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Abstract

In this paper, a reliable symbolic computational algorithm is pre-
sented for inverting a general comrade matrix by using parallel com-
puting along with recursion. The computational cost of the algorithm
is O(n?). The algorithm is implementable to the Computer Algebra
System (CAS) such as MAPLE, MATLAB and MATHEMATICA.
Three examples are presented for the sake of illustration.

Keywords:Comrade matrices; LU factorization; Inverse matrix; Computer algebra
systems(CAS).

AMS Subject Classification:15A15; 15A23; 65F05; 68W30; 11Y05; 33F10; F.2.1;
G.1.0.

*Home Address: Mathematics Department, Faculty of Science, Mansoura University,
Mansoura 35516, Egypt. E-mail:abibka@mans.edu.eg

ARS COMBINATORIA 130(2017), pp. 205-213



1 Introduction

The general n x n comrade matrix, denoted by C, takes the form

(/31 0 0 e ... 0 \
Y2 B2 o . 0
0 v Bs as . 0
c=| . . . . . o | n23
0 0 v Brn-1 Qpn_1
\an Qpn-3 -+ Q4 a3 Tn Bn )

The comrade matrix is a generalization of the companion matrix and is
associated with a polynomial expressed as a linear combination of an arhi-
trary orthogonal basis. This matrix appears frequently in many areas of sci-
ence and engineering, for example in linear multivariable systems theory(1],
computing the Greatest Common Divisor of polynomials[2] and division of
generalized polynomials [3]. The solution of a comrade linear system has
been investigated by many authors (see for instance, [4-6]). Finding the
inverse of a comrade matrix is usually required to solve this linear system.
The motivation of the current paper is to establish an efficient algorithm for
inverting a companion matrix of the form (1.1). The algorithm to compute
the inverse of a general comrade matrix is based on the LU factorization of
the matrix C in (1.1), which may fail if one of the denominators in the L
matrix equals zero. The development of a symbolic algorithm is considered
in order to remove all cases where the algorithm fails. Many algorithms for
inverting a general comrade matrix require pivoting, for example the Gauss-
Jordan elimination algorithm. Overall, pivoting adds more operations to
the computational cost of an algorithm. These additional operations are
sometimes necessary for the algorithm to work.

The paper is organized as follows. In Section 2, a new symbolic compu-
tational algorithm that will not break down, is constructed. In Section 3,
three illustrative examples are given. Conclusions of the work are presented
in Section 4.

2 Algorithm Construction

In this section we shall focus on the construction of a new symbolic
computational algorithm for computing the determinant and the inverse
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of a general comrade matrix. Firstly, we begin with computing the LU
factorization of the matrix C.

Let
C=LU (2.1)
where
( 1 0 0 0 \
% 1 0 0
0 ﬂ% 1 0 0
L= . E i #0, i=1,2,..,n-2,
: ‘. . .. . 0
O --- ... 0 Z%:.;. 1 0
\11 Ty 0 ot ZTp2 Tpod 1)
(2.2)
and
( H1 o 0 0 W
0 Mo Q2 0
0 0 M3 Q3 0
U= .. . . 0 (2.3)
: . .. 0
0 v +++ 0 0 fpo1 Qa1
\o o0 .0 oS
The elements in the matrices L and U in (2.2) and (2.3) satisfy:
B if i=1
=4 Bi— = if i=23,.,n—1 (2.4)
Br —n_1Zp_1 if i=mn,
and
%’:- if i=1
x; = i(an_ﬂ_l - ai_lxi_l) if i= 2, 3, ey T - 2 (2,5)
I‘nl—l (Yn — 0tn—2Tn—2) if i=n-1.
We also have:
n
Det(C) = [ ] u+. (2.6)
i=1
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At this point it is convenient to formulate our first result. It is a symbolic
algorithm for computing the determinant of a comrade matrix C of the form

(1.1).

Algorithm 2.1 To compute Det(C) for the comrade matriz C in (1.1),
we may proceed as follows:
INPUT order of the matriz n and the components a;, ¢t = 1,2,...,n — 1,
Bi,i1=1,2,..,n,v,1=2,3,..,n, and a;, 1 = 3,4, ...,n.
OUTPUT The determinant of comrade matriz C.
Step 1: Set py = B1. If p1 =0 then py = t(t is just a symbolic name) end
if. Setz) = %‘1‘
Step 2: Fori=2,3,...,.n—2
Compute p; = B; — "—:’i—lai—l) if pi =0 then p; =1t,
Compute z; = ;,l:(a'n—i+1 - @i—1%i-1),
Step 3: Set ppn—1 = Pp-1— if“:—;an_z, if pn—1 = 0 then pn_y =1t end if,
Set tn_1 = #nl—l (Yn — Tn—20m_2) .
Set pn = PBn — apn_1Tn-1, if n =0 then u, =t end if.

Step 4: Compute Det(C) = (H:;l ui):—o'

The symbolic Algorithm 2.1 will be referred to as the DETSGCM
algorithm. The computational cost of the DETSGCM algorithm is 7n—10
operations. The new algorithm DETSGCM is very useful to check the
nonsingularity of the matrix C

Now, when the matrix C is nonsingular, its inversion is computed as
follows:

Let
cl= [Sivj]ISiJS" = [Coll,Colg, ...,Coln]. (2.7)

where Col,, denotes the my;, column of C~!, m =1,2,...,n.

Since the Doolittle LU factorization of the matrix C in (1.1) is always
possible we can use parallel computations to obtain the elements of the last
two columns Col; = (5,4, S2,4, -y Sn,i) ,i =nand n—1 of C~! as follows
(7):

Solving in parallel the standard linear systems whose coefficient matrix
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L is given by (2.2)

(n) (n—1)
( Ql Qin— 1) \

o, o | | oo
oy Qi | | o
\ o Q(n—l) J \10 )
we obtain ( Q(") (n-l) \ ) )
(n) o I ( \
Qs Q 0 0
4, Q) 0 0
Q(ﬂ) (ﬂ—l) 0 1
\ Q(n) (n-n ) \ 1 —Zn_y /

(2.8)

(2.9)

Hence, solving the following standard linear systems whose coefficient ma-

trix U is given by (2.3)

{ Sin S1,n-1 \ ( 0 0 \
SZ n S2,n—l 0 0
U =
Sn—2 n Sn.—z,n—l 0 0
Sn—l n Sn—l,n—l 0 1 J
\ Sn n Sn,n—l \ 1 —Tpn-—1

gives the two columns Col;, i = n and n — 1 in the forms:

' Hn
1- an—lsn,n—l

Sp-1,n-1 = ————————,
Hn—1
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(2.11)

(2.12)

(2.13)

(2.14)



—0iSii o
Siny = —220ln-l 9 n_3 1 (2.15)
i
Using equations (2.11)-(2.15) and the fact C~1C = I,, where I, isthe nxn
identity matrix, the elements in the remaining (n - 2) columns of C~! may
be obtained recursively using

1

n—2

Col,,—o = (Pn-1 — Bn=1Coly_1 — y,Col,), (2.16)

1 ,
Col_,- = -OT(Ej.,.l—ﬂj.,.lColj+1—7j+200l_,-+2—an_jCol,.), 7= n—3,n-—4,
7

(2.17)
Here E, = (617,027, ..,0n7)T, 7 = 1,2,...,n, where 8;, is the Kronecker
symbol.

Note 2.1. Since the numeric algorithm to compute the inverse of a general
comrade matrix is based on the LU factorization of the matrix C in (1.1),
then it may be fail if u; =0, j € {1,2,..,n} or o; =0, j € {1,2,...,n -2}
as can be seen from (2.1) to (2.15) and from (2.16) to (2.17) respectively.
To remove all cases in which numeric algorithm fails, we set all these vari-
ables equal to t(t is just a symbolic name) and after compute all elements
of the inverse matrix we will set ¢ equals to 0. it is convenient to give the
following symbolic computational algorithm to compute the inverse of a
general comrade matrix of the form (1.1) when it exists.

Algorithm 2.2 To determine the inverse matriz of the general n x n com-
rade matriz C in (1.1) by using the relations (2.11)-(2.17).

INPUT Order of the matrizx n and the components o;, i = 1,2,...,n —1,
Bi, i =1,2,..,m, v, i=2,3,...,n, and a;, i = 3,4, ...,n.

OUTPUT Inverse comrade matriz C~1.

Step 1: Use the DETSGCM algorithin to check the nonsingularity of the
matriz C. If the matriz C is singular then OUTPUT (The matriz
C is singular), Stop.

Step 2: If p; =0 for any i = 1,2,...,n, set p; =t (t is just a symbolic
name).

Step 8: Ifa; =0 foranyi=1,2,...,n—2, seta; =t.

Step 4: Fori=1,2,...,n, compute and simplify the components S; , and
Sin—1 of the columns Col;, j = n, and n — 1, respectively, by
using (2.11)-(2.15).

Step 5: Fori=1,2,...,,n, compute and simplify the components S; ,—2 by
using (2.16).

Step 6: Forj=n—-3,n—-4,...,1, do
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Fori=1,2,...,n, do
Compute and simplify the components S; ; by using (2.17).
End do
End do
Step 7: Substitute the actual value t = 0 in all ezpressions to obtain the
elements, S; ;, 1,7 =1,2,..,n.

The symbolic Algorithm 2.2 will be referred to as the SGCMINV.
The computational cost of the SGCMINYV algorithm is 7n? — 5n — 11
operations. In[8], recurrence relations for the rows of an inverse comrade
matrix were presented but it was assumed that o; #0 fori =1,2,...,n -1
and the first row of an inverse comrade matrix is known. The computational
cost of this method is O(n3) operations. On the other hand, ifa; =0, i=
3,4,...,n, the Algorithm 2.3 in [7] will be special case of the SGCMINV
algorithm.

3 ILLUSTRATIVE EXAMPLES

In this section we give three examples for illustration.

Example 3.1. Consider the 7 x 7 matrix C given by

-1 1 0 0 0
£ % 1 4 o
5 5 5
=l 9§ 34 o
E T U U
3 T3 3 3
By applying the SGCMINYV algorithm:
e pu= (_%I_él_%’l_%,_%)’
Det(C) = —(Step 1).
—94 I3 _39 _3 _34
22 —% -2 —% —34
e C1=| 16 -8 _2 _2 _34 | (Steps2-7).
10 -8 _#& _& _g4
£ P o
M 2 T 3z -
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Example 3.2. Consider the 4 x 4 matrix C given by

0 1 00
2 -1 50
C=[ 9 3 1 2
-1 1 5 3

By applying the SGCMINYV algorithm:

° u=(t _+_’ !8C+l! !7t 6!),

t+2 ' 8i+1
Det(C) = [— 47t - 6)] _, = 24(Step 1).
( 7 __7 __15 5
7§ 2§e-24 224 14t 12
-1 T 7t—6 4(7t—6) 4(7z 6) ~2(7t—6)
o Cl=| 4 7t—2 +2)  _ _t42
Tt—-6  4(7t—6) 4g7;?g) 28(::;6)
11 14¢—1 (
\ 7t—6 ~ 4(7t—-6) 4(7t 6) 7—*'2 7t—6) +=0
7 7 3
(P E T
= 2 1 _1 1 (Steps 2—7)
N TR LS
6 24 8 12

Example 3.3. We consider the following n x n comrade matrix in order
to demonstrate the efficiency of the SGCMINYV algorithm.

(=32 12 0 0\
1/2 -3/2 1/2 0 0
C= 0 1/2  -3/2 1/2 :
E '-' .-. .-. .' 0
0 . 0 12 -3/ 1/2
\ -1/2 -1/2 ~1/2 (1-1)/2 (=3-1)/2 ]

We use the SGCMINYV algorithm to compute the inverse of the com-
rade matrix C. Results are given in Table 1 in which ¢ = ||C;L., —

CSGCMINV | |oo
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Table 1: Error and CPU time(s)

n
50 160 500
€ 1.1631 x 10~ 1.1215 x 10~° | 1.6078 x 10~°
CPU | 0.421(using inverse function 3.448 336.338
time(s) | in Maple 13.0)
0.109(Using our Algorithm) 0.609 33.899

4 CONCLUSIONS

In this work new symbolic computational algorithms have been devel-
oped for computing the determinant and inverse of a general comrade ma-
trix. The algorithms are reliable, computationally efficient and remove the
cases where the numeric algorithms break down.
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