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Abstract. In this paper, we obtain some analytical expressions and give two simple
formulae for the expected values of the Wiener indices of the random Phenylene and

Spiro hexagonal chains.
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1 Introduction

In chemistry the topological indices of a molecular graph can provide
some information on the chemical properties of the corresponding molecule.
The first reported use of a topological index, the Wiener index, was by
Wiener ([1]) in the study of paraffin boiling points. In the second half of
the 20th century, the Wiener index was found to be correlated to many
physicochemical properties and to have pharmacologic applications.

Spiro compounds are an important class of cycloalkanes in organic
chemistry. A spiro union in spiro compounds is a linkage between two rings
that consists of a single atom common to both rings and a free spiro union
is a linkage that consists of the only direct union between the rings. Some
results on energy, Merrifield-Simmons index, Hosoya index and Wiener in-
dex of the spiro chain was reported in ([2] [3]). Recently, Deng ([4] [5] [6])
gave the recurrences or explicit formulae for computing the Wiener index
and Kirchhoff index of spiro chain. Huang and Kuang ([7]) obtained a sim-
ple exact formula for the expected value of the Kirchhoff index of a random
spiro chain. The problem of calculation of the Wiener index of phenylenes
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was solved by Gutman ([8]). Recently, Chen ([9] [10] )obtained two simple
exact formulae for the expected values of the Merrifield-Simmons index and
Wiener index of a random Phenylene chain.

In this paper, we obtain two explicit analytical expression for the ex-
pected values of the Wiener indices of a random phenylene chain PH(n, p)
and a random spiro chains SPC{(n, p;, p:),respectively.

2 Preliminaries

Let G be a graph with vertex set {vy,vs,--- ,vn}. The distance d(v,,v,)
between v, and v, in G is the length, or number of edges, of a shorest
path in G that connects v, and v,. Under this definition d(v,,v,) = 0.
The Wiener number of G is then defined by W(G) = Er <s8(vr,vg) =
3t D1 d(vr,vs) = 337 d(vr|G), where d(vrlG) is the Wiener
number of vertex v, in G, defined by d(v.|G) = Y., d(vr, vs).

Phenylenes are a class of conjugated hydrocarbons composed of six-
and four-membered rings, where the six-membered rings (hexagons) are
adjacent only to four-membered rings, and every four-membered ring is
adjacent to a pair of non-adjacent hexagons. If each six-membered ring of
a phenylene is adjacent only to two four-membered rings, we say that it is a
phenylene chain. Due to their aromatic and antiaromatic rings, phenylenes
exhibit unique physico-chemical properties. In Fig. 1 some examples of
phenylene chains are presented. The unique phenylene chains for n = 1
and n = 2 are shown in Fig. 1, where n is the number of hexagons in a
phenylene chain.

5 o0 B

Fig. 1: Three examples of different phenylene chains.

More generally, a phenylene chain with n hexagons (see Fig.2) can be
regarded as a phenylene chain PH,_, with n — 1 hexagons to which a new
terminal hexagon has been adjoined by a four-membered ring.

But, for n > 3, the terminal hexagon can be attached in three ways,
which results in the local arrangements we describe as PH},,, PH? s
PH3?,, (see Fig. 3).

A random phenylene chain PH(n,p) with n hexagon is a phenylene
chain obtained by stepwise addition of terminal hexagons. At each step
k(=3,4,--- ,n) a random selection is made from one of the three possible
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Fig. 2: A phenylene chain PH,, with n hexagons

5 T aoo

Fig. 3: The three types of local arrangements in phenylene chains.

constructions:(1)PHyx_, — PH} with probability p, (2)PHx_, — PH}
with probability p, (3)PHi-1 — PH} with probability 1 — 2p, where the
probability p is constant, invariant to the step parameter k. That is, the
process described is zeroth-order Markov process.

Also, a spiro chain SPC,, with n hexagons can be regarded as a spiro
chain SPC,_; with n — 1 hexagons to which a new terminal hexagon has
been adjoined (see Fig.4).

X1 X2
=20
Xs Xa

Fig. 4: A spiro chain SPC,, with n hexagons

For n > 3, the terminal hexagon can be attached in three ways,
which results in the local arrangements we describe as SPC, ,,, SPC,?H,
SPC3,, (see Fig.5).

A random spiro chain SPC(n,p1,p2) with n hexagon is a spiro chain
obtained by stepwise addition of terminal hexagons. At each step k(=
3,4,...,n) a random selection is made from one of the three possible

constructions:(1)SPCr_1 — SPC} with probability p1, (2)SPCk-; —
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Fig. 5: A spiro chain SPC,, with n hexagons

SPC2 with probability pa, (3)SPCi_; — SPC} with probability 1—p; —pa,
where the probabilities p, and p, are constant, invariant to the step pa-
rameter k. That is, the process described is zeroth-order Markov process.

For a random phenylene chain PH(n,p) and a random spiro chain
SPC(n,p1,p2) , their Wiener indices are random variable. In this paper,
we will obtain exact formulas for expected values E(W(PH(n,p))) and
E(W(SPC(n,p1,p2))) of the Wiener indices in the random phenylene and
spiro chains, respectively.

3 Main result:

In this section, we will give the expected values of the Wiener indices of ran-
dom phenylene chains and spiro hexagonal chains. In [9], the authors have
also consider the expected value of the Wiener index of random phenylene
chains, but here we give exactly the expected value of the Wiener index of
random phenylene chains in different method.

Theorem 1. Forn > 1, the expected value of the Wiener indez of pheny-
lene chain E(W(PH(n,p))) = (18 — 6p)n® + (9 + 18p)n? — 12pn.

Proof: As described above, the phenylene chain PH,, can be regarded
as a phenylene chain PH,_;, with n — 1 hexagons to which a new terminal
hexagon has been adjoined by a four-membered ring. Suppose the termi-
nal hexagon spans by z,,z3,: - ,z¢, and the new edges are u,_;z; and
Un—1%6.(see Fig.2). Note that:

1. For any v € PH,_,,

d(z1,v) = d{up-1,v) +1, d(z2,v) = d(up—1,v) + 2,
d(z3,v) = d(upn—1,v) + 3, d(z4,v) = d(vp-1,v) + 3,
d(x5a 'U) = d('Un_l,’U) + 2y d(a"ﬁﬂ 'U) = d(‘un—lxI ’U) + 17
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2. PH,_; has 6(n — 1) vertices;
3. Z:?=1 d(zk,z;) = 9,Vk € {1,2,3,4,5,6}. So we have :

d(z1|PH,) = d(un—1|PHn-1) +1 x6(n—1)+9 (la);
d(z2|PH,) = d(un—1|PHn-1) +2x6(n—1)+9 (1b);
d(z3|PH,) = d(up—y|PHp-1) +3x6(n-1)+9 (lc);
d(z4|PH,) = d(vn—1|PHn—1) +3x 6(n—1)+9 (1d);
d(z5|PH,) = d(vn-1|PHn-1) +2x6(n—1)+9 (le);
d(ze|PH,) = d(vn—1|PHn-1) +1x6(n—1)+9 (1f);

and W(PH,.) = W(PH ~1)+3d(un—1|PH,_1) +3d(vp—1|PHn-1)+72n—
18 — 155 | 5% d(zi,z;), Then

W(PH,) = W(PHp_1)+3d(un_1|PHn1)+3d(vp_1|PHn_1)+72n—45 (2).

For a random phenylene chain PH(n, p), the distance number d(u.|PH(n, p))
and d(v,|PH(n,p)) are a random variable and we denote their expected
values by U, = E(d(u, | W(PH(n,p))) and V,, = E(d(v, | W(PH(n,p)))
respectively.

case 1. PH, — PH] ;. In this case, u, coincides with the vertex
labeled z; and v, coincides with the vertex labeled z3. Consequently,
d(un|PH,,) is given by eq.(1b) and d(v,|PH,) is given by eq.(1c).

case 2. PH, — PH?_,. In this case, u, coincides with the vertex
labeled 24 and v, coincides with the vertex labeled z5. Consequently,
d(un|PHy) is given by eq.(1d) and d(v,|PH,) is given by eq.(le).

case 3. PH, — PH3,,. In this case, u, coincides with the vertex
labeled z3 and v, coincides with the vertex labeled z4. Consequently,
d(u,|PH,) is given by eq.(1c) and d(u,|PH,) is given by eq.(1d).

Since the above three cases occur in random phenylene chains with
probabilities p and 1 — 2p, we immediately obtain
Uy, = pld(un-1/PH(n—1,p)) +2 x 6(n—1) +9] +pld(va_1|[PH(n~1,p)) +
3x 6(n—1) +9] + (1 — 2p)[d(un-1|PH(n - 1,p)) + 3 x 6(n — 1) + 9];

Vo = pld(un—1|PH(n—1,p)) +3 x 6(n — 1) + 9] + p[d(va—1|PH(n - 1,p)) +
2x6(n—1)+9]+ (1 —2p)[d(vn-1|/PH(n —1,p)) +3 x 6(n — 1) + 9J;

By applying the expectation operator to the above equation, and not-
ing that E(U,) = U,, we obtain Up, = p(Un—-1 +12n —3) +p(V_1 +18n —
9) 4+ (1 —2p)(Un—1 +18n —9); V, = p(Upn—1 +18n — 9) + p(Vr_1 + 12n —
3) + (1 — 2p)(Va-1 + 18n — 9); It is easily transformed into:

Un = (1 = p)Un—y + pVa1 + (18 — 6p)n + 6p — 9;
Va=(01-p)Vno1 +pUn—1+ (18 - 6p)n + 6p — 9;
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The boundary condition is Uy = V; = E(d(u;|PH(1,p))) = 14+1+2424+3 =
9, using the above recurrence relation and the boundary condition, we have

Un = (9-3p)n®+3pn. (3)

A recurrence relation for the expected value of the Wiener number of a
random phenylene chain can be obtained from eq. (2) and eq.(3), then we
obtain

E(W(PH(n,p))) = EW(PH(n —1,p))) + 6Un_1 + 72n — 45.

The boundary condition is E(W (PH(1,p))) = 27,using the above recur-
rence relation and the boundary condition, we have

E(W(PH(n,p))) = (18 — 6p)n® + (9 + 18p)n? — 12pn.
Theorem 2. Forn > 1, the ezpected value of the Wiener index of the spiro
chain SPC(n,p1,ps) is E(W(SPC(n,p1,p2))) = $(45 — 15p; — 30p2)n® +
(30p; + 60p2 + 9)n? + (4 — 10p;, — 20p;)n.

Proof: Note that the spiro chain SPC, is obtained by attaching
SPC,_, a new terminal hexagon, we suppose that the terminal hexagon

spans by z,z2, - , s, and the vertex z, is u,—; (see Fig. 4). Note that:
1.For any v € SPC,_,,

d(z,,v) = d(un-1,v) +1, d(z2,v) = d(un—-1,v) + 2,
d(z3,v) = d(up—1,v) +3, d(z4,v) = d(up-1,v) + 2,
d(zs,v) = d(up—1,v) +1;
2.8PC,,_, has 5(n — 1) + 1 = 5n — 4 vertices; So we have :

d(z1|SPCp) = d(un—1|SPCpr1) + 1 x (5n—4) + 8 (4a);
d(z2|SPC,) = d(un—1|SPCpy) +2x (5n—4) + 7 (4b);
d(z3|SPCpn) = d(un—1|SPCp_1) +3 x (5n —4) + 6 (4c);
d(z4|SPCp) = d(un-1|SPCp_1) +2x (5n —4) + 7 (4d);
d(z5|SPCr) = d(un-1|SPCp_))+ 1 x (5n—4) +8 (4e)

and W(SPC,) = W(SPCp_1) +6d(un_1|SPCp_1) +45n - Y0, 35
d(:z:i, l‘j), Then

W(SPC,) = W(SPCpn_1) + 6d(un—1|SPCn_,) +45n — 18. (5)

For a random spiro chain SPC(n, p1,p2), d(un|SPC(n,p1,p2)) is a random
variable and we denote its expected value by U, = E(W(SPC(n,p1,p2)))-

272



case 1. SPC, — SPC},,. In this case,u, coincides with the vertex
labeled z2 or z4. Consequently, d(u,|SPC,) is given by eq. (4b) or (4d).

case 2. SPC, — SPC?,,. In this case,u, coincides with the vertex
labeled z; or z5. Consequently, d(un|SPC,) is given by eq. (4a) or (4e).

case 3. SPC, — SPC3,,. In this case,u, coincides with the vertex
labeled z3. Consequently, d(u,|SPC) is given by eq. (4c).

Since the above three cases occur in random spiro chains with proba-
bilities py,p2 and 1 — p; — p2, we immediately obtain
Un = p1[d(un1|SPC(n~1,p1, 72)) +2 X (51— 4) + 7]+ pa[d(v—1|SPC (n -
1,p1,p2)) + 1 x (5n — 4) + 8] + (1 — p1 — p2)[d(un-1|SPC(n — 1,p1,p2)) +
3 x (5n — 4) + 6);

By applying the expectation operator to the above equation, and not-
ing that E(U,) = Uy, we obtain Un = p1(Un~1 + 10n = 1) 4+ po(Un-1 +
5n 4 4) + (1 — p1 — p2)(Un—1 + 151 — 6); It is easily transformed into:

Un = Un-1 + (15 — 5p1 — 10p2)n + 5p; + 10pz — 6;

The boundary condition is Uy = V} = E(d(u1|SPC(1,p1,p2))) = 1+1+2+
243 =9, using the above recurrence relation and the boundary condition,
we have U, = -;-(15 —5py —10p2)n? + 1(5p1+10p2 +3)n.  (6) A recurrence
relation for the expected value of the Wiener number of a random spiro
chain can be obtained from eq. (5) and eq.(6), then we obtain

E(W(SPC(n,p1,p2))) = E(W(SPC(n — 1,p1,p2))) + 6Un—y + 450 — 18.

The boundary condition is E(W(SPC(1,p;1,p2))) = 27,using the above
recurrence relation and the boundary condition, we have

E(W(SPC(n, py,p2))) = 4(45 — 15p, — 30p2)n® + 4(30py + 60py + 9)n? +

% - 10;01 - 20;02)1’1..
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