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Abstract

Let K, be the complete graph on r vertices in which there exist
an edge between every pair of vertices, K, ,» be the complete bipar-
tite graph with m vertices in one partition and n vertices in the other
partition and each vertex in one partition is adjacent to each vertex
in the other partition and K(n,r) be the complete »— partite graph
K, non.....n where each partition has n vertices. In this paper, we de-
termine the minimum number of monochromatic stars K1,, Vp > 2
in any ¢ (t > 2) coloring of edges of K., Km n and K(n,r). Also,
we prove that these lower bounds are sharp for all values of m,n,p,r
and ¢ by giving explicit constructions.

1 Introduction and Backround results

If F and G are graphs, define M (G, F,t) to be the minimum number of
monochromatic copies of G that occur in any ¢ coloring of the edges of F'.
M(G, F,t) is called the multiplicity of G in F with t colors. A graph G is
said to be monochromatic if all its edges are of same color.

A p—star K, at a vertex v in a graph G is a subgraph with v as
the centre vertex and p edges incident at v say vv;, vve, vus, ..., v0p. Two
p—stars S) and S, at a vertex v in a graph G are said to be distinct if
atleast one edge of S is distinct from the edges of S,.
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Suppose that the edges of a graph F are colored with ¢ colors. In this
paper, to obtain the minimum number of monochormatic copies of stars
K, p Vp > 2 in any t coloring of edges of F, we minimize such monochro-
matic copies of K , at each vertex of F. We use combinatorial arguements
for minimizing the monochromatic copies of K , at each vertex.

We use the decompositions of complete graphs K, and complete r—
partite graphs K(n,r) into edge disjoint Hamilton cycles [4] or edge dis-
joint perfect matchings in the theorems 3.1 and 4.1 in sections 3 and 4
respectively. For all odd r > 3, edges of K, are decomposed into 5—;—1 edge
disjoint Hamilton cycles and for all even r > 2, edges of K, are decomposed
into r — 1 edge disjoint perfect matchings.

We use the same decomposition for complete r— partite graph with
equal partitions as in the case of K, by giving 1 — 1 correspondence be-
tween the vertices of K, and the partite sets of K(n,r). Let v;, va,vs,..., vy
be the vertices of K. Corresponding to each edge v;v; in K, there is a
set edges between the i** and the j** partite sets in K(n,r).

For the case r = odd (r > 3), each Hamilton cycle in K, corresponds
to n edge disjoint Hamilton cycles in K(n,r). Hence, the edges of K(n,r)
are decomposed into 1(",_,‘—1) edge disjoint Hamilton cycles. Similarly, for
the case 7 = even (r > 2), each edge disjoint perfect matchings in K,
corresponds to n edge disjoint perfect matchings in K(n,r). Hence, there
are n(r — 1) edge disjoint perfect matchings in K(n,r).

2 The minimum number of monochromatic
stars

Let F be a graph. Our aim is to determine the minimum number of

monochromatic stars K;, Vp > 2 in any t coloring of edges of F. To
obtain this minimum number, we use the following lemma.

5() () re-n(3)

i=1

Lemma 2.1

where ny, no,ng, ..., Ny, N,t,p,r are nonnegative integers, Z:=1"i = n,
n = r(mod t), [}] denotes the ceiling of & and |2] denotes the floor
of &.
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Proof

Without loss of generahty, assume that 0 < n; < ng < n3 < ... <
ng. If ny,no, na,...,n, are almost equal, then equality arises. If not let

n; —n; > 2 for some 7 and j
We show that (’;;‘) + (’;’:) > (n;;—l) + (njp—l).

Consider (%) — ("‘;l) + (%) - (""p_l)
=)= 1GE) Q) + G+ GO + )1 = (47
= (30 - G)

(';,‘fll) = () since nj —n; > 2

v

v

0
Thus by stepwise increasing the smallest and decreasing the largest of
any two n; and n;,(1 <1 < j <t), we get the required inequality.
3 Complete Graphs
Theorem 3.1

[ =00 + 4[5 + (5]

- ﬂ .
M(K1po Ko t) = ¢ if r and = are odd integers

T [rl ([?1) +(t— 7‘1)([?])] otherwise

\
where t > 2, p > 2, [Z32] is the ceiling of T, [r—:lj is the floor of
andr—1=r(modt),0<r <t—1.

Proof

Using Lemma 2.1, we observe that

M(Kyp Knit) 2 [h ([r,:,_l]) +E-r) (L?Jﬂ

This bound is not attainable when r is odd and "—tl is an odd integer since
we can’t construct a graph with the color degree sequence ('—:l, %, ey 1)
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at each vertex. So, the next possible minimum is attained when exactly
one vertex is of color degree sequence (X7 +1,771 —1,..., 27 1,751 1)

1
r—=1 r-1 r—

and the remaining vertices are of color degree sequence (==, ==, ..., 55 1y,
=i ¢t =t-1 =ta

Hence, M(K1p, Kr,t) 2 (r = 1)t(77) + 4 [( . )+ (T, )].

Now to prove that the bounds are sharp in all the above cases, we give the

following explicit constructions.

Case 1: 7 is even.

Partition the edges of K, into 7 — 1 edge disjoint perfect matchings
say Py, P, Ps,...,P._,. Partiton the sets Py, P,, P3,..., P.—; into t dis-
joint sets of almost equal cardinality. Let the sets be Cy, Cs, Cs, ..., C;. For
example, if r —1 = 10 and t = 3 then, P, P,..., Pp is partitioned into
Cl = {P],P2,P3,P4}, Cz = {Ps,Ps,P7} and C3 = {Pg,Pg,Plo}. Assign
color 7 to the edges in C;, 1 <i <t. Now we have the number of edges of
each color at each vertex almost equal.

Case 2: 7 is odd.

In this case the degree at each vertex is r—1 = even. Using Lemma 2.1,
if 7, = 0, color degree sequence at each vertex is either (21,21, ..., 2l) where
{>1or (20 +1,20+1,...,20 + 1) where ! > 0 and if 7, # 0, color degree
sequence at each vertex in K, is either (20 4+1,2[+1,...,214+1,2{,2(,...,21)
where l >0 or (20 - 1,21 —-1,...,20 —1,21,2{,...,2l) where | > 1.

Case 2(a): The color degree sequence at each vertex be (21,21,...,20),
l>1.

The number of edge disjoint Hamilton cycles in K is lt. Partition these
It Hamilton cycles into ¢ sets, each containing distinct ! Hamilton cycles.
Let the t sets be H;, Hy, Ha, ..., H,. Color the edges of Hamilton cycles in
H; withcolori,1 <i<t.

Case 2(b): The color degree sequence at each vertex be (2! + 1,2! +
1,..,204+1),1>0.

We cannot construct a graph with this color degree sequence at each
vertex, since the number of vertices in KX, is odd. So, to attain the next
possible minimum, one vertex (say v;) of K, must have the color degree
sequence (2! + 2,2{.2] + 2,2!,...,2 + 2,2l). The number of edge dijoint
Hamilton cycles in K, is It + & where t is even since r — 1 is even. Color
the edges of It Hamilton cycles as given in the case 2(a), so that color
degree sequence at each vertex will be (2{,2l,...,2l). Let the remaining
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Hamilton cycles be hl,hg,h:;,...,h_;_. Color the edges of each Hamilton

cycle h; alternatively with the colors 2 — 1,2¢ where i = 1 to % starting
from the vertex v, in each cycle. Now at each vertex other than v; we have
the number of edges of each color almost equal. Hence,

M(Kypy Kry) 2 Hr — 1)(21; 1) +%[(2l:2> * (il)}

Case 2(c): The color degree sequence at each vertex be (2! + 1,21 +
1,..,20+1,2,2L,...,2l), 1 > 0.

Here r — 1 = (20 + 1) + (t — r1)2! where r; is even since 7 — 1 is even.
The number of edge disjoint Hamilton cycles is it + 5+. Color the edges
of It Hamilton cycles as given in the case 2(a), so that the color degree
sequence at each vertex is (21,2[,...,2). Let the remaining 3 Hamilton
cycles be hy, hs, ha, ..., h_?. It is possible to find the set of independent
edges in K, say €1,€2,€3,-..,€Q such that e; € h;, 1 < i < 5. Color the
edges e, eg, €3, ..., €1 with color ¢. Let e; = (u,v;), 1 <4 < 3. Color the
edges of h; alternatively with the colors 2i — 1,2i, 1 <4 < 5 starting and
ending with the vertices u; and v; respectively. Now for 1 <4 < 5, degree
of each vertex is increased by 1 in the (2i — 1)** position and in the (2¢)**
position of its color degree sequence (21, 21, ..., 2l) other than the vertices u;
and v; whereas degree of u; is increased by 1 in the (2¢ — 1)** position and
in the t** position and degree of v; is increased by 1 in the (2i)®* position
and in the ¢*# position of its color degree sequence (2!,2[,...,2!). Hence,
the number of edges of each color is almost equal at each vertex.

Case 2(d): The color degree sequence at each vertex be (21 — 1,20 —
1,..,20-1,2,,2{,..,20), 1 > 1.

Here r — 1 = 72l + (¢t — 71)(2l — 1) where t — 7, is even since r — 1 is
even. The number of edge disjoint Hamilton cycles is (I — 1)t +7r; + ({57).
Partiton the (! — 1)t Hamilton cycles into ¢ sets of equal cardinality. Let
the sets be H,, Hy, Hs,..., H;. Color the edges of all cycles in H; with
color %, (1 < i < t), so that the color degree sequence at each vertex is
(20— 2,21 —2,...,2l — 2). Let the remaining (r; + £52) Hamilton cycles be
hi,ha, ooy hryy Rrp g, ""h'—?‘-+r:' Choose a set of i‘zﬂ independent edges
in hy, say (zi,v:), 1 <1 < L5, Color the edge (z;,y:) in by with the color
71 + 2i for each i = 1 to 52 and the remaining edges are colored with
color 1. Color the edges of h; with color ¢, 2 < i < r;. Color the edges of
hr, +: alternatively with colors ry 4+ 2i — 1,7 + 2i starting and ending with
a vertex z;, Vi = 1 to "—2’"1- Hence, the number of edges of each color is
almost equal at each vertex.
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4 Complete r-partite graphs

Theorem 4.1

4

t(nr — 1)(

)+ 4| + ()

M(Kip, K(n,7),t) = ¢ if nr and 9-("—‘_-1)- are odd integers
nr 7‘1([" rp!_ l N +(t- Tl)(l'" rp‘- l j)] otherwise

\
wherer >2,p>2,t> 2, fﬂrt—_l—)'l is the ceiling of ﬂrt'—lz, [ﬁgrt;llj is
the floor of ﬂ't;lz andn(r—1)=r;(modt),0<r <t -1.

Proof

Using Lemma 2.1, we observe that
M(K1p. K(n,r),t) = nr ((t —r)(
Using the argument given in theorem 3.1, tlns bound is not attainable when
nr is odd and L{-Q is an odd integer. The next possible minimum would
be
n(r -1) ~1 me=1 g

M(Kyp, K(n,7), t)>(m'—1)t( =)+ £ () + ( > |
Now to prove that the bounds in all cases are sharp, we give the following
explicit constructions.

lnsr-— zJ) +r [n!},—l!])

Case 1: r is even and n is any positive integer.

Partition the edges of K(n,r) into n(r — 1) edge disjoint perfect match-
ings say Py, Pa, ..., Pn(;—1). Partition the sets P, P,, ..., Py(,-_1) into ¢ dis-
joint sets of almost equal cardinality. Let the sets be Cy, Cs, ..., C;. Color
the set of edges in C; with color 7 where 1 < ¢ < t. Now we have the
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number of edges of each color at each vertex almost equal.
Case 2: r is odd and n is even

In this case the number of Hamilton cycles in K(n,r) is L'Sr—z_—l)- Let
n(r—l) = k11'1+k2(t-—7‘1),0$7'1 <t-1. Ifkl =2l +1 and k2=2l
(! = 0), the number of Hamilton cycles is it 4 7. Since n(r —1) is even,
should be even. Divide It Hamilton cycles into ¢ sets of equal cardinality,
say Hi, Ha, ..., H;. Color the edges of H; with color 4, 1 < i <t. Let the
remaining cycles be Ay, ha, ..., Az . Color the edges of h; alternatively with
colors 2i — 1,2i, 1 <1 < . Now, if k&1 = 2/ and k2 = 2{ — 1, the number
of Hamilton cycles is (I — 1)t + {52 +7) where t — 7, is even since n(r —1)
is even. Divide (! — 1)t Hamilton cycles into t sets of equal cardinality,
say Hy, Ho, ..., H;. Color the edges of H; with color i, 1 < i <t. Let the
remaining cycles be hy, ho, ..., h EUU Color the edges of h; alternatively

with colors 2i — 1,24, 1 < i < 55, Color the edges of h tr g with color

t—ry+1i,1<1i<r;. Now in both the cases we have the number of edges
of each color at each vertex almost equal.

Case 3: r is odd and n is odd

The possible color degree sequence at each vertex is same as given in
the case 2 of Theorem 3.1 and the construction remains the same.

5 Complete bipartite graphs

In this section, we determine the minimum number of monochromatic stars
in complete bipartite graph with partitions of any size using ¢ colors.

Theorem 5.1
M(K1,p, Kmpnyt) = m[(t—ﬁ)(lﬁj)“l(r?)] +n [(t—rz)(lﬁj)wz(“;f])]

where n = ry(mod t),m = ro(mod t) and 0 < ry,rg <t —1.
Proof

Using Lemma 2.1, we observe that
Mo Ko ) 2 m(6=r) () 471 (E)] 0 ce=ra) () 47213
To prove that the bound is sharp, we give the following explicit con-

struction in which the edges colored with each of the t colors are almost
equal at each vertex. Let z;,T3,...,Zm be the vertices in one partition and
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Y1,¥2, - - -, Yn be the vertices in other partition of K, . Let ¢,¢2,...,¢
be the ¢t different colors used to color the edges of K, n. The edge z;y;
is colored with color ¢441 if ¢ = p(modt) and j = p + g(mod t) where
0 S b, q S t-1.
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