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1. Introduction

Suppose that G is a graph with vertex set V = {v;,v2,--+ ,vn}. Let
dg(v;) be the degree of vertex v;. Then D(G) = diag(dg(v1),- - ,dg(va))
is a diagonal matrix of the vertex degrees of G. If A(G) is the adjacency
matrix of G, then the matrix L(G) = D(G) — A(G) is the Laplacian matriz
of G. It is well known that L(G) is a positive semi-definite singular matrix,
and so we can write its eigenvalues as A1(G) 2 M(G) =2 -+ 2 Aa(G) =0,
where A, (G) is also the Laplacian spectral radius of G.

The Laplacian spectral radius of a graph G is related to some important
graph invariants (algebraic connectivity of the complement of G, diameter,
average distance), and used in theoretical chemistry (7], combinatorial op-
timization [10], communication networks [11]. For the background on the
Laplacian eigenvalues of a graph, the reader is referred to (8, 9] and the ref-
erences therein. The independence number of G is the size of a maximum
independent set of G. Zhang [13] studied the Laplacian spectral radius
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of trees with given independence number. Feng, Yu and Ilié¢ [1] studied
the Laplacian spectral radius of unicyclic graphs with given independence
number.

Connected graph in which the number of edges equals the number of
vertices plus one is bicyclic graph. In this paper we first obtain the range
of independence number of bicyclic graphs and then study the Laplacian
spectral radius of bicyclic graphs with given independence number and
characterize the extremal graphs completely.

2. Preliminaries

In this section we give five lemmas which are used in the next section
to prove our main results. Throughout this paper we write A(G) for A1 (G).

Lemma 2.1 [3]. Let G be a graph on n vertices with at least one edge.
Then A(G) 2 A(G) + 1, where A(G) is the mazimum degree of graph G.
Moreover, the equality holds if and only if A(G) =n—1.

Suppose that F is a semiregular bipartite graph with bipartition (U, W).
Denote by F* the supergraph of F with the following property: if uv €
E(F*), then either uv € E(F) or u,v € U (respectively, W) with Ny (u) =
Nw (v) (respectively, Ny (u) = Ny(v)), where Nw (u) is the set of neighbors
of u in W. Then we have

Lemma 2.2 {12]. Let G be a connected graph. Then A(G) < maz{dg(u)+
dg(v) — |Ne(u) N Ne(v)| : uv € E(G)}, with equality if and only if G € ¥,
where ¥ = {F*: Fis a semiregular bipartite graph}.

Lemma 2.3 [5]. If G is a graph, then

dg(vi){dg(vi) + mi) 4 dg(v;)(da(v;) + m;)

A(G) < max{ de(vi) + de(vy)

1 vv; € E(G)}

iv d i . . .
where m; = T :5‘33 o) Moreover, the equality holds if and only if G

is a semiregular bipartite graph.

Suppose that G is a graph with the vertex set V(G) = {v1,--- ,v.}.
In what follows we denote the characteristic vector of L(G) corresponding
to M(G) by z(G) = (z4,(G), - 124, (G))T, where z,,(G) corresponds to v;
(1<ign).

Lemma 2.4 [5]. Suppose that u and v are two vertices of a connected
graph G. Let G, be the graph obtained from G by attaching t new paths
Voig V(1 = 1,2,...,t) atv. Let G, = G, —wvvy —vvg — -0 —
vu +uvn +uva + - Fuvn . If 24,(Gy) 2 2,(Gy), then A(Gy) = MGy).
Furthermore, if ,(Gy) > ,(Gy), then A(Gy) > A(G,).
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Lemma 2.5 [4]. Let u be a vertez of a simple connected graph G. For
nonnegative integers k and l, let G(k,l) denote the graph obtained from G
by adding pendent paths of length k and ! attached at u. Ifk > 12> 1, then
A(G(k, 1)) 2 MG(k+1,1-1)).

3. Bicyclic graphs with given independence
number

In this section we denote by «(G) and k(G) the independence number
and the number of pendent vertices of a graph G, respectively.

Let C,, and P, denote the cycle and path of length n, respectively. Then
we define b(p, £,q) to be a graph consisting two vertex-disjoint cycles C,
and C; and a path P, joining them having only its end-vertices in common
with the cycles, b(p,0,g) to be a graph consisting two cycles Cp, and C,
with exactly one vertex in common, and 8(p, £, q) to be a graph consisting
of two given vertices joined by three paths P,, P; and P, with any two of
these paths having only the given vertices in common. Obviously, a bicyclic
graph G is b(p, 4, q), b(p,0,q) or 8(p, ¢, q) with trees attached. Let R(G)
be the number of those vertices of b(p, £, g), b(p,0, q) or 8(p, ¢, q) which are
not the roots of any attached tree.

Lemma 3.1. Suppose that G is a bicyclic graph on n vertices. Then
MG) L k(G)+R(G) +2.

Proof. We only discuss the case that G is b(p, 0, q) with trees attached.
For other two cases that G is b(p,£,q) or 8(p,£,q) with trees attached,
the argument is similar. Let Vr be the set of R(G) vertices on cycles
where no tree is attached. If each vertex in V(G)\V (b(p, 0, q)) is of degree
at most 2, then every tree attached on b(p,0,q) is composed of pendant
paths. If two vertices v; and vy of b(p,0,q) with trees attached satisfy
zy,(G) 2 z,,(G), then transfer all but one pendant path from v to v;.
Continuing this process we will get the bicyclic graph G, so that all vertices
in V(b(p,0,9))\Vr but y are attached with only one pendant path. It
follows from Lemma 2.4 that A(G) < A(G}1). By Lemma 2.2 we know that

A(Gh1) £ dg, (y) + mazyeng, (vide, (¥') — ING, (y) N Ng, (y)|}-

We can observe that if dy(, 0,4)(v) = 4 then dg, (y) < k(G) - ((p+9—-1)—
(R(G) + 1)) + 4 and dg, (¥') < 3; and otherwise dg, (y) < k(G) - ((p+4q—
1) — (R(G) + 1)) +2 and dg, (y') < 5. Note that |Ng, (y) N Ng,(¥')| = 1 if
p+q=6. Thus, \(G1) < k(G) + R(G) +2.

Now suppose that there is a vertex u € V(G)\V (b(p, 0, q)) which is of
degree at least 3, and that T is the tree containing u. Let P(T) be the
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number of pendant vertices that T" contains. If ujus is an edge on T, then
we know that

dg(u1) +dc(u2) — 6, if uy € b(p,0,q) and dyp,0,q)(u1) = 4;
P(T) 2 { dg(ur) +dg(ug) — 4, ifu; € b(p,0,q) and dyp 0,)(u1) = 2;
dg(u1) + dg(uz) — 3, otherwise.

Note that the tree T contains at most ¥(G) — ((p + ¢ — 1) — (R(G) + 1))
pendant vertices. We have dg(u;) + dg(u2) < k(G) — (p + q) + R(G) + 8.
Therefore, while p + g > 6, we have dg(u1) + dg(uz) < k(G) + R(G) + 2.

Suppose that ujug is an edge on b(p,0,q) and that T} and T are two
trees attached at u; and ug, respectively. Then we have

(do(u1) — 4) + (do(uz) = 2), if dyp0,q)(v1) =4
P(T1) +P(T2) 2 { (de(u1) —2) + (dg(uz) — 2), otherwise.
Note that T} and T3 contain at most k(G)—((p+g—1)—(R(G)+2)) pendant
vertices. We have dg(u1)+dg(u2) < k(G)—(p+9)+R(G)+9. If p+q = 6,
then |Ng(u1)NNe(u2)| = 1, and so by Lemma 2.2, A(G) < k(G)+R(G)+2.
O

Since for any graph G, there always exists a maximum independent set
of G where all pendant vertices are contained, ¥(G) < a(G).

Lemma 3.2. Suppose that G is a bicyclic graph on n vertices such that
k(G) 2 a(G) — 1. Then A(G) < a(G) +3.

Proof. If a(G) = k(G), then we can observe that R(G) = 0, and so, by
Lemma 3.1, M(G) < a(G) +2. The case that a(G) = k(G) + 1 implies that
R(G) < 3. If R(G) < 2, then by Lemma 3.1 we have A\(G) < a(G) + 3. So
we assume R(G) = 3, which implies that every tree attached on b(p, ¢, q),
b(p,0,q) or 8(p, ¢, q) is composed of pendant paths of length 1 or 2. Next
we only argue the case that G is b(p,0,q) with trees attached. For other
two cases that G is b(p, ¢, q) or 8(p,£,q) with trees attached, the proof is
similar. In this case, at least one of p and ¢ must equal 3, say p = 3, and
no tree is attached on the cycle C3. As in the proof of Lemma 3.1, we can
verify that A(G) < k(G) + 3+ 1, that is, A\(G) < a(G) + 3. O

Lemma 3.3. Suppose that G is a bicyclic graph on n vertices such that
k(G) = a(G) — 2. Then A(G) < a(G) + 3.

Proof. If k(G) = 1 then the result is clearly true. So assume k(G) > 2.
We only argue the case that G is b(p, 0, q) with trees attached. For other two
cases that G is b(p, £, q) or 8(p, £, q) with trees attached, the proof is similar.
The case that k(G) = a(G)—2 implies that R(G) < 5. If R(G) < 3, then by
Lemma 3.1 we have A\(G) < a(G) + 3. So we assume R(G) =4 or 5. As in
the proof of Lemma 3.1, we can obtain that A(G) < k(G)—(p+q)+R(G)+9.
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Case 1. Suppose that R(G) = 4. If p + ¢ > 8, then we have A(G) <
a(G) + 3. So we assume p+ ¢ = 6 or 7. In this case, G can only be
isomorphic to one of the following seven graphs shown in Fig. 1.

% >@,<@>

Fig. 1.

Suppose that G is isomorphic to the graph (g). For i = 1 or 2, if there is
a vertex y € V(T;)\{w1, wz} such that dr;(y) > 3, then dr, (w1)+dr, (w2) <
k(G), and so by Lemma. 2.2 we have A(G) < k(G) +5 = a(G) +3; otherwise
G is isomorphic to the graph H shown in Fig. 2, where H = H; ifr =1
and H = H, or H = Hj if r = a(G) — 3.

-----

By Lemma 2.3 we obtain that \

A(Hy) < max{ACLHaOT (O LA (O D0} < a(C) +
3=a(H)+3.

Similarly, we have A(H;) < o(H;) + 3 (: = 2,3). By Lemma 2.4, we
know that A(H) £ max{A(H1), A\(Hz), A\(H3)}. Note that a(H) = a(H,) =
a(Hz) = o H3). Therefore, A\(H) < a(H) + 3.

If G is isomorphic to any other graph than (g) shown in Fig. 1, then
we easily know by Lemma 2.2 that A(G) < k(G) + 5 = a(G) + 3.

Case 2. Suppose that R(G) =5. Thenp+q > 7. If p+q > 9, then
we have A(G) < a(G) + 3. So we assume p+q = 7 or 8. In this case, G
can only be isomorphic to some one of the following four graphs shown in
Fig. 3.
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(a) {b) (d

If G is isomorphic to any other graph than (a) shown in Fig. 3, then
we easily know by Lemma 2.2 that A(G) < k(G) +5 = a(G) + 3.

Suppose that G is isomorphic to the graph (a). If there is a vertex
y € V(T)\{w} such that dr(y) > 3, then dr(w) < k(G), and so by Lemma
2.2 we have A(G) < k(G) +5 = a(G) + 3; and otherwise by Lemma 2.3, we
also have A(G) < k(G)+5=a(G)+3. O

Paths Py, Pe,, ..., Py, are almost equal if |¢; — ¢;] <1for 1 <i,5 <t

If w is a vertex on b(p, 0, g), then let b, (p, 0, q) be the bicyclic graph on n
vertices obtained by attaching ¢ almost equal pendent paths at w.

Lemma 3.4 [6]. Suppose that G is a bicyclic graph on n vertices. Let v
denote the vertex of degree 4 on b(4,0,3) and b(4,0,4), respectively. Then
we have the following

(1) if k(G) = n — 6, then A(G) < A(b2~(4,0,3)), with equality if and
only if G = b7~6(4,0,3);

(2) if k(G) < n—7, then A(G) < A(bE(©(4,0,4)), with equality if and
only if G = b5 (4,0,4).

Lemma 3.5. Let v denote the vertez of degree 4 on (3,0, 3), b(4,0,3)
and b(4,0,4), respectively. Ift > ¢, then

A(b;(3,0,3)) > maz{A(b;(4,0,3)), (5 (4,0,4))}.

Proof. By Lemma 2.2, we know that maz{(b(4,0,3)), \(b%(4,0,4))} <
£+ 6. By Lemma 2.1, we have A(b(3,0,3)) >¢t+5. O

Suppose that G is a bicyclic graph. Now we discuss what the range of
a(G) is.

Lemma 3.6. Suppose that G is b(p, £, q) with trees attached on n ver-
tices. Then [%] -1<a(G)<n—-2.

Proof. It is clear that o(G) < n —2. Let ey = uju} and ez = uau)
be two edges so that G\{e;, ez} is bipartite graph with bipartition (X,Y).
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Then |X| + |[Y| = n. Suppose that |X| = |Y|. Then n is even and |X| =
|[Y| = %. If ends of e; belong to one bipartition and ends of ez belong to
another bipartition, say {u;,u}} C X and {uz,u5} C Y, theno(G) = 5-1;
and otherwise (G) = 3.

If | X| # |Y], then as in the proof above we can verify that o(G) >

[31-1.0

Lemma 3.7. Suppose that G is b(p, 0, q) or 0(p, £, q) with trees attached
on n vertices. Then [251] < a(G) <n-—2.

Proof. It is clear that a(G) < n—2. Let v be the vertex so that G —v
is bipartite graph. Since a(G —v) > f"—;—l-], a(G) 2 [l;—l-] a

According to the range of o(G) obtained from Lemmas 3.6 and 3.7, now
we give our main results.

Theorem 3.8. Suppose that G is a bicyclic graph on n vertices. Then
we have the following

(i) if &(G) = n — 2, then A(G) < A(82~4(2,1,2)), with equality if and
only if G 2 674(2,1,2), where 02-%(2,1,2) is as in Fig. 4;

(ii) if [1-‘;—1-] < a(G) £ n—3 and dys,0,3)(v) = 4, then
MNG) S A(55197%(3,0,3))

with equality if and only if G = b3®~%(3,0, 3).

~

n-a

- r - -3
6,4(21,2) 6;.(2,1,2) 573(3,0,3) b7°(3,1,3)

Fig. 4.

Proof. If a(G) = n — 2, it is easy to see that G = 77%(2,1,2) or
G = 6734(2,1,2) shown in Fig. 4. Suppose that G = 673,%(2,1,2). If
:1:93;4(2,1'2)(1)) 2 Tgn-s(3,1,2) (u), then transferring all pendant paths from u
to v, and otherwise transferring all pendant paths from v to u, we will get
a bicyclic graph which is isomorphic to 87-4(2,1,2). By Lemma 2.4, we
know that A(0734(2,1,2)) < M(85774(2,1,2)).

So we assume that [251] < a(G) < n—3. If k(G) > &(G) -2, then, by
Lemmas 3.2 and 3.3, we know that A(G) < &(G) + 3. By Lemma 2.1, we
know that a(G)+3 < A(63(®72(3,0,3)), and so M(G) < A(63(©77%(3,0,3)).
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Next we suppose that k(G) < a(G) — 3. Then k(G) < n — 6. By Lem-
ma 3.4 we obtain that A(G) < max{A(65® (4,0, 3)), A\(65‘®(4,0,4))}. Fur-
thermore, by Lemma 3.5, we have max{)\(bﬁ(c) (4,0,3)), /\(b,’f(c)(4, 0,4))} £
ABE@+1(3 0, 3)). Thus, A\(G) < A(EC+(3,0,3)).

If k(G) = a(G) — 3, then A(G) < )\(bﬁ'(c)_2(3,0, 3)). Now suppose that
k(G) < a(G)—3. We easily know from Lemma 2.5 that )\(b,’f(c)“(S, 0,3)) £
A(bS©)=2(3,0,3)), and so A(G) < A(b2(©7%(3,0,3)). O

Lemma 3.9 [6]. Let v be a vertez in a connected graph G and suppose
that two new paths P; = VULV - - Vik (} = 1,?) are attached to G ‘,lt v,
respectively, to form a graph G . Let G = G + vvak. Then MG ) =
MGY).

Theorem 3.10. Suppose that G is b(p, £, q) with trees attached, and that
n = |V(G)| > 6 is even. If o(G) = & — 1, then A(G) < A(bd °(3,1,3)),
with equality if and only if G = b3—3(3, 1,3), where b3—3(3, 1,3) is shown
in Fig. 4.

Proof. Ifk(G) < 2, then it is easy to verify that A(G) < A(bZ ~°(3,1, 3)).
So we assume that k(G) > 3. If £(G) = a(G), then every vertex in G is

either a pendant vertex or its neighbor, and so a(G) > 3, a contradic-

tion. If k(G) = a(G) — 1, then there are at most three vertices which
are neither pendant vertices nor their neighbors, that is, there are at least
n — 3 vertices which are either pendant vertices or their neighbors, and so
a(G) > [253] +1 = %, a contradiction. Therefore, k(G) < a(G) — 2.
By Lemma 2.2, it is easy to see that A(G) < k(G) + 6. Further, if
k(G) < a(G) — 4, then M(G) < a(G) + 2. Next we discuss the remain-
ing two cases.

Case 1. Suppose that k(G) = a(G) — 2. Then R(G) < 6.

If R(G) < 2, then by Lemma 3.1, we have A\(G) < a(G) + 2 and so
we assume that 3 < R(G) < 6. In this case we can find a maximum
independent set $; which consists of all pendant vertices and one or two
vertices of V(b(p, £,q)) where no tree is attached.

If there is exactly one vertex of Sy NV (b(p,¢,q)) where no tree is at-
tached, then we can observe that for each edge ujus € E(G), dg(v;) +
dg(ug) — |[Ng(u1) N Ng(u2)| < k(G) + 4 = a(G) + 2. By Lemma 2.2, we
have A(G) < a(G)+2. Thus, we assume that there are exactly two vertices
of S; NV (b(p, £, q)) where no tree is attached.

If each vertex in V(G) \ V(b(p, ¥4, q)) is of degree at most 2, then every
tree attached on b(p, ¢, q) is composed of pendant paths of length 1 or 2.

When ¢ = 1, we can notice that all G but those graphs isomorphic to
B; (1 <1 <10) as in Fig. 5 satisfy dg(u1) +dg(u2) — |[Ne(u1) N Ne(uz)| <
k(G) + 4 = a(G) + 2 for each edge u uz € E(G). It follows from Lemma
2.2 that A\(G) < a(G) + 2.
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Ty Y25 Y AL
Wy Y T

Fig. 5. The graphs B; (1 <1 <10)

Now we observe the graph B; (1 < ¢ < 10). Suppose that y; € V(B;)
is a vertex on b(3,1,3) where trees are attached (i = 1,2). If z,(B;) >
Ty, (B1), then transfer all pendant paths from y; to y1, and otherwise trans-
fer all pendant paths from y; to y2. Continuing this process we will get
a bicyclic graph G; so that all pendant paths are attached to vertex y on
b(3,1,3). It follows from Lemma 2.4 that A(B;) < A(G1). If dy(3,1,3)(y) = 3,
then G; & bg(G)'2(3, 1,3), and otherwise we can observe that for each edge
wug € E(G1), dg,(u1) + dg, (u2) — [Ng, (w1) N Ng, (u2)| < k(G1) +4 =
a(G;) + 2. By Lemma 2.2, A\(G;) < a(G}) + 2. Note that o(G;) = a(B,).
Thus, A\(B1) < a(B) + 2. Similarly, we can verify that A(B;) < a(B;) +2
(i=2,3).

In this case note that n > 12. By Lemma 2.3, we have
A(Bs) < max({'5s8, wiguai0 ke 28} < 3 41 = o(C) 42 =
C!(Bs) + 2.

Similarly, we can verify that A(B;) < a(B;)+2 (6 < i £ 9). By
Lemma 2.4, we have A(By) < max{A(Bs),A(Bg),A(B7)} and A(By) <
max{A(Bg), A(Bg)}. Note that a(G) = a(B;) (4 < i < 10), we have
)\(34) < a(B4) + 2 and /\(BIO) < O!(Blo) + 2.

When £ > 2, we only observe that By, Bys and B;3 shown in Fig. 6.

Yy ¥ Y

Fig. 6. The graphs B; (11 <1 <13)

By Lemma 2.3, we have , \
2
A(Bi1) < mex{2-§22348, nfladlt, ntin 2Lf} < 241 =a(G)+2=

a(Bu) +2.
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Similarly, we have A(B12) < a(By2) + 2.

By Lemma 2.4, we have A(B;13) < max{A(B11),A(B12)}. Note that
a(B11) = a(B12) = a(Bi3) = a(G). Therefore, A\(B13) < a(Bis) + 2.

For all G but those three graphs isomorphic to B; (i = 11,12,13), we
can observe that for each edge uu’ € E(G), dg(u) +dg(u') < k(G) + 4 =
a(G) + 2, and so by Lemma 2.2, \(G) < o(G) + 2.

Now suppose that there is a vertex in V(G)\V(b(3,¢,3)) which is of
degree at least 3. If G is as in Fig. 7, then by Lemma 2.3, we have

Fig. 7.

G) < max{ngldet, wiogatle, nootn, nie, 242} < 241 = o(G)+
2. Otherwise we can observe that for each edge vv' € E(G), dg(v) +
dg(v') < k(G) + 4 = o(G) + 2. By Lemma 2.2, we have A(G) < a(G) + 2.

Case 2. Suppose that k(G) = a(G) — 3. Then R(G) < 8.

If R(G) < 3, then by Lemma 3.1, we have A(G) < a(G) + 2. Thus,
we assume that 4 < R(G) < 8. In this case we can find a maximum
independent set S3 which consists of all pendant vertices and two or three
vertices of V(b(p, ¢, q)) where no tree is attached.

If there exist exactly two vertices of S; NV (b(p, ¢, q)) where no tree is
attached, then for all G but those graphs isomorphic to A; and A, shown in
Fig. 8, we can observe that for each edge u u2 € E(G), dg(u1) + dg(ug) —
|Ne(u1)NNg(u2)] < k(G)+5 = a(G)+2. By Lemma 2.2, A(G) < a(G) +2.

z-5 1-5
D A, VZ] év‘ A, WZ]

Fig. 8. The graphs A, and A,

Suppose that G 2 A;. Then we can obtain the graph b3 ~>(3, 1, 3) from A,
by contracting the edge vu into one vertex v and then adding a pendant
edge at v. By Lemma 2.5, we have A(A;) < A(b 73(3,1,3)). Suppose that
G = Ay. If z,(A2) = z,(Ay), then transferring all pendant paths in A,
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from w to v, and otherwise transferring all pendant paths from v to w, we
get a bicyclic graph which is Jsomorpluc to A;. By Lemma 2.4, we have
A(A2) € M(A1) and so A(42) < /\(b’_ (3,1,3)).

If there exist exactly three vertices of So NV (d(p, ¢, q)) where no tree is
attached, then we distinguish the following two cases.

When ¢ = 1, for all G but those graphs isomorphic to 4; (3 < i <
8) shown in Fig. 9, we can observe that for each edge ujuz € E(G),
dg(u1) + de(uz) — |[Ne(u1) N Ne(uz)| < k(G) + 5 = a(G) + 2. By Lemma
2.2, A(G) < a(G) + 2.

.4 14 -4
i e
& A%
A, ¥ v vA. v, l v A, \
T4 A A 4 A

Fig. 9. The graphs A; (3<i < )

In this case note that n > 14 By Lemma 2.3, we have

/\(AS) < max{ j:Zn:tAs ;t2ni20 n ;|:22n M—_2_} < n +1= a(G) +

= o(A3z) + 2. Slmxlarly, we have )\(A4) < a(A4)

By Lemma 2.4, we have A\(As) < max{\(A3), A(A4)}. Note that a(4s) =
a(Ay) = a(As) = a(G). We have A(4s) < a(As) + 2.

Let H = Ag — vavg — v7vg and H' = H — vous + V13, By Lemma 2.5,
we have A(H) < MH'). If z,, (H') > zy,(H’), then let H' = H' — vgw; —
VgWy — * + + — VgWy + VW1 +vwa + - - - +viwy, and otherwnse let H' = H' -
v1vs + veUs. It follows from Lemma 2.4 that A(H’ ) < AMH"). It is easy to
observe that H" +vovs+vyvs is 1somorph1c tob? ™ (3 1,3). By Lemma 3.9,
we have MAg) = A(H) and A(H") = A(b2 _3(3, 1,3)). Therefore, A(A4g) <
A(bZ¥73(3,1,3)). We can similarly prove that A(47) < A(b3 7%(3,1,3)). By
Lemma 2.4, we know that A(As) < max{A(As),A(A7)}, and so A(A4g) <

A(bd *(3,1,3)).

When ¢ > 2, we can observe that for each edge ww' € E(G), dg(w) +
dg(w') < k(G) +5 = a(G) + 2. By Lemma 2.2, we have A\(G) < o(G) +2.

By Lemma 2.1, we have a(G) + 2 < A(b ~3(3,1,3)). So far, this com-
pletes the proof. (0

Recall that Q(G) = D(G) + A(G) is the signless Laplacian matriz of
graph G. We denote by u(G) the largest eigenvalue of Q(G).
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Lemma 3.11 (2]. If G is a connected graph, then M\(G) < u(G), with
equality if and only if G is bipartite.

Theorem 3.12. If dy(30,3)(v) = 4, then A(b37%(3,0,3)) is the largest
one of three roots of the equation 3 — (a + 6)x2 + (3a + 10)z —n = 0.

Proof. Let 272(3,0, 3) be as in Fig. 4. By Lemma 3.9, we know that
A(b272(3,0,3)) = A(b272(3,0,3) — uyuy — ugug). Let H = b2-%(3,0,3) —
ujup — uzu4. Then H is a bipartite graph, and so by Lemma 3.11, A(H) =

u(H).

Suppose that y is the principal eigenvector of Q(H) corresponding to
u(H). Then Q(H)y = u(H)y. Let 4 = u(H) and y, be the eigencomponent
of y corresponding to the vertex v. By symmetry we have

BYu; = Yuy + Yor MYw = Yo + Yu) BYu = 2Yu + Yo + Yu,
Yy = (20 — n + 8)yu, + (@ + 2)yy + (n — a — 3)yu.
Simplifying the above system of equation, we finally get
pd—(a+6)u’+ (3a+10)p—n =0.

Suppose that f(z) = z3 - (a + 6)z% + (3a + 10)z — n. Then f'(z) =
322 — 2(a + 6)z + 3a + 10, and so f(z) = z° — (@ +6)z2 + (3a+ 10)z — n
is strictly increasing if z € (ﬂﬁm,+m). By Lemma 2.1, we
know that u(H) > a + 3. Note that o + 3 > sﬁ@ﬁﬂ. We have

u(H) > ‘—’—"‘-ﬂﬂ‘;@'ﬁ, which shows that p(H) is largest among three
roots of z° — (@ + 6)22 + (3a + 10)z —n=0. O
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