RESIDUAL CLOSENESS OF SPLITTING NETWORKS

TUFAN TURACI AND VECDI AYTAG

ABSTRACT. Networks are important structures and appear in many
different applications and settings. The vulnerability value of a com-
munication network shows the resistance of the network after the
disruption of some centers or connection lines until a communication
breakdown. Centrality parameters play an important role in the field
of network analysis. Numerous studies have proposed and analyzed
several centrality measures. These concept measures the importance
of a node’s position in a network. In this paper, vertex residual close-
ness( VRC) and normalized vertex residual closeness( NVRC) of some
Splitting networks modeling by splitting graph are obtained.

1. INTRODUCTION

Complex networks describe a wide range of systems in nature and society
including examples the Internet, metabolic networks, electric power grids,
supply chains and the world trade Web among many others. The study of
networks has become an important area of multidisciplinary research involv-
ing computer science, mathematics, chemistry, social sciences, informatics
and other theoretical and applied sciences [8-10, 12]. The stability and re-
liability of a network are of prime importance to network designers. In a
communication network, the vulnerability measures the resistance of the
network to disruption of operation after the failure of certain stations or
communication links [12].

Graph theory has become one of the most powerful mathematical tools
in the analysis and study of the architecture of a network. As usual, a
network is described by an undirected simple graph. There are several types
of graph theoretical parameters depending upon the distance such as vertex
and edge betweenness, average vertex and edge betweenness, normalized
average vertex and edge betweenness (7, 11, 13], closeness, vertex residual
closeness, normalized vertex residual closeness [1, 3, 4, 14, 16].

Let G = (V(G), E(G)) be a simple undirected graph of order n. We begin
by recalling some standard definitions that we need throughout this paper.
For any vertex v € V(G), the open neighborhood of v is Ng(v) = {u €
V(G)|luv € E(G)} and closed neighborhood of v is Ng[v] = Ng(v) U {v}.
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The degree of v in G denoted by d¢(v), is the size of its open neighborhood.
The distance d(u,v) between two vertices u and v in G is the length of a
shortest path hetween them. The diameter of G, denoted by diam(G) is
the largest distance between two vertices in V/(G)|[6].

Our aim in this paper is to consider the computing the vertex residual
closeness( VRC') and normalized vertex residual closeness(NVRC') of Split-
ting networks that are modeled by Splitting graphs. In section 2, definitions
and well-known basic results are given for closeness, VRC and NVRC, re-
spectively. In section 3, definitions of Splitting graphs are given and VRC
and NVRC of some Splitting graphs are determined.

2. RESIDUAL CLOSENESS AND BasIC RESULTS

The concept of closeness, vertex residual closeness(VRC) and normal-
ized vertex residual closeness(NVRC) were introduced on 2006 by Chavdar
Dangalchev (3, 4] and has been further studied by Aytac et al. [1, 16] and
Turaci et al. [14]. The aim of residual closeness is to measure the vulnera-
hility even when the actions (removal of the vertices) do not disconnect the
graph.

The closeness of a graph G is defined as: C(G) = ZC(W) , where C(v;)

vi

is the closeness of a vertex v;, and it is defined as: C(v;) = Z W (3].
Ui ;évj

Let d., (vs,v;) be the distance between vertices v; and v; in the graph G, re-

ceived from the original graph where all links of vertex vy are deleted. Then

the closeness after removing vertex vy is defined as: C,, = Z Z ?‘—"‘:‘1‘7—‘77
v; U.‘:;évj

[3]. The vertex residual closeness (VRC) of the graph G is defined as:

R(G) = mvin{Cvk}. The normalized vertex residual closeness (NV RC) of

k

the graph G is defined as dividing the residual closeness by the closeness
C(G): R'(G) = R(G)/C(G) [3)-

Theorem 2.1. (3] The VRC and NVRC of
(a) If G = Ky, then R(G) = ((n—1)(n—2))/2 and R'(G) = (n —2)/n.
(b) If G = S, then R(G) =0 and R'(G) = 0.

Theorem 2.2. (3| For a graph G, 0 < R'(G) < 1.

Theorem 2.3. (3] Let G be a graph of order n. If H is a proper sub-
graph of G, then R(H) < R(G).

Theorem 2.4. (1,16] The vertex residual closeness (VRC) of
(a) the cycle graph C, with n vertices is R(Cy,) = 2n — 6 + 1/27~3,
(b) the friendship graph f, with 2n + 1 vertices is R(fn) = n;
(c) the fan graph F,, with n vertices is R(F,) = 2n — 6 4 1/2(»=3),
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(d) the wheel graph W, with n + 1 vertices is

R(W,) = { MEED 1/26°0) , if nis odd;
M (S 1/2670) . 1/200) | if s even.

(e) the gear graph G, with 2n + 1 vertices is

_ [ an((Trt1/26D) 41727, ifn 25
R(Gn) = { (Qn2 + 371n —38)/16 , ifn <8.

3. CALCULATION OF RESIDUAL CLOSENESS CENTRALITY OF SOME
SPLITTING GRAPHS

In this section, fistly the definitions of Mycielski graph and Splitting
graph and well-known basic results have been given for the closeness, VRC
and NVRC, respectively. Then, we have computed VRC and NVRC of the

some splitting graphs.

Definition 3.1. [5] For a graph G on vertices V(G) =V = {v1,v2,...,¥n}
and edges E(G) = E, let splitting graph S'(G) be the graph on vertices and
edges VUV’ = {v},v2, ..., Un, V], V3, .-, Un } and EU {v;v}|v;u; € E}, respec-
tively.
Theorem 3.1. [15] The closeness centrality of Splitting graphs of
(a) the complete graph K, with n vertices is C(S'(K,)) = (Tn® — 5n)/4;
(b) the star graph S, with n+1 vertices is C(S'(S,)) = (4n?+11n+2)/4;
(c) the wheel graph W, with n + 1 vertices is

C(S'(Wy)) = (2n® + 9n +1)/2;
(d) the path graph P, with n vertices is
C(S'(P,)) =4(2n—4+1/2""%) — (n - 3)/4;
(e) the cycle graph C, with n vertices is

, _ [ n((31/4) - (12/27/%) , dfni ;
C(S'(C) _{ Z((31/4) —(8/2("=1/2)) | ifn 1.: ;;,;n

Theorem 3.2. Forn > 3; If G = S, then the verter residual closeness
(VRC) of S'(G) of order (2n+2) is defined as: R(S'(G)) = (n® + 3n)/4.

Proof. Let the vertex set S’(G) be V(5'(G)) = {vc.} UV1 U {v.} U Vs,
where let v, be center vertex of G and the vertex v, be corresponding to
the vertex v, by the definition of splitting graph. Moreover, let V; = {v; €
V(G)\ {vc},1 <i<n}and V2 ={v; € V(G')\ {v.},1 < i< n}. We have
four cases depending on the vertices of S'(G).

Case 1. Removing the central vertex v, of the graph §'(G). If the vertex
v, is removed from the graph S’(G), there are n-vertices whose degree 1,
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and a vertex whose degree is n and n-vertices whose degree 0 in the remain-
ing subgraph S’(G) \ {v.}. Then, we have three subcases depending on the
vertices of S/(G) \ {vc}.

Subcase 1.1. For the vertices V; whose degree 1 of S'(G) \ {v.}.
Let v; be any vertex in this case. Clearly, |Ns/(e)\(v.}(vi)] = 1, where
Ns/(en\{ve}(vi) = {vt}. Furthermore, the distance from the vertex v; to
any other vertices whose degree 1 is two. Finally, the distance from the
vertex v; to any vertices whose degree 0 is co. Thus,

(n)Co, (v:) = n(27' 4 ((n — 1)272) + n(27%)) = (n® + n)/4.

Subcase 1.2. For the vertex v} of $'(G)\ {v.}. The vertex v, is adjacent
to vertices V; whose degree is 1 in the graph S/(G) \ {v.}. Furthermore,
there is not link to vertices between v and any vertex of V5 in the graph
S'(G)\ {vc}. Thus,

Cy (v)) =n(271) + n(2™%°) = n/2.

Subcase 1.3. For the vertices V; of whose degree 0 in the graph S'(G) \
{vc}. Let v} be any vertex in this case. Since the definition of closeness, we
have

(n)Cu. (vi) = n(2n(27%)) = 0.
By summing Subcases 1.1, 1.2 and 1.3, we have C,, = (n? + 3n)/4.

Case 2. Removing a vertex v; € V] in the graph S§'(G). We have four
subcases depending on the vertices of §(G) \ {v:}.

Subcase 2.1. For the central vertex v, of the graph G in the graph
S’(G) \ {vi}. The vertex v, is adjacent to (2n — 1)-vertices which in sets of
either Vj or V5. The distance from the vertex v, to remaining 1-vertex is 2.
Thus,

Co,(ve) = (2n—1)(27H) +272 = (4n - 1)/4.

Subcase 2.2. For a vertex v; € V; \ {v;} in the graph S(G)\ {v:}. The
vertex v; is adjacent to vertices v, and v in the graph S'(G) \ {v:}. So,
dy; (v5,vc) = dy,(vj,v.) = 1. Then, it is clear that the distance from the
vertex v; to remaining (2n — 2)-vertices is 2. Thus,

(n = 1)Cy, (v5) = (n = 1)(2(27") + (2n - 2)(272)) = (2° - 2)/4.

Subcase 2.3. For the vertex v of the survival subgraph S'(G) \ {v:}.
The vertex v/ is adjacent to (n — 1)-vertices of V;. Moreover, the distance
from the vertex v/, to the vertex v, is 2. Finally, the distance from the vertex
v), to any vertices of Vj is 3 in the graph S'(G) \ {vi}. Thus,

Cp, (W)= (n-1)(27) +272+n(27%) = (50— 2)/8.

Subcase 2.4. For a vertex v, € V5 in the graph S’(G)\ {v;}. The vertex
v! is adjacent to the vertex v, in the graph S’(G)\ {v:}. So, dy, (vi,v.) = 1.
Then, it is clear that the distance from the vertex v; to the vertex v, is 3 in
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the graph S’(G)\ {v;}. Finally, the distance from the vertex v} to remaining
(2n — 2)-vertices is 2. Thus,

(n)Cu,(v]) = (n)(271 + (20— 2)(27%) +27°%) = (4n® +n)/8.
By summing Subcases 2.1, 2.2, 2.3 and 2.4, we obtain
C,; = (8n® + 14n - 8)/8.
Case 3. If the vertex v/, is removed from the graph S'(G), then the survival

subgraph S'(G) \ {v.} is star graph San41 with (2n + 1)-vertices. By the
Theorem 2.1.b, C; = (4n? +6n)/4 is obtained.

Case 4. Removing a vertex v! € V3 in the graph S/(G). We have four
subcases depending on the vertices of S'(G) \ {v}}.

Subcase 4.1. For the central vertex v, of the graph G in the graph
S'(G)\{v{}. It is clear that |[Ng/(ay\ (v} (V)| = 2n—1, and then dy (v, v) =
2 in the survival subgraph S'(G) \ {v;}. Thus,

Cur(ve) = (2n - 1)271) +272 = (4n - 1)/4.

Subcase 4.2. For a vertex v; € V; in the survival subgraph S'(G)\ {v}}.
The vertex v; is adjacent to vertices v, and v, in the graph S'(G) \ {v}}.
Clearly, the distance from the vertex v; to remaining (2n — 2)-vertices is 2.
Thus,  (n)Cy(v:) = (n)(2(271) + (2n — 2)(272)) = (2n? + 2n) /4.

Subcase 4.3. For the vertex v, in the survival subgraph S'(G) \ {v;}.
The vertex v/, is adjacent to vertices of V] in the graph §'(G) \ {v{}. Since
the definitions of star graph and splitting graph, we have d,; (ve,vl) = 2.
Finally, the distance from the vertex v, to (n — 1)-vertices of V3 is 3. Thus,

Coy(vh) =n(271) +272+ (n — 1)(273) = (5n + 1)/8.

Subcase 4.4. For a vertex v € V3 \ {v{} in the graph S'(G) \ {vi}. The

proof is similar to the Subcase 4 of Case 2 for vertices of V5. Thus,
(n—1)Cy(@)) = (n—-1)27 +(2n-2)(27%) +27%) = (4n® - 3n - 1)/8.

By summing Subcases 4.1,4.2,4.3 and 4.4, we obtain Cy; = (8n%+14n—2)/8.
By the definition of VRC of §'(G), R(S'(G)) = min{C,,,Cy,;,Cu:,Cy:} is
obtained. Thus, VRC of S'(G) is
= min{(n? + 3n)/4, (8n? + 14n — 8)/8, (4n? + 6n)/4, (8n? + 14n — 2)/8}
=(n?+3n)/4.0

Theorem 3.3. Forn > 7; If G = W, then the vertex residual close-
ness (VRC) of S'(G) of order (2n+2) is defined as:

' (2n® +5n —8)/4 , ifn <35;
R(5(G) = { (gn2+45n)/8 , if n > 35.

Proof. Let the vertex set S'(G) be V(5(G)) = {v.} U Vi U {v}U Vs,
where let v, be center vertex of G and the vertex v] be corresponding to
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the vertex v. by the definition of splitting graph. Moreover, let V; = {v; €
V@ \{vch1<i<n}and V; = {v] e V(G')\ {v.},1 < i < n}. We have
four cases depending on the vertices of 5'(G).

Case 1. Removing the central vertex v, of the graph S/(G). If the ver-
tex v, is removed from the graph S’(G), the diameter of survival graph
S8'(G) \ {vc} is 4. Then, we have three subcases depending on the vertices
of S'(G)\ {vc}.

Subcase 1.1. For the vertices of V) whose degree 5 of S'(G) \ {v.}. Let
v; be any vertex in V;. Clearly, |Ns/(g)\{v.}(vi)] = 5. Thus, the number of
distance with 1 is five. Furthermore, there are 5 paths which distance from
the vertex v; to other vertices. Since the structure of the graph S'(G)\ {v.}
we have (n — 3)-paths of length 3 and (n — 7)-paths of length 4. Thus,

(m)Cu (v1) = n(5(271)+5(27%)+(n—3)(27%)+(n—7)(27)) = (3n*+47n)/16.

Subcase 1.2. For the vertex v, of S'(G)\ {v.}. The vertex v, is adjacent
to vertices of V; in the graph S’(G) \ {v.}. Furthermore, there are n-paths
which vertices between v and any vertex of V3 in the graph S'(G) \ {v.}.
Thus, C,_(v}) =n(271) + n(272) = 3n/4.

Subcase 1.3. The proof is similar to Subcase 1.1 of Case 1 of Theorem
3.3, but there are 2 paths, 6 paths, (n — 1)-paths and (n — 7)-paths with
length of one, two, three and four, respectively. Thus,

(n)Cy, (¥}) = n(2(271)+6(272)+(n—1)(273)+(n—7)(27%)) = (3n2+31n)/16.
By summing Subcases 1.1, 1.2 and 1.3, we obtain C,_ = (3n? + 45n)/8.

Case 2. Removing a vertex v; € V] in the graph S'(G). We have four
subcases depending on the vertices of S'(G) \ {v;}.

Subcase 2.1. For the vertex v, of the graph G in the graph S'(G) \ {v;}.
It is adjacent to (n — 1)-vertices which belongs to V; \ {v;} and V;. Clearly,
dy, (ve, v.) = 2. Thus, C,,(vc) = (2n —1)(271) +272 = (4n - 1)/4.

Subcase 2.2. For the vertex v; € Vi \ {v;} in the graph S'(G) \ {w:}. If
the vertex v; is adjacent to the vertex v; in V4, then the vertex v; is adjacent
to 5-vertices which include the vertex v.. So, the distance from the vertex
v; to remaining (2n — 5)-vertices is 2. If the vertex v; is not adjacent to the
vertex v; in V3, then the vertex v; is adjacent 6-vertices which include the
vertex vc. So, the distance from the vertex v; to remaining (2n — 6)-vertices
are 2. Since the vertex v; has 2-adjacent vertices in V, then

Cui(vj) = (n = 3)(6(27") + (2n ~ 6)(27%)) +2(5(27") + (2n ~ 5)(27%))

= (n? +2n—4)/2.
Subcase 2.3. For the vertex v of the survival subgraph S'(G) \ {v:}.
The vertex v’ is adjacent to (n — 1)-vertices of V;. Moreover, the distance
from the vertex v to the vertex v, and the any vertex of V; is 2. Thus,

Coi(vp) = (n=1)(271) + (n +1)(27%) = (3n — 1)/4.
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Subcase 2.4. For a vertex v} € V; in the graph $'(G) \ {v:}. The proof
is similar to the Subcase 2.2 of Case 2 of Theorem 3.3. Thus,

Cu(v)) = (= 2)(3(27") + (2n - 3)(272)) + 2(2(27) + (20 - 2)(27%))

=(2n% —n—6)/4.
By summing Subcases 2.1, 2.2, 2.3 and 2.4, we obtain C,, = (2n?+5n—8)/4.

Case 3. Removing the vertex v’ of the graph S/(G). We have three
subcases depending on the vertices of graph §'(G) \ {v.}

Subcase 3.1. For the vertex v, of the graph S'(G) \ {v.}. Due to
ds () {v1} (Ve) = 2n, we have Cy; (vc) = 2n(271) = n.

Subcase 3.2. For a vertex v; € V] in the survival subgraph S'(G)\ {v.}.
The vertex v; is adjacent to 5-vertices which has the vertex v.. So, the
distance of remaining (2n — 5)-vertices is 2. Thus,

(n)Cuy (v:) = (n)(5(271) + (2n — 5)(272)) = (2n? + 5n)/4.
Subcase 3.3. For a vertex v! € V3 in the survival subgraph §'(G)\ {v;}.

It is clear that the vertex v} is adjacent 3-vertices which has the vertex ve.
Then, the distance of remaining (2n — 3)-vertices is 2. Thus,

(n)Coy (v]) = (n)(3(27") + (20— 3)(27%)) = (2n” + 3n)/4.

By summing Subcases 3.1, 3.2 and 3.3, we obtain C,; =n?+ 3n.

Case 4. Removing a vertex v, € V2 in the graph S'(G). We have four
subcases depending on the vertices of S'(G) \ {v}}.

Subcase 4.1. For the vertex v, of the graph S’(G) \ {v;}. It is adjacent
(2n — 1)-vertices which belongs to V2 \ {v{} and V}. Clearly, dy:(ve, v¢) = 2.
Thus,

Co(ve) =(2n-1)27") +27% = (4n - 1)/4.

Subcase 4.2. For a vertex v; € V; in the survival subgraph S'(G)\ {v;}.
The proof is similar to the Subcase 2 of Case 2 of Theorem 3.3, then we
have

Cuy(vi) = (n = 2)(6(27") + (2n — 6)(27%)) +2(5(271) + (2n - 5)(27%))

=(n?+43n-1)/2.
Subcase 4.3. For the vertex v, of the survival subgraph S'(G) \ {v{}.
The vertex v’ is adjacent to n-vertices of V;. Moreover, the distance from
the vertex v/, to the vertex v, and any vertices of V; is 2. Thus,

Cuy(vl) =n(271) +n(27%) = 3n/4.
Subcase 4.4. For the vertex vj € V2 \ {vj} in the graph §'(G) \ {v;}.

The vertex v} is adjacent to 2-vertices of ¥ and the vertex v.. It is clear

that the distance of remaining (2n — 3)-vertices is 2. Thus,

(n—1)Cy (v}) = (n = 1)(3(27) + (2n — 3)(272)) = (2n® +n - 3)/4.
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By summing Subcases 4.1, 4.2, 4.3 and 4.4, we obtain C,; = (2n%+7n-3)/2.
Then we have R(S'(G)) = min{C,,, Cy,, Cy, Cy;}. Thus, VRC of S'(G) is
= min{(3n? + 45n)/8, (2n% + 5n — 8)/4,n2 + 3n, (2n% + 7Tn — 3)/2}.

As a result, if n < 35, then we obtain R(S'(G)) = (2n2? + 5n — 8)/4. Oth-
erwise, if n > 35 then we have R(S'(G)) = (3n? +45n)/8. O

Theorem 3.4. Forn > 3; If G = K,,, then the verter residual closeness
(VRC) of S'(G) of order 2n is defined as: R(S'(G)) = (Tn? — 13n + 6)/4.
Proof. Let the vertex set S'(G) be V(§'(G)) = V] U V;, where let
i={vieV(G),1<i<n}and V; = {v] € V(G'),1 < i < n}. We have
two cases depending on the vertices of graph S'(G).

Case 1. Removing a vertex v; € V; in the graph S/(G). We have three
subcases depending on the vertices of S'(G) \ {v;}.

Subcase 1.1. For the vertex v; € V1 \ {v;} in the graph §'(G) \ {v:}.
Since the definition of splitting graph and complete graph, the vertex v, is
adjacent (2n — 3)-vertices. Moreover, dy, (v;,v;) = 2. Thus,

(n = 1)Cy(v;) = (n = 1)((2n — 3)271 +272) = (4n? — 9n + 5)/4.

Subcase 1.2. For the vertex v} in the graph S'(G) \ {v:}. Since the
definition of splitting graph and complete graph, the vertex v} is adjacent
(n—1)-vertices. Then, the distance of remaining (n — 1)-vertices is 2. Thus,

Co,(¥))=(n-1)2"1 4+ (n-1)27% = (3n - 3)/4.

Subcase 1.3. For the vertex v; € V2 \ {v{} in the graph S'(G) \ {v:}.
Since the definition of splitting graph and complete graph, the vertex v; is
adjacent (n — 2)-vertices. Then, the distance of remaining n-vertices is 2.
Thus,

Cu,(vj) = (n = 1)((n - 2)27! + (n)272) = (3n% — Tn + 4) /4.
By summing Subcases 1.1, 1.2 and 1.3, we have C,, = (7n? — 13n + 6)/4.

Case 2. Removing a vertex v; € V; in the graph S'(G). We have three
subcases depending on the vertices of S’(G) \ {v/}.

Subcase 2.1. For the vertex v; in the graph S/(G) \ {v!}. Due to
ds/(G)\{v;} (i) = 2n — 2, then we have Cy/(v;) = (2n — 2)2"! =n - 1.

Subcase 2.2. For the vertex v; € V} \ {v;} in the graph S'(G) \ {v{}.
Since the definition of splitting graph and complete graph, the vertex v; is
adjacent (2n — 3)-vertices. Then, the distance of remaining a vertex is 2.
Thus,

(n—1)Cy(v;) = (n = 1)((2n — 3)271 +272) = (4n® - 9n + 5)/4.

Subcase 2.3. For the vertex v; € V2 \ {v}} in the graph S'(G) \ {v;}.
Since the definition of splitting graph and complete graph, the vertex v} is

24



adjacent (n — 1)-vertices. Then, the distance of remaining (n — 1)-vertices
is 2. Thus,

(n=1)Cy(v)) = (n = 1)((n—1)27" + (n — 1)272%) = (3n — 6n + 3)/4.
By summing Subcases 2.1, 2.2 and 2.3, we obtain Cy; = (7n? —11n+ 4)/4.
By the definition of VRC of the graph S'(G), we obtain

R(S'(G)) = min{C,,, Cy} = {(7n? — 13n + 6)/4, (Tn? — 11n + 4)/4}
= (7n% —13n+6)/4. 0

Theorem 3.5. Forn > 3; If G = C,, then the vertezx residual closeness
(VRC) of S'(G) of order 2n is defined as:
C(S'(G)) = C(S'(Pn_1)) + 8 —8(1/2)™/? , if n is odd;
T C(8'(Pa-1)) +(13/2) — 12(1/2)/? | if n is even.
Proof. Let the vertex set S'(G) be V(S'(G)) = V1 U V;, where let
Vi ={v; € V(G),1 £i<n}and Vo = {v] € V(G'),1 < i< n}. We have
two cases depending on the vertices of S'(G).

Case 1. Removing a vertex of v; € V; in the graph S’(G). Moreover,
we remove the vertex v} in the graph S$'(G) \ {v;}. It is clear that the
survival subgraph $'(G) \ {v;,v{} is §'(P,_,) of order 2n — 2. So, we have
v = C(8'(Pa-1)) + 2Cy,(v;) , .,
= C(8'(Pa-1))+2(Turevinio 240 + ot evp gy 274009).
We have two subcases depending on the number of vertices of G.
Subcaese 1.1. Let n be odd. To calculate first sum, say Suml1, we get
Suml =2/2' +2/2% 4 ... 4 2/2*-1/2,

To calculate the above Suml, we use the formula of finite geometric series.
Thus, we get Suml =2 — 2(1/2)" ",
To calculate second sum, say Sum2, we get

Sum2 =2/2' +2/2%2 + ... +2/2~V/2 £ 9793 — 2 _2(1/2)"*~V/2 1 1/a,
Thus, when n is odd we have
Cy; = C(8'(Pa-1)) +2((2 - 2(1/2) )+ (2 - 2(1/2)"~1/2 4 1/4))
= C(S'(Pn-1)) + (17/2) — 8(1/2)(»-1/2,

(n—-1)/2

Subcase 1.2. Let n be even. To calculate first sum, say Sumli, we get
Suml = 2/2' +2/22 + ... 4 2/20/D-1 | 1/97/2

To calculate the above Suml, we use the formula of the finite geometric
series. Thus, we get Suml = 2 — 3(1/2)™/2.
To calculate second sum, say Sum2, we get

Sum2 =2/22 +2/2% + ...+ 2/20/D-1 1 9/93 1+ 1/97/2 = (5/4) — 3(1/2)"/2.
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Thus, when n is even we have
Cy. = C(S'(Pu-1)) +2((2 — 3(1/2)™%) + ((5/4) — 3(1/2)™?))
= C(S'(Pa-1)) + (13/2) - 12(1/2)™/2.
Case 2. Removing a vertex of v; € V2 in the graph S’(G). Moreover, we
remove the vertex v; in the graph S/(G) \ {v!}. It is clear that the survival
subgraph S’(G) \ {vi, v} is S'(Pn-1) of order 2n — 2. So, we have
Cu, = C(S'(P, -1)) +2Cy;(v3)
= C(S'(Pn- +2(Eu seViN{ui} 27 dwovi) 437 eVa\(ul} 27 —dweri)),

We have two subcases dependmg on the number of vertices of G.

Subcase 2.1. Let n be odd. First sum and second sum is similar to the
Sum1 of Subcase 1.1 of Case 1. So, Suml = Sum2 = 2 — 2(1/2)("~1/2,
Thus, when n is odd we have

Cu; = C(8'(Pac1)) +2((2 — 2(1/2)~D/2)) 4 (2 — 2(1/2)("=1/2)y)

= C(S'(Pn-1)) + 8 - 8(1/2)(»-1)/2,
Subcase 2.2. Let n be even. First sum and second sum is similar to the
Suml of Subcase 1.2 of Case 1. So, Suml = Sum2 = 2 — 3(1/2)"/2.
Thus, when n is even we have

Cyy = C(S'(Pa-1)) +2((2 - 3(1/2)™%) + (2 — 3(1/2)"/?))

= C(S'(Pa-1)) +8 — 12(1/2)™/2.
By the definition of vertex residual closeness (VRC) of the graph S'(G) as
follows: R(S'(G)) = min{C,,,Cy}.
When n is odd:
R(S'(G)) = min{C(S'(Pa-1)) + (17/2) - 8(1/2)"~ 1/
1 C(S'(Pa-1)) + 8 — 8(1/2)("~D/2}
= C(S'(Pa-1)) + 8 — 8(1/2)(*~1)/2 js obtained.
When n is even:
R(5'(G)) = min{C(S'(Pn-1)) + (13/2) — 12(1/2)"/?
yC(S'(Paz1)) + 8 — 12(1/2)™/?}
= C(S'(Pn-1)) + 8 — 12(1/2)™/2 is obtained. O

Theorem 3.6. The NVRC of Splitting graphs of
(a) the cycle graph C, of order n is

C(S'(Pn_1))+8-8/2"/2 . . .
R/(S'(Cp)) = n((31/4)l-(12/2"/2)) » if n is odd;
n Cgs'gP.,_n22+g13_/(22—12£2"/2 if n is even
n((31/4)—(8/2(r=1)/2)) ! )
(b) the complete graph K,, of order n is R'(S'(K,)) =1 — s23=&.
(c) the star graph Sy, of order n+ 1 is R'(S'(Sn)) = m
(d) the wheel graph W, of order n +1 is
2n245n-8 ; < 35-
RS (Wa) = { aifles o Yn <5
T o fn >3
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4. CONCLUSION

We have investigated the residual closeness of networks as a measure
of network analysis. Residual closeness is a new characteristic measure for
graph vulnerability. Calculation of residual closeness for simple graph types
is important because we get which vertices in the network are responsible
for fast communication flow. Thus, vertices giving the residual closeness
of a graph are important and fast in distributing information through the
network.
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