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Abstract

Graph embedding has been known as a powerful tool for imple-
mentation of parallel algorithms and simulation of different inter-
connection networks. In this paper, we obtain minimum wirelength
of embedding circulant networks into necklace and windmill graphs.
The algorithms for obtaining the same are of O(2n)-linear time.
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1 Introduction

Interconnection networks provide an effective mechanism for exchanging
data between processors in a parallel computing system. An intercon-
nection network is often represented as a graph, where nodes and edges
correspond to processors and communication links between processors, re-
spectively. In the design and analysis of an interconnection network, its
graph embedding ability is a major concern. An ideal interconnection net-
work (host graph) is expected to possess excellent graph embedding ability
which helps efficiently execute parallel algorithms with regular task graphs
(guest graphs) on this network [1].

An embedding of a guest graph G into a host graph H is a one-to-
one mapping of the vertex set of G into that of H. The dilation of an
embedding is defined as the maximum distance between a pair of vertices
of H that are images of adjacent vertices of G. The study of graph em-
beddings is an important topic in the theory of parallel computation: the
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existence of such an embedding demonstrates the ability of a parallel com-
puter, whose interconnection network is represented by the host graph, to
simulate a parallel algorithm, whose communication structure is described
by the guest graph. The dilation can then serve as one of natural measures
of the communication delay [2].

The circulant graph (network) is a natural generalization of the dou-
ble loop network and was first considered by Wong and Coppersmith [3].
Circulant graphs have been used for decades in the design of computer
and telecommunication networks due to their optimal fault-tolerance and
routing capabilities [4]. It is also used in VLSI design and distributed com-
putation [5, 6, 7]. The term circulant comes from the nature of its adjacency
matrix. A matrix is circulant if all its rows are periodic rotations of the first
one. Circulant matrices have been employed for designing binary codes [8].
Theoretical properties of circulant graphs have heen studied extensively and
surveyed by Bermond et al. [5]. Every circulant graph is a vertex transitive
graph and a Cayley graph [9]. Most of the earlier research concentrated on
using the circulant graphs to build interconnection networks for distributed
and parallel systems [4, 5].

The wirelength of a graph embedding arises from VLSI designs, data
structures and data representations, networks for parallel computer sys-
tems, biological models that deal with cloning and visual stimuli, parallel
architecture, structural engineering and so on [9, 10].

Graph embeddings have been well studied for meshes into crossed cubes
(11}, binary trees into paths [10], binary trees into hypercubes [2, 12], com-
plete binary trees into hypercubes [13], incomplete hypercube in books [14],
tori and grids into twisted cubes [15], meshes into locally twisted cubes [16],
meshes into faulty crossed cubes (1], generalized ladders into hypercubes
[17], grids into grids [18], binary trees into grids [19], hypercubes into cy-
cles [20, 21], star graph into path [22], snarks into torus {23], generalized
wheels into arbitrary trees [24], hypercubes into grids [25], m-sequencial k-
ary trees into hypercubes [26], meshes into mébius cubes [27], ternary tree
into hypercube (28], enhanced and augmented hypercube into complete
binary tree [29], circulant into arbitrary trees, cycles, certain multicyclic
graphs and ladders [30], hypercubes into cylinders, snakes and caterpillars
[31], hypercubes into necklace, windmill and snake graphs [32], embedding
of special classes of circulant networks, hypercubes and generalized Petersen
graphs [33].

Even though there are numerous results and discussions on the wire-
length problem, most of them deal with only approximate results and the
estimation of lower bounds [20, 34]. The embeddings discussed in this paper
produce exact wirelength.
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2 Preliminaries

In this section we give the basic definitions and preliminaries related to
embedding problems.

Definition 2.1. [34] Let G and H be finite graphs with n vertices. An
embedding f of G into H is defined as follows:

1. f is a bijective map from V(G) = V(H)
2. f is a one-to-one map from E(G) to {Ps(u,v) : Ps(u,v) is a path in
H between f(u) and f(v) for (u,v) € E(G)}.
Definition 2.2. [34] The edge congestion of an embedding f of G into
H is the mazimum number of edges of the graph G that are embedded
on any single edge of H. Let EC¢(G,H(e)) denote the number of edges

(u,v) of G such that e is in the path P;(u,v) between f(u) and f(v) in H.
In other words,

ECy(G, H(e)) = [{(u,v) € E(G) : ¢ € Py(u,0)}|
where Py(u,v) denotes the path between f(u) and f(v) in H with respect to

If we think of G as representing the wiring diagram of an electronic cir-
cuit, with the vertices representing components and the edges representing
wires connecting them, then the edge congestion EC(G, H) is the mini-
mum, over all embeddings f : V(G) — V(H), of the maximum number of
wires that cross any edge of H [35].

Definition 2.3. [25] The wirelength of an embedding f of G into H is
given by
WLi(G H) = Y. du(f(w),f())= Y ECi(G, H(e)
(u,v)EE(G) e€E(H)
where dy(f(u), f(v)) denotes the length of the path Ps(u,v) in H. Then,
the wirelength of G into H is defined as

WL(G,H) = min WL(G, H)
where the minimum is taken over all embeddings f of G into H.

The wirelength problem [19, 20, 24, 25, 34, 35| of a graph G into H is
to find an embedding of G into H that induces the minimum wirelength
WL(G, H).

The following version of the edge isoperimetric problem of a graph
G(V, E) has been considered in the literature [36], and is NP-complete

37).
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Figure 1: Circulant graph G(8; +{1, 3,4})

Edge Isoperimetric Problem : Find a subset of vertices of a given
graph, such that the edge cut separating this subset from its complement
has minimal size among all subsets of the same cardinality. Mathematically,

for a given m, if 8g(m) = mlig‘ |0c(A)| where 8g(A) = {(u,v) € E :

u € A,v ¢ A}, then the problem is to find A C V such that |A| = m and
f(m) = |6c(A)l.

Lemma 2.4. (Congestion Lemma) {25] Let G be an r-regular graph and
f be an embedding of G into H. Let S be an edge cut of H such that the
removal of edges of S leaves H into 2 components H; and H; and let G; =
f~Y(H)) and Go = f~1(Ha). Also S satisfies the following conditions:

(i) For every edge (a,b) € G;, i = 1,2, Ps(a,b) has no edges in S.
(ii) For every edge (a,b) in G with a € Gy and b € Ga, Pf(a,b) has
ezactly one edge in S.
(iii) Gy is an optimal set.
Then ECy(S) is minimum and ECy(S) =r|V(G))| - 2|E(G,)|. O

Lemma 2.5. (Partition Lemma) [25] Let f : G — H be an embedding.
Let {S1,82,...,5,} be a partition of E(H) such that each S; is an edge
cut of H. Then
WL;(G,H) = ZEC,(S) 0
=1

Lemma 2.6. (2-Partition Lemma) [38] Let f : G — H be an embedding.
Let [2E(H)] denote a collection of edges of H repeated exactly 2 times. Let
{S1,852,...,Sm} be a partition of (2E(H)] such that each S; is an edge cut
of H. Then

WL;(G,H)= %ZEC}(S
i=1
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Figure 2: Necklace N(Pp,; Ky, , Ky, ..., K

vl

3 Embedding of Circulant Networks into Neck-
lace Graphs

In this section, we compute the exact wirelength of embedding circulant
networks into necklace graphs.

Definition 3.1. [5, 33] The undirected circulant graph G(n; S), § C +{1,
2,...,j}, 1 £j < [n/2] is a graph with vertez set V = {0,1,...,n — 1}
and the edge set E = {(i, k) : |k — i| = s(mod n), s € S}.

The circulant graph shown in Figure 1 is G(8; {1, 3,4}). It is clear that
G(n; £1) is the undirected cycle C,, and G(n; £{1,2,..., |n/2]}) is the com-
plete graph K,,. The cycle G(n;£1) ~ C,, contained in G(n; +{1,2,...,5}),
1 < j £ |n/2] is sometimes referred to as the outer cycle C of G.

Theorem 3.2. [30] A set of k consecutive vertices of G(n; £1), 1 < k <
induces a mazimum subgraph of G(n;£S), where S = {1,2,...,5}, 1
j<|n/2},n>3.

OA s

Theorem 3.3. [30] The number of edges in a mazimum subgraph on k
vertices of G(n; £5), S={1,2,...,j}, 1 <j<n/2],1<k<n,n>3is
given by

k(k —1)/2 ; k<ji+1
§ kj—3(7+1)/2 p j+l<k<n—j
Hn—kP2+4j+1)k—-(2i+1)n} ; n—-j<k<n. a

Definition 3.4. Let P = vivp...vm be a path. Let K;, be a complete
graph on t; vertices such that P W K, has just v; as a cut-vertez, i =

1,2,...,m. The resultant graph P W (.GIK;‘.) is a necklace denoted by
1=
N(Pn; K¢y, Ky,,..., Ky,,).
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m
Remark 3.5. N(P,,; K;,,Ky,, ..., K.,,) hasn = Y t; vertices. We denote

i=1

k

doti by sk, 0 < k < m, where to = 0. See Figure 2. For brevity, the
i=0

necklace N(Pp; Ku,, Ky, ..., K,,,) will be represented by N(P,,, K).

Embedding Algorithm A

Input : A circulant network G(n; +{1,2,...,75}), 1 < 7 < [n/2] and a
necklace N(Pp,, K).

Algorithm : Label the consecutive vertices of G(n; +1) in G(n; {1, 2,

..,j}) as 0,1,2,...,n — 1 in the clockwise sense. Label the vertices of K,
in N(Pn,K)assi—1+3,7=0,1,2,...,t; — 1 such that s;_; is the label of
v, 1 £ i < m. See Figure 3.

Output : The exact wirelength of embedding circulant network G(n; {1,
2,...,7}) into necklace N (P, K) given by the mapping f(z) = z.

Proof of correctness : We assume that the labels represent the vertices
to which they are assigned. For 1 <i <m —1, let §; = Sy = {(si=1,8:)}
Forl1 <i<m,letS] = {(si—1,8i-1+7):1<j<t;—1}. For1 <i<mand
1<j<t;—1,)et S = {(si—1+7,8i-1+k):0<k<t;—1andj#k}. See
Figure 3. Then {S;, Sy : 1 <i<m—-1}U{Si:1<i<m}u{S/:1<i<m
and 1 < j <t; — 1} is a partition of [2E(N (P, K))).

For each i, 1 < i < m — 1, E(N(Pp, K))\S; has two components H;;
and Hj, where V(Hy) = {0,1,2,...,s; — 1}. Let Gy = f~}(H;;) and
Gi2 = f~Y(Hi2). By Theorem 3.2, G;, is an optimal set, each S; satisfies
conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore EC(S;)
is minimum. Similarly, EC;(Si) is minimum.

For each i, 1 < i < m, E(N(Pp, K))\S! has two components H’l and
Hi,, where V(H})) = {si-1+1,8_1+2,...,8; — 1}. Let G}, = f~Y(H}})
and Gj; = f~!(H};). By Theorem 3.2, G/, is an optimal set, each Si
satisfies conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore
EC{(S}) is minimum.

For each i,j, 1 <i<m,and 1 <j <t; — 1, E(N(Pm, K))\S] has two
components HY, and HY,, where V(HY) = {si-1+4}. Let G, = f~1(H})
and GJ, = f~1(Hj). By Theorem 3.2, GJ; is an optlmal set each SJ
satisfies conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore
EC f(S’ ) is minimum. The 2-Partition Lemma implies that the wirelength
is minimum. O
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Figure 3: The edge cuts of necklace N{Py; Kg, K¢, K4, Ks)

Theorem 3.6. The exact wirelength of circulant network G(n; £{1,2,..

1< j < |n/2] into N(Pn, K), is given by

m=—1

WL(G,N(Pm,K)) = 3 6a(s:) + -;-Zm:ﬂc(ti — 1)+ j(sm — m).

i=1 i=1
Proof. By Congestion Lemma,
(i) EC¢(S;) = ECy(S¢) =0g(si), 1 <i<m—1
(i) ECy(S}) =0g(t:—1),1<i<mand
(iii) ECf(S7)=2j,1<i<mand1<j<t;—1.
Then by 2-Partition Lemma,

m—1

WL(G,N(Pn,, K))

]

%[2§0G(Sz) + gec(tz - 1) + 2]'(37" — m)]

S¥1)0

m—1 m
1 :
= ;ec(s,-) + 5;9(;@,- ~ 1)+ j(8m —m). O

Definition 3.7. Let C = viv2...vnv1 be a cycle. Let K, be a com-
plete graph on t; vertices such that C ¥ K, has just v; as a cut-vertez,

i=1,2,...,m. The resultant graph C'& (.'L:JllK,,,) is a necklace denoted by

N(C'm.; KtnKtz) R !Ktm)'

m
Remark 3.8. N(Cp; Ky, Kips---,Kt,,) has n = 3 t; vertices. We de-

i=1

k
note Y. t; by sk, 0 < k < m, where to = 0. For brevity, the necklace

i=0
N(Cm; Kiy, Ky, - ., Ky,,) will be represented by N(Cp. K).
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Figure 4: The edge cuts of necklace N(Cs; K¢, Ka, ..., K4)

Embedding Algorithm B

Input : A circulant network G(n; +{1,2,...,5}),1 < j < [n/2] and a
necklace N(Cp,, K).

Algorithm : Label the consecutive vertices of G(n;+1) in G(n; £{1,2,
...,j})as0,1,2,...,7—1in the clockwise sense. Label the vertices of K,
in N(Crn, K) as 5;-1+ 4, 5 =0,1,2,...,t; — 1 such that s;_; is the label
of v;, 1 €1 < m. See Figure 4.

Output : The exact wirelength of embedding circulant network G(n; +{1,
2,...,7}) into necklace N(C,,, K) given by the mapping f(z) = .

Proof of correctness:

We assume that the labels represent the vertices to which they are assigned.
Case 1l (m iseven): For1<i< B, let §; =5y = {(si_l,si),(s%\“_l,
8431+i)}. For 1 <i < m, let S: = {(si_l,si_l +]) 11 Lji<t; — 1} For
1<i<mand1<j<ti—1,let 7 ={(sic1+j,sic1+k):0<k<t;—1
and j # k }. See Figure 4. Then {S;,S» : 1 <i < Z}U{S/:1<i<
m}U{S{ :1<i<mandl<j<t;—1}is a partition of 2E(N(Cn, K))].

Foreachi, 1 <i< 2. E(N(Cp, K))\S; has two components H;; and
Hy,, where V(H;) = {s,~,s,~ +1,... Y@ — 1}. Let Gy = f_‘(Hil) and
Gi2 = f~Y(Hi2). By Theorem 3.2, G;; is an optimal set, each S; satisfies
conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore EC(S;)
is minimum. Similarly, ECf(Si) is minimum.
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For each i, 1 < i < m, E(N(Cm, K))\S! has two components H}; and

lo, where V(H}) = {si-1+1,8i-1+2,...,s: — 1}. Let G}y = f~1(H})

and Gy = f~}(HJ}). By Theorem 3.2, G}, is an optimal set, each S

satisfies conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore
ECy(8]) is minimum.

Foreachi,j,1<i<mand1<j<ti—1, E(N(Cp, K))\S? has two
components H7, and H7,, where V(H},) = {si—1 + j}. Let G}, = f~1(H}))
and GJ, = f~!(HY). By Theorem 3.2, G is an optimal set, each S/
satisfies conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore
EC¢(S?) is minimum. The 2-Partition Lemma implies that the wirelength
is minimum.

Case 2 (m isodd): Forl <i < m,let S; = {(si-1, i), (SL%J_H-_],S[%J_H)}.

For each i, 1 < i < m, E(N(Cm, K))\S; has two components H;; and
Hi2, where V(Hﬂ) = {Si,Si + 1,...,5%4.,‘ - 1} Let Gil = f_l(Hil) and
Gi2 = f~Y(H;2). By Theorem 3.2, G;; is an optimal set, each S satisfies
conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore EC(S;)
is minimum.

The other cuts {S;, S7} are similar from Case 1. The 2-Partition Lemma
implies that the wirelength is minimum. O

Theorem 3.9. The ezact wirelength of circulant network G(n; +{1,2,...,
.7}): 1<5j5< |_n/2J into N(CmaK): is given by

. mf2 m
1
WL(G,N(Cm,K)) = > Balti +tis1+- +tipg-1)+ 5Zaﬂ)c(t,- -1)
i=1 i=1
+7(8m — m).

Proof. By Congestion Lemma,
(i) EC](S,') = EC[(S,‘I) = Oc(ti +tip1+--+ ti+z§'-._|), 1<:1< %
(i) ECf(S])=0¢g(ti~1),1<i<mand
(iii) EC;(S))=2j,1<i<mand1<j<t;—1.

Then by 2-Partition Lemma,

mj2 m
1
WL(G, N(Cm, K)) = -2-[229G(t¢ +tip1 4o+ ti+3"——-l) + ZBG(t,; -1)
i=1 i=1
+2j(sm _m)]
m/2 1 m
= ;6’0(& +tip1 e lipgpo) + 5;&;(& -1)

+j(sm—m). O
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Figure 5: The edge cuts of necklace N(Py; Cs, Cs, Cy4, Cs)

Definition 3.10. Let P = vjvy... v, be a path. Let C;, be a cycle on t;
vertices such that PYC,, has justv; as a cut-vertez, i =1,2,...,m. The re-

sultant graph Pw( .'Q'IC,,.) is a necklace denoted by N(Pp; C,,Cy,,-..,Cl,.).

Remark 3.11. N(Pp;C,,Cy,,...,Cy,,) has n = Y t; vertices. We de-

i=1

k

note 3 t; by sp, 0 < k < m, where ty = 0. For brevity, the necklace
i=0

N(Pp;Cy,,Cy,, ..., Cy,,) will be represented by N(Py,,C).

Embedding Algorithm C

Input : A circulant network G(n; +{1,2,...,5}), 1 £ j £ [n/2] and a
necklace N(Pp,, C).

Algorithm : Label the consecutive vertices of G(n;£1) in G(n;+{1,2,
...,3}) as 0,1,2,...,n — 1 in the clockwise sense. Label the consecutive
vertices of Cy, in N(P,,C) as s;—1+3j,7=0,1,2,...,t; — 1 such that s;_,
is the label of v;, 1 < i < m. See Figure 5.

Output : The exact wirelength of embedding circulant network G(n; £{1,
2,...,7}) into necklace N(Py,, C) given by the mapping f(z) = z.

Proof of correctness:

We assume that the labels represent the vertices to which they are assigned
for 1 < i < m, depending on the number of vertices in Ct,, the following
two cases arise.

Case 1 (t; is even): For1 < i < m-—-1,let §; = {(si-1,8:)}. For

1<i<m,let S = {(si-1+J,si-1+7+1), (si_1+£2‘+j,$i_1+%+j+l) :
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0<j<%-1}. SeeFigure 5. Then {S;: 1<i<m—1}U{S]:1<i<m}
is a partition of [E(N(Pn,C)))-

Foreach i, 1 < i < m — 1, E(N(Pp,C))\S: has two components H;;
and H;, where V(Hil) = {0,1,2,...,35 - 1}. Let Gy = f—l(Hil) and
Gi2 = f~Y(Hi2). By Theorem 3.2, Gi; is an optimal set, each S; satisfies
conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore EC/(S;)
is minimum.

For each i, 1 < i < m, E(N(Pn,C))\S! has two components H;, and
H,, wherc V(H,) = {sici+7+L,sic1+5+2,...,8ic1+7+ %) Let
', = f~YHY) and Gy = f}(Hl). By Theorem 3.2, G}; is an optimal
set, each S! satisfies conditions (i), (ii) and (iii) of the Congestion Lemma.
Therefore EC ¢(S}) is minimum.

Case 2 (t; isodd): Forl<i<m-—1,let §; =8y = {(s,_l,s,)} For
1<i<m,letS]={(si-1+J, s,_1+J+1) (sicr+ L% ]+d, sic1+ 5 )+3+1)
0<j<t; —1} Then {S;, Si 1<z<m—1}U{S"1<z<m}1sa
partition of [2E(N (P, C))).

For each i, 1 < i < m — 1, E(N(Pm,C))\S: has two components Hj;;
and H;s, where V(Hil) = {0,1,2,...,3,’ - 1}. Let G;) = f_l(Hil) and
Giz = f~Y(Hi2). By Theorem 3.2, Gi; is an optimal set, each S; satisfies
conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore ECf(S;)
is minimum. Similarly, ECf(Sy) is minimum.

For each i, 1 < i < m, E(N(Pn,C))\S! has two components H;, and
Hl,, where V(H}) = {sic1+7+1L,sici +5+2,...,8ic1+ 5 + | $]}. Let
Gl = f~Y(H!;) and G!y = f~}(H}y)- By Theorem 3.2, G}, is an optimal
set, each ] satisfies conditions (i), (ii) and (jii) of the Congestion Lemma.
Therefore EC;(S!) is minimum. The Partition Lemma and 2-Partition
Lemma imply that the wirelength is minimum. O

Theorem 3.12. The exact wirelength of circulant network G(n; £{1,2,...,
i, 1 <7 < |n/2] into N(Pn,C), is given by

m—1

WL(G, N(Pn,C)) = ZGG (si—1) +Z Ocl )).

Proof. By Congestion Lemma,
(i) ECf(S:) = ECf(S#) =0g(si —1),1<i<m—1and
(i) EC/(S) =tibc(l4]), 1< i<m.
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Figure 6: The edge cuts of necklace N(K,7; C¢,Cy,...,Cs)

Then by Partition Lemma and 2-Partition Lemma,

m—1 m
WL(G,N(Pn,C)) = %[2290(&"1)*2“ ea(L%J)]
i=1

i=1

m-—1 mo, .
;00(si—1)+§-t2—’ oG(L%'J). 0

Definition 3.13. Let K, be a star graph on m+1 vertices vg, v1,. .. , Un.-

Let Cy; be a cycle on t; vertices such that Ky m U Cy, has just v; as a cut-

verter, i = 1,2,...,m. The resultant graph K; ., U (.ZJ‘]C;,.) 8 a necklace
i=

denoted by N(Kl,m; Ct‘ , Ctz, eeey Ctm ).

Remark 3.14. N(K; 1;Cy,.Cy,,...,Ce,.) hasn = Y t; + 1 vertices. We

i=1

k
denote Y t; by sk, 0 < k < m, where to = 0. For brevity, the necklace
i=o0

N(Ki,m;Ct,,Ct,,. .., Cy,,) will be represented by N(Ky.m,C).

Embedding Algorithm D

Input : A circulant network G(n;+{1,2,...,5}), 1 £ j < |n/2] and a
necklace N(K,m,C).

Algorithm : Label the consecutive vertices of G(n; +1) in G(n; £{1,2,...,
i} as0,1,2,...,n—1 in the clockwise sense. Label the consecutive vertices
of Gy, in N(Ky,m,C) as s;-1+73,7=0,1,2,...,t; — 1 such that s;_; is the
label of v;, 1 < i < m. See Figure 6.
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Output : The exact wirelength of embedding circulant network G(n; £{1,
2,...,3}) into necklace N(K) n,C) given by the mapping f(z) = z.

Proof of correctness:

We assume that the labels represent the vertices to which they are assigned
for 1 < ¢ < m, depending on the number of vertices in C},, the following
two cases arise.

Case 1 (t; is even): For 1 <i<m,let S; = {(s;=1,n)}. For1<i<m,
let S; = {(Si._l-l-j, s,'_1+j+1),(s,-_1+-‘éi+j, s,-_1+52‘+j+1) :0<35< 52‘—1}.
See Figure 6. Then {S;, S/ : 1 < i < m} is a partition of [E(NN (K} m, C))].

For each i, 1 < i < m, E(N(K1,m,C))\S; has two components H;; and
H;y, where V(H;1) = {ti=1,ti-1+1,.. . ticy + 8 — 1}. Let G;) = f"l(H,- )
and Gy = f~!(Hi). By Theorem 3.2, G;; is an optimal set, each S;
satisfies conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore
EC¢(S;) is minimum.

For each 4, 1 < i < m, E(N(K1,m,C))\S! has two components H}, and

!, where V(H ) = {sis1+j+ 1,81 +5+2,...,8i-1+7 + 52'-} Let

'L = f~Y(H!) and Gy = f~1(Hl). By Theorem 3.2, G}; is an optimal
set, each S! satisfies conditions (i), (ii) and (iii) of the Congestion Lemma.
Therefore ECy(S}) is minimum.
Case 2 (t; is odd): For 1 < i < m, let §; = Sy = {(si-1,n)}. For
1<i<m,let Si={(sic1+dsic1+3+1)(sim1 + 3] +dsi + 5] +
j+1):0< j <t;—1}. Then {S;,S#,S;:1 < i < m} is a partition of
RE(N(Ky m, O))).

For each i, 1 < i < m, E(N(K1,m,C))\S; has two components H;; and
H;s, where V(Hﬂ) = {ti—lyti—l +1,.. . ,tim1+t; — 1} Let G = f_l(Hi )
and Gy = f~!(Hi). By Theorem 3.2, G;; is an optimal set, each §;
satisfies conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore
EC(S;) is minimum. Similarly ECf(S;/) is minimum.

For each i, 1 < i < m, E(N(K1,m,C))\S! has two components H/, and
H!,, where V(H}) = {sic1+7+ L, sica+j+2,...,80+3+ | 4]} Let
‘, = f~Y(HY) and G}, = f~Y(H];). By Theorem 3.2, G}; is an optimal
set, each S/ satisfies conditions (i), (ii) and (iii) of the Congestion Lemma.
Therefore ECy(S!) is minimum. The Partition Lemma and 2-Partition

Lemma imply that the wirelength is minimum. 0

Theorem 3.15. The ezact wirelength of circulant network G(n; +{1,2,...,
iH, 1 £ j < |n/2] into N(K1,m,C), is given by

WL(G,N(Ky.m,C)) = ch(ti) + Z%GG([%J)

i=1
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Proof. By Congestion Lemma,
(i) EC](S,) = ECf(S,-:) = gc(t,'), 1<i<mand
(i) EC(S) =t: bc(l§]) 1<i<m.

Then by Partition Lemma and 2-Partition Lemma,

WL(G, N(Ky,m, C)) = %IQZ"G“*HZ“ dol3 )

= Zec(t,)+z2e (L ). O

Definition 3.16. Let K,, be a complete graph on m wvertices. Let Cy,
be a cycle on t; vertices such that K,, & C,, has just v; as a cut-vertez,

i=1,2,...,m. The resultant graph K,, & (.Qlct,.) is a necklace denoted by
N(Km; Cg,,ng, cen ,Cgm).

m
Remark 3.17. N(Kn;Cy,,Cyy,...,Cy,,) has n = Y t; vertices. We de-

i=1
note Zt by sk, 0 < k < m, where tg = 0. For brevity, the graph
N(Km,Ct,,Ct,, ., Ct,.) will be represented by N(Kpm,C).

Embedding Algorithm E

Input : A circulant network G(n;+{1,2,...,5}), 1 < j < [n/2] and a
necklace N(Kp,,C).

Algorithm : Label the consecutive vertices of G(n; £1) in G(n; £{1,2,...,
j}) 8s 0,1,2,...,n — 1 in the clockwise sense. Label the vertices of C;, in
N(Kn,C) as s;i_1+ 4,5 =0,1,2,...,t; — 1 such that s;_; is the label of
v;, 1 < i < m. See Figure 7.

Output : The exact wirelength of embedding circulant network G(n; +{1,
2,...,7}) into necklace N(K,,,C) given by the mapping f(z) = z.
Proof of correctness:

We assume that the labels represent the vertices to which they are assigned
for 1 < i < m, depending on the number of vertices in C;,, the following
two cases arise.
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Figure 7: The edge cuts of necklace N(Kg; Cg,Cy,...,C4)

Case 1 (t; is even): For1 <i<m,let S; =Sy = {(si-1 +j,8i-1 +
FH),(Sic1+ S +gsia+ 4§ +5+1):1<j<Y -1} For1<i<m
and0<j<m-—1,let Sf = {(Si-1 +55,8i-1+58k):0<k<m—1and
j # k}. See Figure 7. Then {S;,5» :1<i < m}U{S{ :1<i<mand
0 < j < m —1} is a partition of 2E(N(Knm,C))].

For each i, 1 < i < m, E(N(Km,C))\S; has two components H;; and
H;,, where V(H;y) = {Si_l +3+Lsi+5+2,...,81+7+ %"} Let
Gi = f~Y(Hi) and Gi2 = f~}(Hi2). By Theorem 3.2, G;; is an optimal
set, each S; satisfies conditions (i), (ii) and (iii) of the Congestion Lemma.
Therefore EC¢(S;) is minimum. Similarly, EC(S;) is minimum.

For each i,j, 1 <i<mand 0 < j < m—1, E(N(Km,C))\S! has two

components Hfl and Hijz, where V(H},) = {si-1,8i-1+1,...,8 — 1}. Let
G, = f~Y(HY) and G, = f~1(H). By Theorem 3.2, GJ; is an optimal
set, each Sf satisfies conditions (i), (ii) and (iii) of the Congestion Lemma.
Therefore EC;(S?) is minimum. The 2-Partition Lemma implies that the
wirelength is minimum.
Case 2 (t; is odd): For1 < i < m,let S; = {(siz1 + 7,81 +5 +
1),(sic1+ |4)+dsici+ [§]+5+1):0<j<t;—1}. For1<i<m
and 0 <j<m-1,let S{ = {(si-1+5j,8i—1+8x):0<k<m-—1and
j#k}. Then {S;:1<i<m}u{S!:1<i<mand0<j<m-1}isa
partition of [2E(N(Km, C))].

For each i, 1 < i < m, E(N(Km,C))\S; has two components H;; and
Hip, where V(Hiy) = {si-1+j+1,sic1+j+2,..., 51 +7 + [%J} Let
G = f~Y(Hi) and Gi2 = f~!(Hi2). By Theorem 3.2, G is an optimal
set, each S; satisfies conditions (i), (ii) and (iii) of the Congestion Lemma.
Therefore EC(S;) is minimum.
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For each i H12i<m0<j<m-1, E'(N(Km,C))\Sf has two
components H}, and H,’z, where V(H,’l) ={si-1,8i-1+1,...,8 —1}. Let
Gl = ~Y(H}, ) and G2, = f~1(HJ). By Theorem 3.2, G/, is an optimal
set, each S7 satisfies condltlons (i), (ii) and (iii) of the Congestion Lemma.
Therefore EC¢(S?) is minimum. The 2-Partition Lemma implies that the
wirelength is minimum. O

Theorem 3.18. The ezact wirelength of circulant network G(n; £{1,2,...,
i, 1 £33 < |n/2] into N(Kn,C), is given by
WL(G,N(Kn,C)) = ;5%(['2‘]) + '2';90(%)-

Proof. By Congestion Lemma,
(i) ECs(Si) =ti 6c(1%]), 1 <i<mand
(ii) EC;(S?) =0c(t:),1<i<mand0<j<m—1.
Then by 2-Partition Lemma,

WL(G,N(Kn,C)) = [Zt ba(| t‘ +Z€c(t

i=1

= Z 013D +3 Zoan o

4 Embedding of Circulant Networks into Wind-
mill graphs

In this section, we compute the exact wirelength of embedding circulant
networks into windmill graphs.

Definition 4.1. Let C;; be a cycle on t; vertices such that WCy, has just

vy is a cut-vertez. The resultant graph P, & (AUIC;,.) is a windmill graph
t=

incident with a common vertez vy denoted by WM(Py;Cy,,Cy,,...,Ct,.).

m
Remark 4.2. WM(P;;C,,Cy,,..-,C,) hasn = 3 t; — m + 1 vertices.
i=1

k

We denote 3 t; by sk, 0 < k < m, whereto = 0. See Figure 8. For brevity,
=

the graph Wz/M(Pl; C:,,Cty,. .., Cy,, ) will be represented by WM (P,C).
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Figure 8: The edge cuts of WM (Py; Cy,Cs,Cg)

Embedding Algorithm F

Input : A circulant network G(n;+{1,2,...,5}), 1 < j < |[n/2] and
WM(P,C).

Algorithm : Label the consecutive vertices of G(n; 1) in G(n; £{1,2,...,
j}) as0,1,2,...,n—1 in the clockwise sense. Label the consecutive vertices
of Cy, in WM(P,C) as s;-1+7,5 =0,1,2,...,t; —i such that s; — 1 is the
label of v;, 1 < i < m. See Figure 8.

Output : The exact wirelength of embedding circulant network G(n; £{1,
2,...,7}) into windmill WM (P, C) given by the mapping f(z) = z.

Proof of correctness:

We assume that the labels represent the vertices to which they are assigned.
Case 1 (t; is even for all ¢): For1 < i < m,let S; = {(0,8:-1 +
2—i),(sic1 + 4 +1—dsi1+4+2-49)} For1 <i<mlet Su =
{(0,s8; — 1), (8i—1 + -'-2* —1,8i-1+ 52‘ +1—-4)} Forl <i<m,let S =
{(sici+2—i+7,8i1+3—i+7), (sic1+ 4 +2—i+j, i1+ 4§ +3—i+j):
0 < j < % —3}. See Figure 8. Then {S;, S, 5] :1 < i< m}, is a partition
of [E(WM(P,C))].

For each i, 1 < i < m, E(WM(P,C))\S; has two components H;; and
H;,, where V(H;;) = {si—l +2—-14,8-1+3—14,...,8-1+1—1+ £2‘-} Let
Giy = f~Y(H;) and Giz = f~'(Hi2). By Theorem 3.2, G is an optimal
set, each S; satisfies conditions (i), (ii) and (iii) of the Congestion Lemma.
Therefore EC(S;) is minimum.
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For each i, 1 < i < m, E(WM(P,C))\S» has two components H;
and H;5, where V(Hin) = {3;’—1 +1-—-174+ %.s,-_l -+ iz';, veey 8§ — 1}.
Let Giry = f~1(Hi1) and Girp = f~1(Hys). By Theorem 3.2, Gy is an
optimal set, each S! satisfies conditions (i), (ii) and (iii) of the Congestion
Lemma. Therefore EC;(S}) is minimum.

For each i, 1 < i < m, E(WM(P,C))\S; has two components H}, and
Hj, where V(H;}) = {sic1+3—i+4j,...,801 +2—i+ 5+ 4} Let
Gjy = f~Y(H},) and Gl, = f~1(H],). By Theorem 3.2, G/, is an optimal
set, each S} satisfies conditions (i), (ii) and (iii) of the Congestion Lemma.
Therefore EC¢(S]) is minimum. The Partition Lemma implies that the
wirelength is minimum.

Case 2 (t; is odd for all ¢): Using the proof techniques employed in Case
2 of Embedding Algorithm E, the wirelength is minimum. O

Theorem 4.3. The exact wirelength of circulant network G(n; £{1,2,...,37}),
1<j < |n/2] into WM(P,C), is given by

WL(G,WM(P,C)) = Z%OG(L%J).
=1

Proof. By Congestion Lemma,
(i) ECs(Si) = EC#(Sw) =t; 0c(|%)), 1 <i<m and
(i) ECs(S)) =t 0c(1%]),1<i<m.

Then by Partition Lemma and 2-Partition Lemma,

WL(G, WM(P,C))

| =

>3 6o(l2)) + 2 6a(12))
i=1

3613 O

i

I
i0gs

1

5 Time Complexity

In computer science, the time complexity of an algorithm quantifies the
amount of time taken by an algorithm to run as a function of the size of
the input to the problem. An algorithm is said to take linear time, or O(n)
time, if its time complexity is O(n). Informally, this means that for large
enough input sizes the running time increases linearly with the size of the
input.

Linear time is often viewed as a desirable attribute for an algorithm.
Much research has been invested into creating algorithms exhibiting (nearly)
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linear time or better. This research includes both software and hardware
methods. In the case of hardware, some algorithms which, mathemati-
cally speaking, can never achieve linear time with standard computation
models are able to run in linear time. There are several hardware tech-
nologies which exploit parallelism to provide this. An example is content-
addressable memory. This concept of linear time is used in string matching
algorithms such as the Boyer-Moore Algorithm and Ukkonen’s Algorithm
(39, 40].

In this Section, we compute the time complexity of finding the exact
wirelength of embedding circulant networks into necklace graphs using Em-
bedding Algorithm A. The algorithm is formally presented as follows.

Time Complexity Algorithm

Input : The circulant network G(n; £{1,2,...,3}),1<j < [n/2] and a
necklace N(P,,, K).

Algorithm : Embedding Algorithm A.

Output : The time taken to compute the minimum wirelength of embed-
ding G(n; £{1,2,...,5}) into N(Pn, K) is O(2n), which is linear.

m
Method : We know that, N(Pn, K) contains n = >_t; vertices. For

i=
assigning the labels of n vertices, we spend n time unit:s.1 By Embedding
Algorithm A, we have m(t; + 2) edge cuts. Since for each cut, we need one
unit of time. Thus, we need m(¢; + 2) time units. Then, we need m(¢; + 2)
time for finding the wirelength by using 2-Partition Lemma.

Hence the total time taken is = n+ 2m(t; +2)
< 2n

Hence, the time taken to compute the exact wirelength of embedding G(n; £
{1,2,...,7}) into N(Pp,, K) is O(2n), which is linear. O

Proceeding along the same lines, we can compute the exact wirelength
of embedding ciruclant networks into all other graphs with linear time.

6 Concluding Remarks

In this paper, we compute the exact wirelength of embedding circulant net-
works into certain necklace graphs. Also, we obtain the exact wirelength
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of embedding circulant networks into windmill graphs. Moreover, we pro-
vide an O(2n)-linear time algorithm to compute the exact wirelength of
embedding circulant networks into certain necklace and windmill graphs.
We also note that the necklace and windmill graphs are constructed
from the complete graphs and cycles, which are important architectures
for interconnection networks. Finding the dilation of emhedding circulant
networks into necklace and windmill graphs is under investigation.
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