ON THE EXTENDED LEE WEIGHTS MODULO 2¢ OF
LINEAR CODES OVER Z,.

BAHATTIN YILDIZ AND ZEYNEP ODEMIS OZGER

ABSTRACT. In this work, linear codes over Zz2s are considered to-
gether with the extended Lee weight that is defined as

wL(a:)={ x ifzx <251,

25—z ifz>2°"L

The ideas used by Wilson and Yildiz are employed to obtain di-
visibility properties for sums involving binomial coefficients and the
extended Lee weight. These results are then used to find bounds
on the power of 2 that divides the number of codewords whose Lee
weights fall in the same congruence class modulo 2°. Comparisons
are made with the results for the trivial code and the results for the
homogeneous weight.

1. INTRODUCTION

There has heen a burst of activity on linear codes over rings in recent
years. Starting from the ring Z4 with (1], the research in this area has been
generalized to Zyx, Zy«, Galois rings and finite chain rings in general. The
weight function used in codes over Z; is the so called Lee weight that has
values wy(0) = 0,wy (1) = wr(3) =1 and wy(2) = 2. When generalizing
to Galois rings and finite chain rings in general a new weight called the
homogeneous weight was introduced as an extension of the Lee weight on
Z4. We refer the reader to [2] for more details.

The homogeneous weight uses the algebraic structure of the rings and
has few non-zero weights. It also has connections with exponential sums
and thus, results from number theory can be used to obtain bounds for
this weight([3], [4]). Recently, in [5], when constructing the Gray map
for the homogeneous weight over Galois rings, it was discovered that the
homogenous weight also has connections with hyperplanes in combinatorial
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geometries. The algebraic constructions for the Gray map of homogeneous
weight are given in (2] and [6].

However there is a more natural generalization of the Lee weight from
Z4 to Zyx. This was given first in [7] by Carlet, however he chose the homo-
geneous weight instead of this weight to work with. Recently, Dougherty
and Fernandez-Cérdoba have studied linear codes over Z,« with respect to
this extended Lee weight in [8].

The constraints on the weight enumerators of codes have heen of interest
in coding theory. Pless looked at the Hamming weight enumerators of
binary codes in [9]. Wilson used polynomial ideas to obtain such constraints
for general weight functions on codes in a more general context in [10].
Yildiz used ideas from [10] to obtain the best possible results for the Lee
weights of linear codes over Z4 in [6]. In [11] a coset decomposition idea was
used to obtain the tightest bounds for the homogeneous weight enumerators
of linear codes over Galois rings.

In this work we study linear codes over Z,. with the extended Lee weight
to prove divisibility results for the weight enumerators using ideas from {10].
Our aim is to combine tools from [10] and [6] to find the power of 2 that
divides the coefficients of the extended Lee weight enumerators of linear
codes over Zgs.

The rest of the paper is organized as follows.

In section 2, we give the necessary definitions for codes over Zy+ and the
extended Lee weight. In section 3, we state and prove the main lemmas to
be used in obtaining the main results. Section 4 includes the main results
for free Zjs-codes. In section 5 we find the results for the trivial code
for comparison. Section 6 concludes the paper with remarks and possible
research directions.

2. LINEAR CODES OVER Zos

Definition 1. A linear code over a ring R of length n is an R-submodule
of R™; more specifically a linear code over Zy. of length j is a submodule

of Z2,.

It can be shown, because of the ideal structure of Z,., that a linear code
over Zz. of length j is permutationally equivalent to a code that has a
generating matrix of the following form:

Ikx Ay ’ ’ ' Asy A,
0 2I, 2B . .

0 0 22I,

. . 23—21",_1 23—2D 23—2E
0 0 .0 0 29-1,  29-2F
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where A, -+, Ay, By, -+, D, E, F are matrices over Zz. (see [14]). As seen
from the generating matrix, a dimension can not be defined for such codes.
Instead of dimension, a code over Z2. has a type. A code that has the above
matrix as a generating matrix is said to be of type (2°)%1(2°~1)*z ... (2)*-,
and it has size

|C| = 9%k +(s—Lkat-+ks

For the rest of this work we will let the extended Lee weight on Zs- be
defined as follows:
T if z <201,
we(@) =\ 90—z ifz>2e,

The Gray map from Zj. to ]Frf,"-1 for this weight function can be given
simply as:

0 — (000 - - - 000),
1 — (100- - - 000),
2 — (110---000),
29-1 - (111.--111),
2°-14+1 — (011..-111),
2s-142 — (001-.-111),

22-2 - (000---011),
929_1 — (000--.001),

which is introduced in [16] for Zak-linear codes by Borges et al. Simply
put 1’ s in the first £ coordinates and O’ s in the other coordinates for all
z < 2°71 and if z > 2°~! then the Gray map takes z to 1 + ¢, (2°~! —z),
where ¢, is the Gray map for wy,. This map can be extended for a codeword
€= (c1,¢2,...,cn) as follows:

wL (@) = (prlc1),eL(c2),..., pL(cn)).
Note that ¢ is a (non-linear) isometry from (Z,., Lee weight) to (IF%"-I,
Hamming weight).
3. THE MAIN LEMMA
We start with the following remarks:
Remark 1. For any z € Zss,
wi(x) +wr(z+2°71) =271
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Remark 2. [11] Let C be a linear code over Zy» of length j and type
(23)/:. (23—1)1:3 e (2)1:, with

@1,89,...,8r, —> free generators,

b1, b, ... ,Ek, —> generators in 2Zsys,

€1,C2,...,Ck, — generators in 2°~ ' Zy.,
and let C be the linear code over 2°~1Z,. generated by
23—151, 23_152, ceny 2s_lﬁkl,

2°725,,2°" %, ..., 2° 2y,

Ela.é% v aEk.)
then C is a linear subcode of C and, moreover

C= u E+0),
ceZ;,

where T’s are in Zg,. The exact coset representatives can be found in
[11].
For the rest of this paper Sc is defined as the following:

Definition 2. For C, a subset of ZJ,. (in fact, C is either a subgroup or a
coset of a subgroup) we define

. , wi(a wr(a wy (a;
ety X (P00 () (o),
11 12 2]
(ay,az,...,a;)€C
where 0 < 41,142, - +,i; < j such that
i+ 41 =7,
The following is the main result we would like to obtain.

Theorem 1. Let C be a linear code over Zys of type (2°)%1 (25— 1)k2...(2)k,
then for any fized 11,12, ...,4; with0 < 4y,42,...,1; < j and iy +ig+--+i5 =
7, we have

Sc(ir,- - i) =0  (mod 2%¥Wkitket..+kil=g)
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Note that by Remark 2, to prove the above theorem, it is enough to
prove the following lemma:

Lemma 1. Let C be a linear code over 2°~1Zs. of length j and dimension
k. Then ‘

SE+C(il' . ”ij) =0 (mOd 22k-3)
for any @ € Z3, and iy, - -,4; € Zg» such that iy +ipg+---+1i; =73

Proof. The proof is by induction on j. Let j = 1 and kK = 1. Then
C = {(0),(2°"!)}. Hence
n—1
SC(].) - (’(ULI(O)) + (wL(21 )) =951l =9 (mod 22.1—1)
and if a € Z,. is any coordinate, then
Sasc(l) =w(e) +wr(e+2°7Y) =271
by Remark 1. Assume that the induction hypothesis is true for j — 1. It
remains to show that the claim is true also for j. For the sake of simplicity,
we drop (i1, - - -, i;) in the notation. There are two cases:
Case 1: Let iy =ip =+ =1; =1and @ € Z},, @ = (a1,02,...,a;). Then
' — . Q.. s—=1y g
Sa+c = wr(a) Sa+co +wr{a1 +2°77) Sa-+cz,,_,’
where C is the set of codewords that have £ as their first coordinates (¢ =0
or 2°71), C, is the set of codewords whose first coordinates, which are ¢,

are deleted and @ is the codeword that is obtained from @ by deleting its
first coordinate. Now when deleting a coordinate from C , there can be two
situations. Either the dimension does not change or two copies of a code
with dimensions decreased by one occur. In the first case, the following
holds:

Sarc =wr(a) S, . + (27! —wp(a1)) - Sé+¢',.,_1
=wp(a)-S. . +wr(a))-S.

a+Co

3+¢' a1
+271 = 2 wi(ay)) - S. ’

3+C2’33—1
— . . . . g—e _ . . R
_wL(a,l) S’d+C+2 [2 wL(al)] SE+C2,_|
Now by induction hypothesis,
S. . =0 (mod2%-U-Dy
a+C

and

L =0 (mod 22k-1-G-1),

3+C2n—l
Hence

2-[2°72 —wi(a)] - S =0 (mod 2%*77).

é“}'ézs— 1
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This proves that
Sz+c =0  (mod 2%¢779),

which means Sz;c is divisible by 22=7, Now in the second case, Cy =
Chps-1 is a code of length j — 1 and dimension k — 1, then

+ (27 —wp(ay)) - 50

Sarc =wi(a1)-S. . &
a 4]

+Co
=2"1.8 .
a+Co
Hence,

Szrc =0  (mod 22k-7),
since S‘+c‘ =0 (mod 2%-i-1),
a [}

Case 2: Assume that one of i)’ s is greater than 1, where 1 < & < j. Then,
since i) + i3 + - - - + ¢; = j must hold, at least one of them should be 0.
Supposing that one of the i;’s is r, with r > 2, this implies at least r — 1
of i)’ s are 0. Without loss of generality i; = 0,73 =0,...,4,_1 =0,%, =7
may be assumed. Now,

wr B L) () (),

(ay,az,ar,

Let C be the code that is obtained by deleting the first r coordinates of C.
Then,

wE (), E ) (1)

So, C is either of the same dimension of C or 2¢ copies of a k— ¢ dimensional
code for some £ € N, where £ < 7. Then by induction hypothesis Sz is
divisible by

9l +2(k=8)=(j-7) _ g2k+r—t-j

But we know that r > ¢, so
Z (wL(ar)) ) Z (u}L(arH)) (wL(aj)) =0 (mod 2%)
Gr 4 (°r~+lt"'1aj]€6 zr+l zj

which means S¢ is divisible by 22¢-7,

4. LINEAR CODES OVER Zg+« OF TYPE (2")’c

In this section, the results in [10] will be specialized to the extended Lee
weight enumerators of codes over Zj» by using the same techniques and
tools in {10] that are introduced in the proof of the following lemma.
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Lemma 2. [10] Let p be a prime, and e and m positive integers. Let f
be an integer-valued function on the integers that is periodic of period p®.
There exists a polynomial

w(z) =co + a1z +cz(x) 4+ +cd<m)
2 d
of degree d < (m(p — 1) + 1)p*~! — 1 so that
w(t) = f(t) (mod p™)
for all integers t. The coefficients c; are integers and, moreover,
¢; =0 (mod pf),
whenever i > (8(p — 1) + 1)p*~1.
The following is the main theorem we would like to prove:

Theorem 2. Suppose C is a linear code of type (2°)% over Za.. If we
denote by Nc(j,2¢) the number of codewords in C that have Lee weights

congruent to j modulo 2%, then we have

sk-20—"l(y_1
Nc(4,25) =0 (mod 2|. 7= 1(s-1) J),

where j =0,1,2,...,2¢ — 1. Here |-]| denotes the floor function.

Proof. For any nonnegative integers t and m, let d = (m +1)2¢~! — 1, and

let
Wi(z) = Zd: o (f)

i=0
be a polynomial of degree < d so that

w_ [ 1 (mod2™) ifj=t¢t (mod 2°),
Wi(5) = { 0 (mod 2™) otherwise,

where ¢; = 0 (mod 2¢) for i > (£ + 1)2¢~1. The existence of this poly-
nomial is guaranteed by the proof of Lemma 2. Then we have

d —
N¢(5,2°) = z Wi(wr(@)) = Ec,- Z (wl}(a)) (mod 2™).
aeC j=0 @eC

Given j, choose an integer £ such that

(e+127t<j<(0+2)257 -1
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Then ¢; = 0 (mod 2¢). Consider

n o =2 (")
<wL(al) twr(az) 4o+ wL(an))

{a1,a2,...,.an)EC J

> 5 (wLi(lao) (wLi(zaz)) N (wL.(an))_

. L 1
i1 4+ig4-+in=4 (a1,a2,...,an)EC n
ilsi2;~~~vin2

For fixed nonnegative i,,1s,...,%, summing to j, at most j of indices i,
are non-zero. For notational convenience we might assume i, = 0 for ¢ > j.

Then
) (sz'(lal)) (WLi(zaZ)) (sz'(nan))

aeC

= Y Bubynb) (wL;lbl)) - (WL'(.bj))’

. 2
(bl )b2 ""vbj )Ez;s

where ®(b;,by,...,b;) is the number of @ € C with first j coordinates
b1,ba,...,b; in that order. The set of such @’s is either empty or is a coset
of the kernel K of the group homomorphism C — Z% that projects onto
the first j coordinates, which is of order 2¢ where t = sk — (sj — r). There
are two cases:

Case 1: Suppose the image of this projection has size 2°7~", where r > j.
Then K has order 2t where t = sk — (sj — ) > sk — (s — 1)j.

Case 2: If the image of the homomorphism has size 2%7~7 with r < j,
then we get

(4.1) > (wL;lal)) (wLiia») (wLi(:n))

aeC

= osk—sj+r (bhbzgﬂeﬂ (wl;'(lbl)) (wLi(zbz)) (wLi(jbj))’

where H is the image of the homomorphism, and as such, is a subgroup of
Z3,. Here H can be seen as a code over Zs of length j. Then by Theorem

1
) (wLi(lbl)) (wz,i(zbz)) . (wLi(jbj))

(b] ,bg,...,b]‘)GH

is divisible by 2%~ = 27 > 27-7_ Putting these in equation (4.1), we see
that the sum in (4.1) is divisible by 2sk—{(s—1)j,
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This means that in both cases, which are investigated above,
>3 (wL_(al)) (wL.(GZ)) (’wb.(an))
@eC u 2 n
is divisible by 2sk—(s=1)3,
Now suppose k > 2("—s_—ll(m +1)2¢~2. Then we have
sk—(s=1)j > 2(s—1)(m+1)272~(s—1)[2°" ¢ +2)-1]
= (s—1)[(m+1-£-2)2¢"1 +1]
> m—e-1)2'+1>m-€-1)+1=m—¢
This means that the inner sum of the equation is divisible by 2™~¢, and
since by choice, ¢; is divisible by 2¢. so
Nc(7,25) =0 (mod 2™),
where k > ?@(m + 1)2°~2 which means
Ne(4,2°) =0 (mod 2[%(%%—)_!2-')’
7 =0,1,2,...,2¢ — 1. Finally, if we choose k£ < ng:—I)(m +1)2¢~2 then
L;%f;(_:(_-"_l-rll, the corresponding m value, is negative, which does not make

sense in congruences. fi

Note that everything done in this proof is still valid if a linear code C is
replaced by a coset A = @+ C of C. Hence the more general result follows:

Theorem 3. Suppose C is a linear code of type (2°)% over Zj» and let
A =@+ C be a coset of C. If we denote by Na(j,2¢) the number of
codewords in A, that have Lee weights congruent to j modulo 2¢, then we
have

ak—2¢=1(s—1
(4.2) Na(,2°) =0 (mod 2l T J

ij=0,1,2,...,2¢ — 1.

),

Also note that when s = 2, (4.2) is transformed into (4.3) in the following
theorem:

Theorem 4. [6] Suppose C is a linear Zy-code of type (4)* and let A =
@+ C be a coset of C. If we denote by Na(j,2°) the number of codewords
in A, that have Lee weights congruent to j modulo 2%, then we have

k—2°-2

(4.3) Na(j,29) =0 (mod 2l 7]y,
where j=0,1,...,2¢ — 1.
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This shows that the results in this paper and in [6] are consistent. The
following theorem from [10] holds for any weight function:

Theorem 5. [10} Let G be a group of order p°, p prime, let C be a subgroup
of G* = GxGx---x@G, and let A be a coset of C in G™. Suppose
|A| = |C| = p*. Let u be a mapping from G into integers and define for
= (a1,...,an) € G*, u(@) = Ty p(as). Ifk > s((mlp—1)+1)p=1-1),
then for any integer t, the number N of solutions @ € A to the equation
pu(@) =t (mod p®) is divisible by p™.

Thus for a linear code over Z3s of type (2°)* [10] leads to

(4.4) NaG,2°) =0 (mod 2557 |),
(4.2) and (4.4) can be compared by expanding (4.4) by (s — 1):
sk—2"1(s—1) (s-Dk-2"1s-1)
N =

The above inequality is strict in many cases. For example, when s = 2, the
power obtained in our case is more than twice the power obtained in [10].

5. THE EXTENDED LEE WEIGHT DISTRIBUTION OF THE TRIVIAL CODE
OVER Zos

The trivial code was used in [11] to prove that the results obtained were
best possible. Hence to get an idea about how close to the trivial code
one can get, the extended Lee weight distribution of the trivial code will
be found. The aim here is to get information about the divisibility of the
extended Lee weight enumerators of codes of type (2°)F1(25-1)kz2 ... (2)k-,
The weight distribution polynomial of these codes is a good point to start.

Theorem 6. Let C be the trivial code of type (2°)* over Zy. where s is
any integer, i.e. C = (Zp.)*. Then the extended Lee weight distribution of
this code is given by the polynomial

(5.1) wys, (z) = (1420 + - +20%7 14227k,
Proof. The proof is by induction on k. Let £k = 1. Then
wzp (T) = (L+ 22+ -+ 202 "L 42277y,
Now assume that the extended Lee weight distribution of Z5 ! is
wyro1(z) = (1+2T+ -+ 2727 =1 g g2 yk-1
Denote the trivial code over Zs. of type (2°)* as Cx. Then
Ck = (Cor1 V{0 U(Cxq U {1} U - U(Cr1 U{2° -1},
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where Ci—_1 U {i}’s are the set of codewords that is obtained by adding :
as a coordinate to the trivial code of type (2°)*~1. Then the extended Lee
weight distribution of Cy is

wz;'(x)= zwL(O)_wz::x(x) + zwL(l),wz;:l(x)

+zwe(Z’-2) Wgk-1 (zy + =zv¢ -1 Wkt (z).
3 29

After plugging the generalized Lee weights into the equation and adding
the terms with the same weights (5.1) is accomplished. I

The previous result is extended in a similar way for the case of trivial
codes of arbitrary types as follows:

Theorem 7. Let C be the trivial code of type (2°)%1 (25~ 1)kz ... (25— F)ki ...
(2)k+ over Zg., i.e. C = (Zs)* x (2Zgs)*2 x -+ - x (2°71Z34)*«. Then the
extended Lee weight distribution of this code is given by the polynomial

(5.2) we(z) = (1+2z+22%+---+ 272" -1 4 g2
(14222 4+ 222 2 gk
(1+ 2% 4. 42222 4 x2’_')k- ...
A+,

Before proving the main result in this section a corollary of a theorem
mentioned in [11] is needed.

Theorem 8. [11] Suppose

(¢=1)m

(l+(p—1):1:” )k EA0+A11+...+APG_1IP"—1 (mod xp" _1)’

then

k — pe-(e-1ym-1
(p— 1)pe-(e-1)m-1J

fore > (£ — 1)m + 1, where vy(k) denotes the highest power of a prime
p that divides a non-negative integer k.

min {v,(A4;) |1 =0,1,...,p° -1} = [

For the case in this paper, i.e. when p = 2, the below corollary follows:

Corollary 1. Suppose
l+z)f=Ao+ Az + -+ Age_12¥~1 (mod 2% —1),
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then

. _—9e—1
min {va(4;) |i=0,1,---,2° -1} = I.er_?-IJ

fore>1.

Using Theorem 7 we get the following theorem:

Theorem 9. Suppose C is the trivial code of type (2°)%1(29-1)kz2 ... (2)%-
over Zos. Then

Q¢k2+'--+k,)—2"’-|
2¢~ﬂl

Nc(4,2°) =0 (mod 2 )
where 7 =0,1,...,2¢ - 1.

Proof. The weight distribution polynomial of such type of a code is given
by (5.2). Since all the components of this product contain z2'~' as the

s=1
leading term, we can write each of them in terms of (1 +z)*  as follows,
k2 £}

= [a+2" " ~ Q@] " [0+ - Q@] " [+ 0 - Q)] .

All coefficients of (1 +z)2"" — 22" — 1 are even, since

23—1
(7).

where ¢ = 2,...,2°7! — 1. So coefficients of Q;(z)’s are even. Hence
there exists g;(z) € Z[X] for each ¢ such that

Qi(z) = 2qi(x).
After replacing Q;(z)’s by 2qi(z)’s weight distribution polynomial be-
comes
s—1 kl a—1 k.v
we(z) = [(1 + x)2 - 2q1(:r)] e [(1 + x)2 - 2q3(:z)] .
Now, using Binomial Theorem to expand each component,

(53)  wol®)= [T ()1 +2)* G2y (z)a].

[Zﬁ:-:o (’::) (1 + x)?""(ks—i»)(_2qs(2))ia] .

After expanding (5.3), we see that a typical term in the expansionis of the
form
(14 z)2 Grabhamin—ei) 2t A(),
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where A(z) is a polynomial with integer coefficients. By using Corollary 1,
the coefficients of (5.3) reduced modulo (z?° — 1) are all divisible by

s—1 i .. zs_lk o _me-1
[25-2 (ky — i) + - - - + 271 (ky —4,)] — 2 J N
2e—-1
25 N(ky 4 4 k) 4+ (2671 = 257Gy + - - - + ) — 207!
- 2¢e—1 y
S 25 Y ky -+ k) — 2e—-1J _ l(kl +-- 4 k) — 2e-l+1—sJ
- 2¢-1 - ge—1+1-s
| (ki R) =250
- 9e—s .
Then
(k1+k2+...+k,)_2e—a-'
2e=3
Ne(j,2)=0 (mod 2 )

where j =0,1,...,2°—-1. §

For comparison with the result in [10] given by (3) and the result given
by Theorem 9, let k; = k,k; = 0 for all i = 2,3,...,s5. Then N¢(j,2°)

29—1; _oc—1

is divisible by 2l ;3‘: J = 2l 2e=T J But 2°-! > 1 for s > 1, which

3 r—l
means the theorem improves the result in [10], which is Zl 2T , quite
considerably.
Acknowledgement : We wish to thank the anonymous referees for their
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6. CONCLUSION

In this work, the extended Lee weight was considered for linear codes
over Zs» together with its Gray map. The divisibility properties of Lee
weight enumerators of linear codes over Z. of type (2°)* were established
in a similar way to what was done in [10] and [6]. Later, the divisibility of
the extended Lee weight enumerators of the trivial code was examined.

Comparing these results with Wilson’s results in {10] and the results
about homogeneous weight obtained in {11], we see the results that are
introduced here, improve Wilson's results but the powers are not as high
as the ones for homogeneous weight. This is natural to expect since the
homogeneous weight of every coordinate in Zys is already divisible by 2°~2.
The only non zero weights in the homogenous weight of Z,.-codes are 2°~2
and 2°~1. However, the extended Lee weight takes on every value from 1
to 2971,

Possible direction for future research will be to reach the divisibility
results for the generalized Lee weight enumerators of an arbitrary type of
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code, as done for free type of codes, and to obtain the tightest bounds
possible for codes over Zs..
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