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Abstract Let G be a bicyclic graph. Bicyclic graphs are connected graphs
in which the number of edges equals the number of vertices plus one. In
the paper, we determine the graph with the maximal signless Laplacian
spectral radius among all the bicyclic graphs with n vertices and diameter
d.
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1 Introduction

In this paper, all graphs are undirected finite graphs without loops
and multiple edges. Let G = (V, E) be a graph with vertex set V(G) =
{v1,v2,- -+ ,vn} and edge set E(G). Denote by d(v;) the degree of the graph
G, N(v;) the set of vertices which are adjacent to vertex v;. Let A(G) be
the adjacency matrix and Q(G) = D(G) + A(G) be the signless Laplacian
matrix of the graph G, where D(G) = diag(d(v1),d(v2),- - - ,d(vn)) denotes
the diagonal matrix of vertex degrees of G. The characteristic polynomial
®(G,z) of G is defined as ¥(G, z) = det(x] — A(G)). The signless laplacian
characteristic polynomial ¥(G,z) of G is defined as ¥(G,z) = det(z] —
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Q(G)). The spectrum of Q(G) is also called the signless Laplacian spectrum
of G.

The matrix @ is real symmetric and positive semidefinite, the eigenval-
ues of @ can be arranged as

71(Q) 2q(Q) 2 2¢.(Q) 20

where the largest eigenvalue ¢,(Q) is called Q- index of graph G. When
G is connected, Q(G) is irreducible and by the Perron-Frobenius Theorem,
the signless Laplacian spectral radius is simple and there is a unique pos-
itive unit eigenvector corresponding to ¢;(G). We shall refer to such an
eigenvector as the Perron vector of G.

Bicyclic graphs are connected graphs in which the number of edges
equals the number of vertices plus one. The diameter of a connected graph
is the maximum distance between pairs of its vertices. Recently, the prob-
lem concerning graphs with maximal spectral radius or the Laplacian spec-
tral radius of a given class of graphs has been studied by many authors.

Guo (3] determined the spectral radius of trees with fixed diameter.
Tan [4] determined the largest eigenvalue of signless laplacian matrix of
a graph. Geng and Li [5] determind the graph with the largest spectral
radius among all the tricyclic graphs with n vertices and diameter d. Guo
(6] determind the laplacian spectral radius of trees with fixed diameter. He
and Li [19] identified graphs with the maximal signless Laplacian spectral
radius among all the unicyclic graphs with n vertices of diameter d. In this
paper, we determine the unique graph with the largest signless Laplacian
spectral radius among all the bicyclic graphs with n vertices and diameter
d.

We denote by %, 4 the set of all bicyclic graphs with n vertices and
diameter d. Let C, and C, be two vertex-disjoint cycles. Suppose that a,
is a vertex of C, and a; is a vertex of C;. Joining @, and a; by a path
ajaz---a; of length ! — 1 results in a graph B(p,!,q) (Fig. 1) to be called
an oo-graph, where [ > 1 and ! = 1 means identifying a; with a;. Let
P41, Ppy1 and Py, be three vertex-disjoint paths, where I, p,¢ > 1 and at
most one of them is 1. Identifying the three initial vertices and terminal
vertices of them respectively results in a graph P(l,p,q) (Fig. 1) to be
called a f-graph. Obviously %, 4 consists of two types of graphs: one type,
denoted by %;°;, are those graphs each of which is an co-graph with trees
attached; the other type, denoted by .Qz’d, are those graphs each of which
is an O-graph with trees attached. Then 8,4 = 83, %29 ,.

Let C,, and P, the cycle and the path, on n vertices, respectively. Let
G —u or G — uv denote the graph obtained from G by deleting the vertex
u € V(G) or the edge uv € E(G). Similarly, G + uv is a graph obtained
from G by adding an edge uv, where u,v € V(G) and uv ¢ E(G). For two
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vertices u and v (u # v), the distance between v and v is the number of
edges in a shortest path joining u and v. The diameter of a graph is the
maximun distance between any two vertices of G. For a real number z,
we use |z| to represent the largest integer not greater than z and [z] to
represent the smallest integer not less than z.

An internal path of a graph G is a sequence of vertices v1,v2, - ,Um
with m > 2 such that:
(1) The vertices in the sequences are distinct (except possibly vy = vm);
(2) v; is adjacent to v;41,(¢ =1,2,-+- ,m —1);
(3) The vertex degrees d(v;) satisfy d(v1) > 3, d(vg) = --- = d(vm-1) = 2
(unless m = 2) and d(v,) = 3.

2 Preliminaries

In this section, we give the following lemmas which will be used to prove
our main results.
Lemma 2.1 ([1]). Let G be a connected graph, and u,v be two vertices
of G. Suppose that vy,vs,...,vs € NW)\N(u) (1 < s <d(v)) and z =
(z1,72,...,Zn) is the Perron vector of G, where z; corresponds to the
vertex v; (1 < ¢ < n). Let G* be the graph obtained from G by deleting
the edges vv; and adding the edges uv;(1 < i < ). If z, > z,, then
9(G) < q(G*).
Lemma 2.2([13]). Let u be a vertex of a connected graph G and d(u) > 2.
Let Gy (k,! > 0) be the graph obtained from G by attaching two pendant
paths of lengths &k and [ at u, respectively. If k > [ > 1 then

q(Gr) > a(Gr1,1-1)-

Lemma 2.3([4]). Suppose e be an edge of a graph G, and let E¢(e) denote
the set of all edges (containing no e) adjacent to e in G and Jg(e) the set
of all distinct line graph cycles containing e in G. Then the characteristic
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polynomial of G satisfies that

-9 (G —e—F,
8(6,2) = Z=28(G - e,) - Baepn 28—~ 5Y)

d(G\v(2),z
—2EzeJG(e)%

Let G be a connected graph, and wv € E(G). The graph G,, is ob-
tained from G by subdividing the edge uv, i.e., adding a new vertex w and
edges wu,wv in G — uv.

Lemma 2.4([17]). Let G, be the graph obtained from a connected graph
G by subdividing its edge uv. Then the following holds:

(2) if uv belongs to an internal path then ¢;(Gy.) < 1(G);

(i) if G 2 C, for some n > 3, and if wv is not on the internal path then
q1(Guv) > q1(G). Otherwise, if G = C,, then ¢;(Gyy) = ¢:(G) = 4.
Lemma 2.5([18]). Let u be a vertex of a graph G, let C(u) be the col-
lection of all cycles containing u. Then the signless laplacian characteristic
polynomial ¥(G) satisfies

¥(G,z) = (z — du))¥(G - u,z)— Y ¥(C-u-v,z)
vEN(u)

-2 Y WG\V(2),2)

ZeC(u)

where the first summation extends over those vertices v adjacent to u, and
the second summation extends over all Z € C(u).

Lemma 2.6([18]). Let e = uv be an edge of G, and let C(e) be the
set of all cycles containing e. Then the signless Laplacian characteristic
polynomial of G satisfies

U(G) = UG —e) - ¥(Qu(G —€)) - U(Qu(G — ) =2 ¥(Qz(A)),
¥4

where the summation extends over all Z € C(e).

Lemma 2.7([21]). Let G be a connected graph and let e = uv be a non-
pendant edge of G with N(u) [\ N(v) = 8. Let G* be the graph obtained
from G by deleting the edge uv, identifying u with v, and adding a pendant
edge to u(= v). Then q1(G) < ¢:{G*).

Lemma 2.8. Let G,G’,G" be three connected graphs disjoint in pairs.
Suppose that u,v are two vertices of G, u' is a vertex of G’ and v is
a vertex of G”. Let G; be the graph obtained from G,G’,G" by iden-
tifying, respectively, u with v/ and v with u”. Let G35 be the graph
obtained from G,G’,G" by identifying vertices u,u’,u”. Let G3 be the
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graph obtained from G, G’, G” by identifying vertices v, u',u”. Then either
71(G1) < q1(G2) or 1(G1) < q1(Gs).

Let @Q,(G) denote the principal submatrix of Q(G) obtained by deleting
the row and column corresponding to the vertex v. Let G = Giu : vGa
be the graph obtained from two disjoint graphs G; and G2 by joining a
vertex u of graph G to a vertex v of the graph G by an edge. We call G
a connected sum of G, at u and Gs at v.

Lemma 2.9([22]). Let G; and G be two graphs.
(1) Let G = Gyu : vGy be a connected sum of Gy at u and G2 at v, then

¥(G) = ¥(G1)¥(Gz) — ¥(G1)¥(Qu(G2)) — ¥(G2)¥(Qu(G1))-

(2) Let G be a connected graph with n vertices which consists of a subgraph
H (with at least two vertices) and n — |H| distinct pendant edges (not in
H) attaching to a vertex v in H. Then

¥(G) = (z - 1)*"HIW(H) - (n - |H|)z(z - )" FIT10(Qu (H))-

Lemma 2.10. Let G and H be two graphs.

(3)([23]) If ®(H;z) > ®(G;z) for z > qi(H), then ¢1(G) > q1(H);
(44)([19]) If H is a proper subgraph of G and G is a connected graph, then
q1(G) > qi(H);

(#12)([4]) If H is a proper subgraph of G and G is a connected graph, then
¥(H;z) > ¥(G;z), for z > ¢:(G).

Lemma 2.11([19]). Let Hy be the graph as shown in Fig. 0. Suppose

Va2
O e e o v—A— . .  —
vl VZ vl vt+1 vz: v2t+l
Fig. 0 H,

that ¢ > 2, then
U(Qu,,1 (Ho); ) — ¥(Qu, (Ho); 2) = z(x — 2).

Let B, be the matrix of order n obtained from Q(P,41) by deleting
the row and column corresponding to some end vertex of Pny1, and H,
be the matrix of order n obtained from Q(P,;2) by deleting the rows and
columns corresponding to two end vertices of Ppny2.
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By similar reasoning as that of Lemma 2.8 of [24], we have the following
result.
Lemma 2.12. Set ¥(P) =0, ¥(By) =1, ¥(Hp) = 1. We have
(1) 2¥(Bn) = ¥(Poy1) + ¥(Fn);
(2) ©(Pas1) = (& = DU(Pa) — ¥(Pac), (n > 1);
3) ¥(P,) =2V (H,_1),(n > 1);
(4) U(Pr)U(Pp) =¥ (Pr—1)¥(Pnt1) = ¥(Pm—1)¥(Pn1)=¥(Pn-2)¥(Ps),
(m=>22,n2>2,z+#2).
Proof. We first prove that (1) and (2) hold. Considering the signless
Laplacian characteristic polynomial of B,,, we have

r—1-1 -1 0 -+0

1 z—2 1 ---0

¥(B,) = 0 1 -2 ---0
0 0 0 z-1

Thus we have

¥(Bn-1) = ¥(Pn) — ¥(Bn). (2.1)
From Lemma 2.8, we have
U(Pny1) = (z — 1)¥(P,) — 2¥(Bn-1). (2.2)

Substituting Eq. (2.1) into Eq. (2.6), we have
V(Prt1) = (z — 1)¥(P,) — z2U(P,) + 2¥(B,)

= —¥(P,) + z¥(B,)

Hence, (1) holds. Substituting (1) into Eq. (2.2), (2) holds.

Secondly, we prove that (3) holds by employing induction on n. If
n = 1,2, the result is obvious. Suppose that n > 3. From (2) and induction,
we have

Y(Pn) = (z - 2)¥(Pa-1) — ¥(Pr-2)
= z(z — 2)U(Hn_2) — 2U(Hn_3)
= z[(z — 2)¥(Hn-2) — ¥(Hn-3)]
= 2U(H,_y).

Thus, (3) holds.
Finally we prove that (4) holds. From (2), we have

¥(Pm) = (& = 2)¥(Pro1) — U(Pr_2) 2.3)
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U(Ppy1) = (z — 2)U(P,) — U(Py_y). (2.4)
From Eq. (2.4), we immediately have
(z = 2)¥(Pn) = ¥(Pot1) + U(Pr-y). (2:5)
From Eq. (2.3) and (2.5), we immediately have
(@ = DU(Pn)¥(Pa) = [(z — 2)¥(Pmcr) = U(Prc2)][¥(Prsa) + ¥(Pay)).
Thus, we have
(z = 2V (Pr)¥(Fn) — ¥(Pm-1)¥(Pn+1)
= (2 — 2)¥(Pn-1)¥(Pr-1) = ¥(Pn-2)[¥(Prt1) + ¥(Pr-1)].  (2.6)

From (2), we have
U(Poy1) + U(Pro1) = (z — 2)U(Py).

Substituting the above equation into Eq. (2.6), (4) holds. This com-
pletes the proof. O

v, W Via Vi Vi Vi Vya

R

Varr Vars

Vi Van
[ e

Fig.2 P, (i) and U, (i)

We denote by PJ, , (i) the graph obtained from a path Pgy) : v1v2 - - - V441
and isolated vertices vg2, ..., vn by adding edges viva42,...,v;vn. Denote
by Pdv_,_vl(i) the graph obtained from Pj, (i) by adding edges vd+2va+3 and
Vg 4Vd45, DY P‘ﬁY(i) the graph obtained from Pj (i) by adding edges
Vi—1Vd42 and Ygy3Vapq, DY PdA_,_?(i) the graph obtained from Pj (i) by
adding edges v;_jv44+2 and v;4+1v4+3, and by Pj_',_l(i) the graph obtained
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from Pj, (i) by adding edges v;_1v, and v 1vn.
Lemma 2.13. Let d > 3. Then q1(P£5(3) = ai(P5y () = a1(PYY(4))
with the first equality if and only if ¢ = d and the second equality if and
only if : = 2.
Proof. Obviously, P;;7(d) = P4Y(d), PY(2) = PLY(d). Denote by
Pﬁ_l(i) the graph obtained from Pj, (i) by adding edge v;_1v442.

For 2 < i < d, applying Lemma 2.6 to edge v;;1v44+3 of Pf_ﬁ(i) and
edge v44.3vg4q Of Pﬁ:(i) respectively, we have

U(PLL () = U(PH L (1) — U(Quays Py (1)) = T(Quey (P 1 (3)))
—2> " W(Qz(PLTH),
where the summation extendszover all Z € C(viy1v443)-
U(PLY () = (P () — U(Quyuss (Phi1 (1)) — U(Quaya (Piy ()

-2 ¥(Qz(PLY (),
z
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where the summation extends over all Z € C(vg4+3va+4) and Pffl’(i) -
Vi4+1 — V443 is a proper spanning subgraph of Pﬁ:(i) — Vd43 — Ud+4, and
K, U P;_; is a proper spanning subgraph of Py_;4+;. By Lemmas 2.10 and

2.11, we have
U(PLY (1) — W(PEL(3)) > 0.

So, qu(Pi3 (1) 2 a1 (PiY (8))-
By similar reasoning as above, we have ql(PﬁY(i)) > q1(PRY (9)).
This completes the proof. O
Lemma 2.14. Let G;(4), G2(4) and PY, (), shown in Fig. 4, belong to
By..4- Then
01(C1(3)) < 0u(G2(3) < @ (Pi (1),
and the equality holds if and only if i = 2.
Proof. Applying Lemma 2.6 to edge vp_ov,—; of G,(2) and edge v;v, of

Vi Visn
>—G

Vo  Vau
*>—s

Vo Vg o Va2

n

Fig.4 G() G,(i) and P}, (i)
G, (i) respectively, we have

U(G1(5)) = (C1(8) ~Vn—2Vn-1)— ¥ (Quas (Ui41(9) — ¥(Qu,_, (Ud11(9))
-23 " ¥(Qz(G1(3)))
z
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where the summation extends over all Z € C(vp—qvUn—1).
Y(Ga(i)) = ¥(G2(t) — viva) — ¥(Qu, (Ugs1(9)) — ¥(Qu. (Ugs1 (7))
-2 ¥(Qz(G2(1)))
z

where the summation extends over all Z € C(v;v,) and Gy (1) —vp—2vn—1 =
Ga(1) — vive, and G1(%) — Vn_g — Un_1 — v; = Ga(i) — v; — Up — Un_2.
Note that Ga(i) — v; — vn, G2(i) — v; — v, — v,_y are proper spanning
subgraphs of Gy (i) —vn—-2 — vn—1, G1(2) — Un—2 — Vp—1 — v; respectively. By
Lemmas 2.10 and 2.11, it is easy to see that ¥(G(i)) > ¥(G2(i)). Then
71(G1(7)) < g2(Ga(d)).

Clearly, G2(2) = Pj,,(2). For 3 < i < d, applying Lemma 2.6 to edge
Vn—2Vn of G2(i) and edge v v, of PJ, () respectively, we have

U(G2(1)) = V(G2(2) — vn—2vn) — ¥(Qy, _,(G2(i) — vn—2vn))
—¥(Qun (G2(d) — va2vn)) —2)_ ¥(Q2(G2(i)))
Z
where the summation extends over all Z € C(v,—2vy).

O(P1(8)) = (P41 (8) —vim19n) = ¥U(Qu,_, (Piy1 (8) = vie1vn)
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~U(Qu, (P41 () — vim1va) =2 (Qz(Ga()))
z

where the summation extends over all Z € C(v;—1v,). Applying Lemma
2.6 to edge Un—1Vn of Ga(i) —Un—2vn and edge v;_ vn—y of PY, (i) —vi—1vn
respectively, by similar reasoning as above, we have

U(G2(4) — Un—2vn) > ¥(P4, (1) — vi—1vn).

Note that P2, ,(4) —v;_1 —vn is proper spanning subgraph of G2() ~vn—2—
Un. By Lemmas 2.10 and 2.11, it is easy to see that ¥(G2(3)) > ¥ (P4, ,(3)).
So, q1(G2(%)) < q1(Pg,1(3))-

This completes the proof. [J
Lemma 2.15. If n > d + 4 and d > 4 is even, then ¢;(PZ,,(%2))

@ (P, (52)).
Proof. Let v = 452. Then PJ ,(4?) £ G(y +1,7), P (42)
G(v,v + 1). Using Lemma 2.5, we have

A

>

3P, (150 - 0P (F32)

=®(G(y+1,7)) - ®(G(v,v+1))
= (z-d(u))2(G(7, ) —-2(G(v-1,7)) - (z—d(u))B(G (7, M)+ 8(G(7,7-1))
=®(G(y,7—1)) - ¥(G(v—1,7))

= 8(G(1,0))-2(G(0,1))
= (z—-d(u))2(G(0,0)) — 2(K1,n-4-1) — (z - d(u)) (G(0,0))
+(z — d(w))"" 2 8(K1,2) > 0

for Vz > qi( d+1(—+-)) So, we have q1(PJ, ,(42)) < q1( Py 1(J‘— ).
This completes the proof. O
In the similar way to the Lemma 2.14, we can prove the following Lem-

mas 2.16 and 2.17.

Lemma 2.16. If n>d+3 and 2<i—2<d~i+1, then (P}, ,(3)) <
‘II(Pd+1(l))

Lemma 2.17. If d > 3 and n > d + 3, then ¢:(G3()) < a1(P},,(8)).
Lemma 2.18. If i — 2 > d — i + 2, then ¢1(P},, (1)) < q1(Pg,,(i — 1)).
Proof. Let o = i —2 and 8 = d—i. Denote P, (i) by G(a, 8). Similarly,
denote Pf, (i — 1) by G(a — 1,8 + 1). Using Lemma 2.5, we have

( d+1( )) _Q(P;-i-l(i— 1))
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= &(G(a, ) - ¥(G(a—1,4+1))
= (z-d(w))2(G(a-1,5)) - 2(G(a-2,8))

—(z —d(u))®(G(a-1,8) + &(CG(a-1,6-1))
=®(G(a—-1,8-1))-B(G(a—2,8))

&(G(a—p,0))-2(G(a—-F-1,1))
= (z—d(w))" "4 *(z—d(u)+1)*®(Pa-p-2) > 0

for Yz > q1(Pf,(3)). So, we have qi(Pf,,(i)) < qi(Pf,,(i — 1)).
This completes the proof. [

3 Main results

Theorem 3.1 Let n > d+4 and G € %, 4. If d > 4, then

w(©) <a(Ph.1 252D,

with equality if and only if G = P‘;"H([%"—z]); if d = 3, then ;(G) <
q1(P£(3)) with equality if and only if G = PJ(3).

Proof. Choose G € #,4 and X = (z),23,...,Z,)T the Perron vector of
Q(G), where z; corresponds to the vertex v;(: = 1,2,...,n). We first prove
some claims. O

Claim 1. There is not an internal path of G with length greater than 1
unless the path lies on a cycle of length 3.

Proof of Claim 1. Otherwise, let Piy; : vivig1 - vigk is an internal
path of G with length & > 2 and P, does not lie a cycle of length 3. Let
G' = G—{vivig1, Vig1Vig2} + {Vivig2}. If the diameter of G’ — vy, is d, we
have that there is v € V(G’ —v;41) such that G* = G’ + {vvi11} € B a. If
the diameter of G’ — v;41 is d — 1, then any shorter path of G between two
vertices with length d contains v;v;41 - - - v;1x as a part. Let v be an initial
vertex of such a path and let G* = G’ + {vvi41} € Bn 4. By Lemmas 2.4
and 2.10, in both cases we have ¢;(G*) > ¢;(G), a contradiction.

Let Py;1 be a shortest path between two vertices of G with length d.
Since Bn,a = By Bj 4 it follows that G € B, or G € BY ;. Now we
distinguish two cases to determine G.

Case 1. Suppose that G € #5°,. Let B(p,!,q) be the co—graph in G. We
first prove that |V (Puy1) NV (Cp)| = 1or [V(Pay1) NV (Cy)| = 1. Assume,
on the contrary, that |V (Pys.1) (N V(Cp)| = 0 and [V (Pas1) N V(Cy)| = 0.
Let Pi : uyus---ux be a shortest path such that uy € V(Py4,) and ux €
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(Cp)UV(Cy). Then k > 2. Applying Lemma 2.7 to the edge ujug, we
get a graph G* € B3, with ¢:(G*) > ¢q1(G), a contradiction. So, we have
V(Pes) NV (Cy)| 2 Tor [V(Par1) NV(Cy)l = 1.

Let V! = V(Py+1) UV(B(p,!,q)) and G’ = G[V'] be the induced sub-
graph of G. Then G is G’ with some trees attached. Applying Lemma 2.7
to the non-pendant edges, we can similarly prove that all these attached
trees are stars with centers in V’. It is easy to see that G is G’ with some
pendant edges attached. Applying Lemma 2.8, we can further prove that
all these pendant edges are attached at the same vertex of G'.

From Claim 1, we can see that p = ¢ = 3. Let P41 : v1++- Vi Vigs

<+ vg41, where vi 1, € V(B(p,l,q)),k =0,1,...,s. We claim that the path
a---a; in B(p,l,q) lies on Pyyy. Otherwise, if | > 2, we may assume
ajaz ¢ E(Piy1). Applying Lemma 2.7 to ajaz, we get a graph G* € B°
with q;(G*) > ¢1(G), a contradiction. If l =1 and a; ¢ V(Py41), applying
Lemma 2.8 to a) and v; we get a graph G* € 8B, with ¢1(G*) > ¢1(G),
a contradiction. So, the path a;---a; lies on Pd+1 We distinguish the
following four cases.

Subcase 1.1. {V(Pay1) NV (Cp) = V(Pas1) NV (Cy)| = 1. Applying
Lemma 2.8, we have G = P\ (i). This contradicts Lemma 2.13.

Subcase 1.2. |V(Pyy1) nV(C )l =2 and |V(Pas1) NV(Cy)l = 1. We
may assume that v;_1v; € E(Cp) and v; € V(C,;). By Lemma 2.8 all
the pendant edges, not flying on Ps41, of G must be attached at v;. So
we may further assume that i < j. By Claim 1, we have j < i+ 1. If
j = i+ 1, applying Lemma 2.1 to v; and v;4;, by similar reasoning as
the proof of Lemma 2.7, we can get a graph G* € &%, with ¢1(G*) >
¢1(G), a contradiction. Thus i = j, and so G = Pﬁ: (7). This contradicts

Lemma 2.13, when 2 < i < d. For i = d, we have G = Pﬁ_Y(d) =

G = P53(d). Applying Lemma 2.1 to vg_; and vay1 of P73 (d), we
have either q,(P£,5(d)) < q1(P§},)(2)) or a(P3(d) < ¢1(P,,)(d)), a
contradiction.

Subcase 1.3. |V(Py41) NV (Cp)| =1 and [V(Pay1) N V(C,)l = 2. By
similar reasoning as Case 2, a contradlctxon

Subcase 1.4. |[V(Py41) NV (Cp)| = [V(Pa41) NV(Cy)| = 2. We may
assume that v;_1v; € E(Cp) and vjv;41 € V(C,) and j > i. By Claim
1, we get either j < i+1lorj =14+2,dvi1) > 2 Ifj=i+1or
j =i+ 2,d(viy1) > 2, applying Lemma 2.1 to vertices v; and v;;; we
can get a graph G* € B, with ¢1(G*) > qi(G), a contradiction. Thus
j = i. Applying Lemma 2 1 to vertices v;—; and v;y; we can get a graph
G* € & ;, with ¢1(G*) > q1(G), a contradiction.
Case 2. Let G € 89, and P(l,p,q) be the 6—graph in G. By similar
reasoning as Case 1, we can prove that |V(Py+1) NV (P(l,p,q))] = 1. Let

= V(Piz1) UV (P(l,p,q)) and G’ = G[V’] be the induced subgraph of
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G. By similar reasoning as Case 1, we can further prove that G is G’ with
some pendant edges attached at one vertex. This implies that at most 5
vertices of G have degree greater than 2.

By the definition of P(l, p, q), it is easy to see that [, p,q > 1 and at most
one of them is 1. Without loss of generality, we may assume that { < p < g.
We claim that { =1 and p=¢ = 2. Ifl > 2, by Claim 1 and the fact that
at most 5 vertices of G have degree greater than 2, we have [ =p=¢ =2
and the two vertices of degree 2 of P(l,p,q) lie on Py 1, the third vertex,
denoted by w, of degree 2 of P(!,p, gq) is attached by some pendant edges.
Applying Lemma 2.7 to aw in G (a is as given in Fig. 1), we get a graph
G* € .@z,d with ¢1(G*) > q1(G), a contradiction. Thus, ! = 1. Similarly,
by Claim 1 we can show that p < ¢ < 3 and that if ¢ = 3 then p = 2.
If ¢ = 3, denote P4, : auvb where a and b are as given in Fig. 1. By
Claim 1, we have d(u) > 2 and d(v) > 2. If neither au nor vb lies on Pgy1,
applying Lemma 2.7 to vb, we get a graph G* € &9 ; with ¢,(G*) > q1(G),
a contradiction. So we may assume that au lies on Py, 1. If neither uv nor
ab lies on Py41, applying Lemma 2.7 to vb, a contradiction. Otherwise, G
must be the graph G* shown in Fig. 9. Applying Lemma 2.1 to u and v,
we obtain a graph G* € %! ; with ¢1(G*) > q1(G), a contradiction. So,
l=1p=q=2.

Subcase 2.1. |V(Py41) NV (P(,p,9)}| = 1. Applying Lemma 2.8, we
can prove that G = G, (i) or G2(i). By Lemma 2.14, we have G = G(2) =
PJ,1(2). Since d > 3, by Lemma 2.2 we have ¢,(G2(2)) = q(PJ,,(3)), a
contradiction.

Subcase 2.2. |V(Py41) NV (P(l,p,q))] = 2. If one edge of Ppyy or
Pyy1 lies on Pyiy1, we may assume that Ppyg : aub and au lies on Pyy;.
Applying Lemma 2.1 (and Lemma 2.2, if necessary) to v and b we get a
graph G* € .@z,d with q1(G*) > q1(G), a contradiction. If P;; lies on
Py4,, by Claim 1, Lemmas 2.1 and 2.7 we can proved that all pendant
edges, not lying on Py4,, of G must be at one of a and b. That is to say
that G = PJ,,(i). For d > 5, by Lemmas 2.2, 2.15 and 2.16, we have

AP () < aPEn (121 < a1 2 ),

a contradiction. For d = 4, applying Lemmas 2.2 and 2.6, we have q;(P£(2)) <

q1(P§(3)) < q1(P5(3)), and by Lemma 2.16 we have ql(P9(4)) < q(P¢(3)) <

q1(P5"(3)). That is to say that q; (P (i)) < q1(P5 (3)), a contradiction. For

d = 3, by Lemma 2.6 we have q,(P?(2)) < q1(P§(3)). Hence G = P{(3).
Subcase 2.3. |V(FPa+1) NV (P, p,q))| = 3. Then G must be Go(i)

with n — d — 2 pendant edges attached at v;, where 2 < i,j < d. By Claim

1 we may assume that ¢ < j <i+2. If j = i+2, applying Lemma 2.1 to v;

and v;_,, we can obtain a graph G* € %? 4 With ¢1(G™) > q1(G), a contra-

diction. So G must be Pf, (i) or Ga(i) for some i. Applying Lemma 2.17,
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we have G = P}, (i). Applying Lemma 2.18, we have G = Pj,,(|%$2)).
For d = 3, applying Lemma 2.6, we have ¢, (P} (2)) < q1(P{(3)), a contra-
diction. Combining Cases 1 and 2, we have G = P, ,(|942]) for d > 4
and G = P{(3) for d = 3.

This completes the proof. O

By Lemma 2.2, we have q1(PF,,(|%42))) < a1(PF(142))) for d > 5.
Moreover, it is easy to see that Py V(2) and P;(2) are all bicyclic graphs
with n vertices and diameter 2. Applying Lemma 2.6, by direct calculation
we can show whenn > 9

01(PF(2)) > au(PYV(2)) > au(P{(3)) > a1 (P (3)).

Combining these inequalities and Theorem 3.1, we have the following

two corollaries.
Corollary 3.1. Let d > 4, and G be a bicyclic graph on n vertices with

diameter not less than d. Then

a(G) < QI(P;+1(|.¥J)),

and the equality holds if and only if G = Pf,, (| 4$2]).

Corollary 3.1. Let n > 9. Then first three graphs among all bicyclic
graphs on n vertices, ordered according to their signless Laplacian spectral
radius in decreasing order, are P (2), Py V(2) and P{(3).
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