ps = (z =)uourvausvi(= y); Pays = (T =)uouzu1vauzuy -
cugysvi(=y) (1<s<k-2)

Case (1.2): z = u;.

Notice that d(z,y) = 2. Then P = (z =)uyuoni(= v); P» = (z
Jurvaugur (= ¥); Py = (z =)u1vauouzvi(= y); Pays = (T =)urvouougus - - -
Usysi(=y) 1 <s<k-2).

Case (1.3): z = ua.

Notice that d(z,y) = 1. Then P = (z =)ugui(= y); P = (z =
Juguoni(= ¥); Pz = (z =)uguiuovi(= ¥); Py = (z =)usuaveuovi(= y);
Py = (z =)uguiuguausuy - - - u24sv1(=9) (1 < s <k -2).

Case 2: z = v; and y = vs.

Notice that d(z,y) = 2. Then P, = (z =)viuove(= y); P3 = (z =
Jriuourve(= y); Py = (z =)viuougurve(= y); Pays = (T =)vivourugus - - -
Uspste(=y) 1 <s<k-—2).

Case3:z=u;andy=1u; (0<i<j<k)

By symmetry, we have the following subcases. Notice that d(z,y) = 1.
Case (3.1): z =u; and y = u;, 4,5 € {0,3,4,---,k} and @ # j.

By symmetry, we assume that £ = up and y = u, without loss of
generality.

Then P, = (z =)wour(= ¥); P2 = (z =)Juovyur{=y); P3 = (z =
Yuouzv uk(= y); Py = (x =)uoviuotiur(= y); Pats = (T =)uoviuguivausuy-
ccugysuk(=y) 1 <s<k-3).

Case (3.2): £ =u; and y = u;, (¢ € {0,3,4,---,k} and j € {1,2}).

By symmetry, we assume that £ = up and y = u;.

Then P, = (z =)uoui(= y); P2 = (z =)ugvoua(= y); P» = (z =
Yuovouzui (= y); Py = (z =)uoviuguaui(= y); Pags = (T =)uoviugus - - -
ugsvoui(=9y) (1 <s<k-2).

Case (3.3): z =u; and y = uy.
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Then P, = (z =)uiua(= y); P2 = (z =)uiuouz(= y); P3 = (z =
Jurvauguz(= v); Py = (z =)urvauovia(= y); Pats = (T =)u1vzuoviuguy -
cugpsua(=y) (1<s<k-2).

Hence G is panconnected. The proof of Lemma 8 is complete. O

3. The main theorems

In this section, we prove the main theorems of this paper that if the tough-
ness of a k-tree G is at least (k+1)/3, then G is panconnected for k > 3,
or G is vertex pancyclic for £ = 2. We show the results for the cases k > 3
and k = 2 separately.

Theorem 9: If a k-tree G (k > 3) has toughness 7(G) > £}, then G is
panconnected.

Proof. Let G be a k-tree (k > 3) with toughness 7(G) > (k+1)/3. We
proceed by induction on v(G) to prove that G is panconnected.

When v(G) =k or k+1, G is K}, or Kj41, obviously G is panconnected.

Assume that, when ¥(G) < n, G is panconnected.

Now suppose that v(G) =n > k + 2.

First, suppose that S3(G) = 0. Let K = K} and H be a graph of r
independent vertices v;,vs,- - -,vr such that V(H) = S;(G). Then G =
KeoH. Ifr >k letS=V(K), then w(G - S5) = w(G -~ V(K)) =
[{v1,v2," - v, }] =7 > k = |5|, contradicting 7(G) > (k +1)/3 for k > 3.
Sor < k-1 SinceG=K®Handr < k-1, by Lemma 6, G is
panconnected.

Now suppose S3(G) # 0.

For any u € 53(G), by Lemma 2, there is a v € S1(G) such that uv €
E(G) and Ny (u)\N2(u) € Si(G).

Since u € S2(G), the clique G|V} (v)] contains u, [No(u)NN; (v)] = k—1.
Hence |Na(u)\N1(v)| =1 (1)

Case 1: u has at least four neighbours in 5,(G), i.e. v1,v2,- -, v (r = 4).
Then we delete all k + 1 vertices of S = Nj(u) U {u}, we shall obtain
that w(G — 8) 2 r = |{v1,v2, - *,v.}| (r 2 4), and we have (k +1)/4 >
(k+1)/r > |S|/w(G — S) 2 7(G) 2 (k + 1)/3, which is a contradiction.
Case 2: u has exactly three neighbours in $1(G), i.e. v1,va,v3.
Then for any two vertices v; and v; € S1(G)N N (u) (1 <i<j<3),
Na(u)\N1(v:) # No(u)\N1(v;)  (2).
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Otherwise, suppose N; (v;) = Ny(vi)N(Na(u)U{u}) = Ny (v;)N(N2(u)U
{u}) = Ni(v;). Let S = Ny(v;) = Ni(v;) and let {u'} = Na(u)\Ny(v:) =
Na(u)\N1(v;). Then |S| = k and w(G — S) > 3 since G — S has three
components v;,v; and the component containing v/, so k/3 > |S|/w(G —
S) > 7(G) = (k +1)/3, which is a contradiction.

By (1) and (2), let {u;} = Na(u)\N1(v:) (i = 1,2, 3) and let u = up and
the vertices of (Na(u) U {u}) N Ni(vi) = N(v;) be ug,u,- - -, ur except u;
(i=1,2,3). ,

If G — {uo,u1,- - -,ux} has a component besides v;,vs,v3, let S =
{uo,u1,- - -, ur}, then w(G — S) > 4 and (k + 1)/4 > |S|/w(G - S) >
7(G) > (k + 1)/3, which is a contradiction. See Figure 1.

v2
vl u (UO) :

\fm"l K/
\\ (2 \b A
1'\

v3

Figure 1

So suppose G — {ug,u1," - *,ux} has only components v, vz, and vs.
Then G satisfies the hypothesis of Lemma 7, by Lemma 7, we know that
G is panconnected.

Case 3: u has exactly one neighbour in 5;(G), i. e. v;.

By (1), assume that {u;} = N2(u)\Ni(v;) and uo = u, and the vertices
of (Na(u) U {u}) N Ny(v1) = Ni(vy) are ug,uy,- - -, ux except u;. Now we
prove that G is panconnected. Let = and y be two arbitrary vertices of G.
See Figure 2.

Case (3.1): z,y € V(G)\{v1,u}.

Let G; = G — v;. Since v; € Si(G), by Lemma 1, G; is a k-tree and
7(G;) > 7(G). By induction hypothesis, there is a path P from z to y of
length L for each integer L from d(z,y) to ¥(G;1) — 1 in G; ( and hence
in G). (Notice that a shortest (z,y) path in G will not go through v, so
de(z,y) = dg,(z,y)). In particular, the path P, from z to y of length
v(G1) — 1 in G; must go through two edges uu; and uu; such that one of
u; and u; is not u;. Assume that u; # u; without loss of generality. By
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replacing uu; by uvyu; on Py, we obtain a path P from z to y of length
v(G1)—1+1=v(G)—-1inG.
Case (3.2): £ =u and y € V(G)\{v1,u}.

Let Gy = G —v; and Gy = G; — u. Since v; € $1(G) and u is a k-
simplicial vertex of G;, by Lemma 1, G; and G, are k-trees and 7(G3) >
T7(G1) 2 7(G).

By induction hypothesis, there is a path from z to y of length L for each
integer L from d(z,y) to »(G1) —1 in G; (and hence in G), and since & > 3,
we have a vertex =’ = u; such that z’ # y and =’ # u;, so by induction
hypothesis, G5 is panconnected, hence we have a path P; from y to =’ of
length ¥(G3) — 1 in Gy, then we have a path P = P, + z'viu from y to
z(=u) of length ¥(G3) —1+2=v(G1)-1+1=»(G)-1in G.

Figure 2

Case (3.3): z =v; and y € V(G)\{v1,u}.

Let G; = G — v;. By Lemma 1, G, is a k-tree and 7(G1) > 7(G).

If the shortest path P; from z(= v;) to y goes through zu; and a shortest
path from u; to y (¢ # 0), then P, exists in G and P, has length d(z,y). By
induction hypothesis, there is a path P, from u to y of length L for each
integer L from d(u,y) = d(z,y) to v(G1) —1in G;. Then P = zu + P,
is a path from z to y of length L for each integer L from d(z,y) + 1 to
v(Gy)—-1+1=v(G)-1inG.

If the shortest path from z(= v;) to y goes through zu and a shortest
path from u to y, then d(z,y) = d(u, y)+ 1. By induction hypothesis, there
is a path P, from u to y of length L for each integer L from d(u,y) to
v(G1) — 1 in Gy, then P = zu 4+ P, is a path from z to y of length L for
each integer L from d(z,y) =d(u,y) +1to v(G;) -1+1=v(G)-1inG.
Case (3.4): z =v; and y = u.

Let G; = G — v;. By Lemma 1, G, is a k-tree and 7(G,) = 7(G).
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First, zy = vju is a path from z to y of length d(z,y) =1in G.

By induction hypothesis, there is a path P from uy to u(= y) of length
L for each integer L from d(ugz,u) = 1 to ¥(G;) —1in G;. Then P =
zug + P is a path from z to y(= u) of length L for each integer L from
d(z,y) +1=d(u,u)+1=2to v(G1)-1+1=v(G)-1in G.

Hence in all subcases of Case 3, there is a path P from z to y of length
L for each integer L from d(z,y) to ¥(G) —1in G.
Case 4: u has exactly two neighbours in S;(G), i. e. v} and vs.

By the same argument as (2) in Case (2), we have

Np(u)\Ny(v1) # Na(w)\Ny(v2) (3)

By (1) and (3), let {u;} = Na(u)\N1(v:) (4 = 1,2) and let u = 4o and
the vertices of (Na(u) U {u}) N Ny(v;) be ug, vy, - - -, ug except u; (1 =1,2).
See Figure 3.

vl u(u0) v2

Figure 3

Since u € S92(G), G — S1(G) cannot be Ki. If G — §1(G) is Ki41,
then the Ky i1 = G[{uo,u1," - -, ux}], and all vertices of S1(G)\{v1,v2} are
adjacent to all of uj,us,- - -, uk.

If |S1(G)\{v1,v2}| > 2, assume that v3,v4 € S3(G)\{v1,v2}. Let § =
{u1,ug, * yux}. Then G — S has at least 3 components vs,v4 and the
component containing {ug,v1,v2}, so k/3 > |S|/w(G - 8) > 7(G) = (k +
1)/3, which is a contradiction.

If |Sl(G)\{‘Ul,’Uz}| = 1, assume that {‘!}3} = SI(G)\{‘Ul,'Uz}. Since
k > 3, by the hypothesis of this case, u3 is adjacent to vy,vs and v3. We
relabel ug,uy,ug, + -, uk. Let uy = u3,u] = uy,uy = up,uz = up and
ul = u; (i =4,5,---, k). Then the graph satisfies the hypothesis of Lemma
7 with u} substituting u; (¢ =0,1,- - -, k), by Lemma 7, we know that G is
panconnected. See Figure 4.
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If |S1(G)\{v1,v2}| = 0, by Lemma 8, G is panconnected.

Now suppose that G — S5;(G) is not K. By Lemma 5, |S2(G)| > 2
and there exists a w € S3(G) such that w # v and wu ¢ E(G), i. e.
w ¢ {ulr U2,y uk}'

Applying the same argument of Cases 1 to 4 on w, the only remaining
case to discuss is as following:

Figure 4

w has exactly two neighbours in $1(G), i.e. z; and z,,
No(w)\Ny(z1) # No(w)\Ni(22) (4).

By (1) and (4), let {w;} = Na(w)\Ny(z;) (i =1,2) and let w = wo and
the vertices of (Na(w)U {w}) NNy (2;) be wo, wy, - - -, wy except w; (2 = 1,2)
and G[{wo, w1, - - -, wi }] is a clique Kjy1.

Let z and y be two arbitrary vertices of G. By symmetry, we have the
following subcases to discuss. Now the case is as Figure 3.

Case (4.1): z,y € V(G)\{u,v1,v2}.

Let G, = G — v;. Since v; € S1(G), by Lemma 1, G; is a k-tree and
(Gy) > 7(C).

By induction hypothesis, there is a path P from z to y of length L for
each integer L from d(z,y) to ¥(G1) — 1 in G; (and hence in G). (Notice
that a shortest (z, y) path in G will not go through v;). In particular, P,
is a path from z to y of length v(G;) —1 in G; (and hence in G).

Suppose that P, goes through an edge uu; such that u; # u;. By
replacing uu; by uviu; on P, we obtain a path P from z to y of length
v(G1)—14+1=v(G)-1inG.

The only exceptional case for P, is that P, goes through wvouu; (u; #
uy). But, replacing u;vouu; by u;uvou; on Pj, we obtain a path P, from =
to y of length v(G,) —1 in G;, which goes through uu; (u; # u;). Applying
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the above argument by substituting P; by P,, we can obtain a path P from
z to y of length v(G1) -1+1=v(G)—1in G.
Case (4.2): z € V(G)\{u,v1,v2} and y = v;.

Let Gy = G — vy, G2 = Gy — vy and G3 = Gg — u. Since v1,v2 € Sl(G)
and u € $1(G2), by Lemma 1, G;, G2 and G3 are k-trees and 7(G3) >
7(G2) 2 7(Gy) = 7(G).

By induction hypothesis, there is a path P from z to y of length L for
each integer L from d(z,y) to v(G1) — 1 in G; (and hence in G).

Suppose z = u3. Let ¥’ = u;. By induction hypothesis, G3 is pan-
connected, so there is a path P, from z to ¢ of length v(Gs) — 1 in Gs.
Then P = P, 4+ y'vouy is a path from z to y of length v(G3) —1+3 =
v(G))-1+1=v(G)-1inG.

Otherwise, suppose that = # uz. Let 3’ = uz. By induction hypothesis,
there is a path P, from z to 3’ of length ¥(G3) — 1 in G3. Then P = P, +
y'vouy is a path from z to y of length ¥(G3)—1+3 = v(G1)—1+1 = »(G)-1
in G.

Case (4.3): z =u and y = v;.

Let Gy = G — v;. Since v; € 5;(G), by Lemma 1, G, is a k-tree and
7(G1) 2 7(G).

Since d(z,y) = 1, zy = uv; is a path from z to y of length d(z,y) = 1.
Let ¥’ = u3. By induction hypothesis, there is a path P, from z to 3’ of
length L for each integer L from d(z,y’) =1 to ¥(G1) —1 in G (and hence
in G). Then P = P, + y'y(usv;) is a path from z to y of length L for each
integer L from d(z,y’) +1=2tov(G1) —1+1=v(G)-1inG.

Case (4.4): z =v; and y = vs.

Let G; = G — vy. Since vy € S1(G), by Lemma 1, G; is a k-tree and
T(G1) 2 7(G).

Notice that d(z,y) = d(vi,v2) = 2. Let y = u. By induction hy-
pothesis, there is a path P, from z to ¥’ of length L for each integer L
from d(z,y’) = d(v1,u) =1 to ¥(G1) — 1 in G; (and hence in G). Then
P = P; +y'y(uvy) is a path from z to y of length L for each integer L from
d(z,y) =2tov(G;)—1+1=v(G)—1inG.

Case (4.5): = € V(G)\{v1,v2,u,u1, 42, - -, ux} and y = u.

Let G; = G — v,. Since v; € S1(G), by Lemma 1, G; is a k-tree and
T(G1) 2 7(G).

By induction hypothesis, there is a path P from z to y (= u) of length
L for each integer L from d(z,y) to »(G1) — 1 in G, (and hence in G). We
only need to prove that there is a path P from « to y of length ¥(G) —1 =
v(G))-1+1inG.

Let Gy = G — {v1,v2} and G3 = (G — {v1,u}) + vauz. Notice that G
and G3 are isomorphic. Since v;,v2 € S1(G), by Lemma 1, G is a k-tree
and 7(G3) > 7(G), so G3 is a k-tree and 7(G3) > 7(G). Let ¥’ = u3. By
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induction hypothesis, Gz is panconnected, so there is a path P, from z to
y’ of length ¥(G3) — 1 in G3. Then we have the following subcases.
Case (4.5.1): P, = Q1(z, u) + wivay'(= us), where u; # uz,u3(y’), and Q1
is a path from z to u; in G3.

Then there is a path P = Q;(z, u;) + u;vousv1y(= u) from z to y of
length ¥(G3) - 1+2=v(G)-1in G.
Case (4.5.2): P) = Q1(x, ug) + ugvoy’(= us), where @Q; is a path from z to
ug in Gs.

Then there is a path P = Qi(z,u3) + ugviugvey(= u) from z to y of
length ¥(G3) —1+2=v(G)—1in G.
Case (4.5.3): P = Ql(:r, u,-) + uivouy +Q2(Uj,y'(= u3)), where u;, Uuj # ug
nor u3(=y’), and @, is a path from z to »; and Q- is a path from u; to 3’
in Ga.

Then there is a path P = Q1(z, u:) + uivau; + Q2(uj, us) + uzv1y(= u)
from z to y of length ¥(G3)-1+2=v(G)-1in G.
Case (4.5.4): P, = Q1(z,ui) + uvivouz + Q2(u2, ¥y’ (= usz)), where u; # us
nor uz(=y’), Q1 is a path from z to u; and Q2 is a path from ug to 3’ in
Ga.
Then there is a path P = Q1 (z, u;) + u;vous + Q2 (ua, u2) + uov1 y(= u)
from z to y of length ¥(G3) -1+2=v(G)-1in G.
Case (4.5.5): P, = Q1(z,u2) + ugvou; + Q2(us, vy’ (= us)), where u; # up
nor uz(= ¥'), @1 is a path from z to u; and Q3 is a path from u; to ¥ in
Gs.
Then there is a path P = Q;(z, u2) + ugviuz + Qa2 (u3, u;) + uivoy(= u)
from z to y of length v(G3) —1+2=v(G)—-1in G.
Case (4.6): z € {u1,u2, -, ux} and y = u.

Figure 5
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Now we consider w, z;, 22, wy, w2, - + -, wr. See Figure 5. By the argu-
ment of Case 4 above, w, 21, 23, w1, Ws, * - -, Wy are in the same situation as
u, V1, Vg, U1, U2, ++, ug. However, T € {uy,ug, -, ux}, ¥ = u, and w # v and
wu ¢ E(G) (ie. w ¢ {uo,u1,--+,ux}) by the argument before. Substituting
u, vy, Vg, U1, Uz, - + +, U by W, 21, 22, W1, Wo,  + -, Wk, We have Case (4.1) such
that z,y € V(G)\{w, 21, 22}. By the argument of Case (4.1), we know that
there is a path P from z to y of length L for each integer L from d(z,y) to
v(G)-1inG.

In all cases, by the argument before, there is always a path P from z to
y of length L for each integer L from d(z,y) to ¥(G) — 1 in G. Hence G is
panconnected. The proof of this theorem is complete. O

Now we prove that, if a k-tree G has toughness 7(G) > (k + 1)/3 for
k = 2, then G is vertex pancyclic. An edge e = uv of a 2-connected graph
G is called a cutting edge if G — {u, v} is not connected. An edge not to be
a cutting edge is called a noncutting edge.

Theorem 10: A 1-tough 2-tree G with v(G) > 3 is vertex pancyclic.

Proof. Let G be a 1-tough 2-tree with ¥(G) > 3. We proceed by
induction on v(G). When v(G) = 3, G is a triangle, and obviously G is
vertex pancyclic and the Hamiltonian cycle C of G contains all noncutting
edges of G.

Now suppose that ©(G) > 4 and assume that every 1-tough 2-tree H
of order ¥(G) — 1 is vertex pancyclic and any Hamiltonian cycle C of H
contains all noncutting edges of H.

By Lemma 4, S;(G) has at least two 2-simplicial vertex w; and w,.
Then G[N(w)] and G[N(w2)] are single edges e; and e respectively. Let
Gy, = G—w;, and Gy = G —wy. By (4) of Lemma 1, 7(G;) 2 1 and
7(G2) > 1. By induction hypothesis, every vertex v in G, is contained in a
cycle of length L for each integer L from 3 to »(G1) = »(G) —1in G; (and
hence in G), particularly, v is contained in a cycle C of length v(G) — 1 (
an Hamiltonian cycle in G;). By induction hypothesis, C contains the edge
e; = zy. (Notice that e; is a noncutting edge of G, otherwise 7(G) < 1).
Now v is contained in a cycle C' = (C — ;) + zuny of length ¥(G) in G,
and C’ goes through every noncutting edge of G. (Notice that e¢; = zy is
not a noncutting edge of G). So every vertex v in G is contained in a cycle
of length L for each integer L from 3 to v(G) in G.

By similar argument on G, we can prove that every vertex v (particu-
larly w;) in G is contained in a cycle of length L for each integer L from
3 to ¥(G) in G.
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Then by above conclusions, every vertex v of G is contained in a cycle
C of length L for each integer L from 3 to v(G). So G is vertex pancyclic.
[}

Remark: A 1l-tough 2-tree is not necessarily edge pancyclic, and hence
not panconnected. We construct counterexamples as follows: Let H be a
1-tough 2-tree with ¥(H) > 3 constructed by starting from an edge e = zy
and keeping e a noncutting edge of H. Let G; and G2 be two copies of H
and we label the vertices of G; differently from those of G5 except = and
y. We construct G = G; U G by identifying the z ,y in G; and the z,y in
Ga. Then any cycle containing e = zy in G is contained in either G or Gs.
So there is not any cycle of length greater than v(G;) containing e = zy in
G and G is not edge pancyclic.
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