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Abstract: As an additive weight version of the Harary index, the reciprocal degree

distance of a simple connected graph G is definedas RDD(G) = X% "G—il“‘)—(*ug‘ﬁ‘-‘-’! ,
uvIgV(G)

where dg(u) is the degree of u and dg(u, v) is the distance between u and v in G.
In this paper, we respectively characterize the extremal graphs with the maximum
RDD-value among all the graphs of order n with given number of cut vertices and
cut edges. In addition, an upper bound on the reciprocal degree distance in terms
of the number of cut edges is provided.

-1 Introduction

Chemical graphs are models of molecules in which atoms and chemical bonds are
represented by vertices and edges of a graph, respectively. Chemical graph theory
is a branch of mathematical chemistry concerning the study of chemical graphs.
A graph invariant (also known as molecular descriptor or topological index) is
a function on a graph that does not depend on a labelling of its vertices. The
chemical information derived through topological index has been found useful in
chemical documentation, isomer discrimination, structure property correlations,
etc [2]. Hundreds of graph invariants of molecular graphs are studied in chemical
graph theory. In this paper, we are interested in a distance-degree-based graph
invariant which is called the reciprocal degree distance of a graph.
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Let G be a simple connected graph with vertex set V(G) and edge set E(G).
dg(v) denotes the degree of a vertex v in G and dg(u, v) denotes the distance be-
tween two vertices u and v in G.

For a connected graph G, one of the oldest and well-known distance-based
graph invariants is Wiener index, denoted by W(G), which was introduced by
Wiener [21] in 1947 and defined as the sum of distances over all unordered vertex
pairsinG,i.e.,

W(G) = Z dg(u, v).

{uvIcV(G)
Another distance-based graph invariant is Harary index, denoted by H(G),
which is defined as the sum of reciprocals of distances between all pairs of vertices

inG,i.e. |

H(G) = o)’

luwISV(G)

In 1994, a degree-weighted version of Wiener index called degree distance or

Schultz molecular toplogical index was proposed by Dobrynin and Kochetova [6]
and Gutman [8] independently, which is defined for a connected graph G as

DDG) = . (do(u) +dg(v)dg(u,v).
JuvlCV(G)
The interested readers may consult |7,9, 10] for Wiener index, [5,11, 16, 20]
for Harary index and 3,4, 13, 17, 18, 19] for degree distance.
Similarly, a degree-weighted version of Harary index called reciprocal degree
distance was proposed by Alizadeh et al. [1]in 2013 and Hua and Zhang [12] in
2012 independently, which is defined for a connected graph G as

dg(u) + d(v)

RDD(G) = do(av)

{uvISV(G)
It was shown in [ 1] that this index can be used as an efficient measuring tool in the
study of complex networks.

In general, for a given graph G, RDD(G) is not always easily calculated. So
it makes sense to determine the bounds of RDD(G) or to characterize the graphs
with extremal reciprocal degree distance among a given class of graphs. In [12],
Hua and Zhang established various lower and upper bounds for the reciprocal
degree distance among various given classes of graphs including tree, unicyclic
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graph, cactus and given pendent vertices, independence number, chromatic num-
ber, vertex connectivity and edge connectivity. Li and Meng [ 14] characterized the
extremal graphs among n vertex trees with given some graphic parameters such as
pendents, matching number, domination number, diameter, vertex bipartition, and
determined some sharp upper bounds of trees. Li et al. [15] determined the max-
imum RDD-value among all the graphs of diameter d and the connected bipartite
graphs with given matching number (resp. vertex connectivity). Motivated by the
above results, we proceed with the study on the reciprocal degree distance. In this
paper, we characterize the unique graph with the maximum RDD-value among all
graphs with a given number of cut vertices or edges, and provide an upper bound
of the reciprocal degree distance in terms of the number of cut edges.

2 Preliminaries

Let G be a graph, Ng(v) denotes the neighborhood of v in G, so [Ng(v)| = dg(v).
A vertex v of G is called pendent if dg(v) = 1, and the edge incident with v is
called a pendent edge of G. A pendent path at v of G is a path in which no vertex
other than v is incident with any edge of G outside the path, where the degree of v
is at least three. A cut vertex (edge, respectively) of a graph is a vertex (an edge,
respectively) whose removal increases the number of components of the graph.
A block of a connected graph is defined to be a maximum connected subgraph
without cut vertices. A block containing only one cut vertex is called a pendent
block, and a block containing only a unique vertex is called trivial. Denote by
P, = v|v...v, a path on vertices vy, va, ..., vy with edges viviy fori = 1,2,...,5 -
1, and denote by K, a complete graph with order n. For simplicity, we denote
by g,,,k@,, «» respectively) the set of graphs of order n with k cut vertices(edges,
respectively), and denote by G, the graph of order n obtained from the complete
graph K, by adding n — k paths of almost equal lengths which attached to the
different vertices of K,_, denote by G the graph obtained from the complete
graph K, by attaching & pendent vertices to one vertex of K,_¢.

For a subset V; ¢ V(G), let G -V, be the subgraph of G obtained by deleting
the vertices of V| together with the edges incident with them. If V|, = {v}, we
denote by G — v for simplicity. Similarly, for a subset £y C E(G), let G—E) be the
subgraph of G obtained by deleting the edges of E,. For a subset E; € E(G*), let
G + E; be the graph obtained from G by adding the edges of E;, where G* is the
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complement of G. If E, = {e} (E; = {e}, respectively), we denote by G — e (G +e,
respectively) for simplicity.

Note that in any disconnected graph G, the distance of any two vertices from
two distinct components is infinite. Therefore its reciprocal can be viewed as 0.
Thus, we can define validly the reciprocals degree distance of disconnected graph
G as follows: .

RDD(G) = )" RDD(G)),
i=1]
where Gy, G,, ..., G are the components of G.

Let Dg(u) = V%‘,}\l ] m From [12], we get RDD(G) = ¥,cv(c) d6(4)Dg(u).
143 u
By a simple analysis, we immediately have the following lemma, which was

presented in | 12] for a connected graph.

Lemma 2.1. Let G be a graph with u,v € V(G). If uv € E(G), then RDD(G) >
RDD(G — uv). If uv ¢ E(G), then RDD(G) < RDD(G + uv).

3 Maximum reciprocal degree distance of graphs with

given number of cut vertices

In this section, we first introduce two edge-grafting transformations to study the
mathematical properties of the reciprocal degree distance of G. Then using these
mathematical properties, we characterize the extremal graphs with the maximum
RDD-value among all the graphs of order n with given number of cut vertices.

LemMma 3.1. Let Gy, Ga, P, be pairwise vertex-disjoint connected graphs, where
G\ contains an edge uv such that N, (w\{v} = Ng,(W\{u} = {wi,wa,...,wi}
(k = 1), G, contains a shortest path x| ...x, from x) to x;, Py = 2122...2, and
t 2 s+ 2. Let G be obtained from G\,G, and Py by identifying u with x, and v
with 2y, and let H = G — {zyw, 21wz, ..., 2iwi} + [Xawr, Xawa, . . ., xawi), where G
and H are shown in Fig. 3.1. Then

RDD(G) < RDD(H).

306



Fig. 3.1 The graphs G and H in Lemma 3.1.

Proof: Let P be the path of G obtained by connecting the paths x; ... x;, uv
and z; ...z,, where © = x; and v = z,. Partition the vertex set of G as V(G) =
V(G OMu, v U (VGAx1, ..o 5} U V(P) =2 §1 U S US3. Then from G to
H, the vertices whose degrees changed only are z; and x;: dg(z1) = k + 2, while
dy(z)) = 2; and dg(x2) + k = dy(xz2). The vertex pairs whose distances changed
only are: the distance from any vertex of Sy to any of S; is not increased; the
distance from any vertex of S| toz;(i = 1,2,...,s) of S3 is increased by 1,and to
xi(i =2,3,...,t) is decreased by 1.

) F]rstly, we consider the vertices of S;. For any x € S, from G to H,
the degree of x is unchanged, the distance between x and any other vertex of
S, is unchanged, the distance between x and any vertex of S5 is not increased,
the distance from x to any of zi(i = 1,2,...,5) is increased by 1, and to any of
xii = 2,3,...,0) is decreased by 1, and to the vertex « is unchanged. By the
analysis above and letting dg(x, u) = m, we have

Du(0 =D > (ZiZz -2 )+ (Zh 77 - I )

v

>

So, Z dy(x)Dy(x) > Z dg(x)Dg(x).

(2) Then we consnder lhe vertices of S,. Forany x € S, from G to H, the
degree of x is unchanged, the distance between x and any other vertex of S is
unchanged, the distance between x and any vertex of S3 is unchanged, while the
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distance between x and any vertex of S, is not increased. By the analysis above,
we have Dy(x) — Dg(x) 2 0. So, X, dy(x)Dy(x) 2 };, dg(x)Dg(x).

(3) Finally, we consider the vé:gzces of §s. N

From G to H, the degree of vertex u is unchanged, and the distance from u to
any other vertex in G is unchanged. So dy(u)Dg(u) = dg(u)Dg(u).

From G to H, the degrees of vertices 25,23, ..., 2 are unchanged, and for any
zi(i = 2,...,s), the distance between z; and any vertex of S, U S3 is unchanged,
while the distance between z; and any vertex of S is increased by 1. Then Dy(z;)—
Do) = 3 T~ 7o Hence, d(z)Dg(2) > du(z)Du(z)).

From G to H, the degrees of vertices x3, x4, ..., x; are unchanged, and for any
xi(i = 3,...,1), the distance between x; and any vertex of S; U S3 is unchanged,
while the distance between x; and any vertex of S, is decreased by 1. Then
Dy(x)—Dg(x;) = .‘EZS'.I ¢4;(x,.1,x)—| —xezs, d(,.(l, ~ - Hence, dg(x)Dg(x;) < du(xi) Dp(xs).

Next we compare the change of z; and x3. For any vertex y € S, assum-
ing dg(u,y) = a, we have dy(y,22) = a+ 2,dg(y,.2) = a + 1,dy(y,x3) =
a+ 1l,dc(y,x3) =a+2.Then

1 | 1 ] -1
du(v:z2) deOnzz) a+2 a+l (a+a+2)’

1 1 1 | 1
dnnx3) do(nxs) a+l a+2 (a+@+2)

Notice that dg(z2) = du(z2) = 2,dg(x3) = dy(x3) = 2, we get

du(22)Du(z2) + dp(x3)Dp(x3) 2 dg(z2) Dg(22) + dg(x3)Dg(x3).

Similarly, du(zi))Du(zi) + du(xis1)Dp(xia1) 2 d(2i) D (2i) + dG(xie1)DG (Xis1)
fori=3,...,s.
Notice that r > s + 2, so

Ky ! s ]
2, du@Du@) + Y du()Du(x) > Y. do@)De(@) + Y., de(x)Da(x).
i=2 i=3 i=2 i=3

Finally, we prove du(z))Du(z1)+dn(x2)Dy(x2) > d6(21)Dg(21)+dg(x2) D (x2).
Assuming dg,(x2) = [+ 2 ({ = 0), then we have
(du(z1)Dylz1) + dy(x2) Dr(x2)) — (d6(21)Dg(21) + dg(x2)D(xz))
2(Du(z1) — DG(z1)) + (2 + D(Dy(x2) = Dg(x2)) + k(Dp(x2) — Dg(21))

gs- (et — zem) * (Tt — Zes)) + k(Du(x2) = Do(21))
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For any x € S, assuming dg(x, 4) = a, then

1 1 | 1 -1

dg(x,z1) + 1 - dg(x,21) S+ 1 a = aa+1)’
1 _ 1
do(x,x2) =1  dg(x, x2)
Since / = 0, we have

( 2 _ 2 + 2+1 _ 2+
do(x,z1) + 1  dg(x z1) dg(x,x2) =1  dg(x, x2)

L
a+l  ala+1)

1
a

)12 0.

Xes,

Forany x € S, dy(x, x2) = dg(x,21). Forany x € §3,dn(x, x2) < dg(x,21), 50

. . P l l
In addition, it is easy to see that ‘é‘ o > VGZ& o So,we

1 1

Tt 2 Tlem

have k(Dy(x2) — Dg(z1)) > 0.
Thus, we proved that

du(21)Dy(2)) + du(x2) Dy(xz) > dG(21)Dg(21) + dg(x2)Dg(x2).
In view of (1) - (3), we obtain RDD(G) < RDD(H). [ ]

REMARK 3.2. The graphs G and H in Lemma 3.1 possess the same number of cut
vertices. Moreover, If taking s = | in Lemma 3.1, the edge uv of G will become a
pendent edge of H.

If taking G» = x,...x, in Lemma 3.1, we will get the following result.

CoroLLARY 3.3. Let G be a connected graph. uv € E(G) and Ng(u)\{v} =
NgW\{u} # 0. Let G, be obtained from G by attaching a path P, at u and a
path Py atv. Ift > s+ 2 > 3, then RDD(G,,) < RDD(G-) s+1).

Lemma 34. Let K,uK, be the union of two complete graphs K, and K, sharing
exactly one common vertex u, where p 2 3,q 2 3. Let G be obtained from K uK,
by attaching a path P, at some vertex wi € V(Kp)\lu} and a path Ps at some
vertex v € V(K,)\{u}, and possibly attaching some connected graphs at other
vertices of V(K,uK,)\{u,vi,w), where t 2 s > 1, and let H be obtained from G
by deleting the edges of K, incident to v\ except v\u and adding all possible edges
between each of V(K,)\|v\} and each of V(Kp), where G and H are shown in Fig.
3.2. Then RRD(G) < RRD(H).
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Fig. 3.2 The graphs G and H in Lemma 3 4.

Proof: If t > 5,by Lemma 2.1 and Lemma 3.1, the result follows immediately.
In what follows, we discuss the case when s = .

Let Sy = {vi,va,...,v},S2 = {wy,wa,...,w},S3 = (4}, S4 = V(K )\(v1, u},
Ss = V(Kp\wi, u}, Se be the vertex set of the connected graphs attached at the
vertices of V(K,)\{u, v}, excluding the attachment points, S7 be the vertex set of
the connected graphs which attached at the vertices of V(K,)\{u, w|}, excluding
the attachment points. Then V(G) can be partitioned as V(G) = U‘7=|S i- Observe
the transformation from G to H, the degree of v changes from g to 2, the degree
of wy changes from p to p + g — 2, the degree of any vertex in Sy is increased by
p — 2, the degree of any vertex in S5 is increased by ¢ — 2, while the degrees of
any other vertex is unchanged; the distance between any vertex of $4US ¢ and any
of S are increased by I, the distance between any vertex of S4 U S and any of
S2US5US7isdecreased by 1, while the distance between any other two vertices
is not changed.

(1) Firstly, we consider the vertices v, and ws.

dy(v2)Dp(v2) — dg(v2)Dg(v2) + dy(w2) Dp(wr) — dg(wy)Dg(ws)

= 2 P zmon- Z g A I e O i)
reSTuS., dii(va,a)+1 xe$US., dei(v2,x) xeSUS, di;(wa.x)-1 xe$USe dei(we,x)

For any vertex x € S4 U S¢, let dg(wr, x) = a, then dg(v2, x) =a— 1. So,

( 1 _1)+( 1 1 _l__l__l_l_o
dg(va, X))+ | dg(va,x) ‘dgws,x)—1 dgws,x)’ a a=1 a-1 a

Hence, dn(v2)Du(v2) + d(w2)Du(w2) — d(v2) Dg(v2) — dg(w2)Dg(w2) = 0.
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Similarly, for any v; and w;, i = 3,...,s, dg(vi)Dg(v;} + dg(wi))Dg(w;) =
dy(vi)Dp(vi) + du(wi) Da(w)).

(2) For the vertex u, dg(u) = dy(u), and the distance from « to any other vertex
is unchanged, so dg(u)Dg(u) = du(u)Dy(u).

(3) For any vertex x € Sy, the degree of x is increased by p — 2, the distance
from x to any vertex of S is increased by 1, the distance from x to any vertex of

S,USsUSyisdecreased by I. Foranyi = 1,2,...,s, let dg(x,v;) = a;, then
L 1 ] 11 1
=0.

dG(x' w)=a+l,s0 d;,(i‘.v,») + dH(:'.w,) T ey T dalowny = 4l + @ 4 g+l
Hence, dg(x)Dg(x) < dy(x)dy(x).

(4) For any vertex x € Ss, the degree of x is increased by g — 2, the distance
from x to any vertex of S4 U S¢ is decreased by 1, and the distance from x to any
other vertex is unchanged. Hence, dg(x)Dg(x) < dy(x)Dp(x).

(5) For any vertex x € Sg, the degree of x is unchanged, the distance from
x to any vertex of S, is increased by 1, the distance from x to any vertex of
S, USsU Sy is decreased by 1. By similar discussion to the vertex of S4, we can
get dg(x)Dg(x) < dp(x)dp(x).

(6) For any vertex x € S5, the degree of x is unchanged, the distance from x
to any vertex of S5 U S¢ is decreased by 1, and the distance from x to any other
vertex is unchanged. Hence, dg(x)Dg(x) < du(x)Dy(x).

(7) In the last step, we concentrate on the vertices v; and w;. From G to H,
the degree of v, is changed from g to 2, the degree of w, is changed from p to
p + q — 2, the distance from v, to any vertex of S4 U S¢ is increased by 1, the
distance from v, to any other vertex is unchanged, the distance from w; to any
vertex of S4 U S¢ is decreased by 1, the distance from w, to any other vertex is
unchanged. For simplicity, let A = S4U S, B = V(G) — S4 U S¢. Thus, we have

dH(Vl )DIH(VI) - dG(Vl )IDG(Vl) + dH(W[)DH(Wl]) - dG(W])DG(:Vl)
= 2o 9 F aon TP D F aw ~ P Z G
+2-q) % m +@-2) Y Zew

xeB-(v} xeB-{w;}
For any x € A, let dg(v,x) = a, then dg(w|,x) = a + l,dy(vi,x) = a + 1,
dy(wy, x) = a, thus,

2 __a ,p*q-2_ _ P _ 2 _q.pta-2__pP _,
dy(vi,x) de(vi,x) duy(wy,x) dgw,x) a+1 a a a+1 )
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Hence,

| | 1 1
2y — Y ——— s p+g-2Y — P — 50
é dy(v1, %) q; dor,m 0T ; dy(wy, X) p; dg(wy, x)
In addition, for any vertex pairs v; and w;, (i = 2,3,...,5), m + m =
ZT!Tv‘) + m for the vertex u, dg(w,u) = dg(v;,u); while for any vertex
X € S5US9,dg(wy, x) < dg(vy,x). Thus, by a simple calculation, we have

1
—— >0
dG(W[, x)

+(q-2)

XEB-IWll

2-q9

xeB-{v}

]
dg(vi, x)
Therefore,

du(v)Du(v1) = d(v1)Dg(v1) + du(w1)Dy(wy) — dg(wi)Dg(wy) > 0.

Combining (1) — (7), the result follows. n

ReMaRrk 3.5. The graphs G and H in Lemma 3.4 possess the same number of cut
vertices. Moreover, if s = 1, the edge uv| of G becomes a pendent edge of H.

THEOREM 3.6. For any G € Gni, where 0 < k < n -2, RDD(G) < RDD(G,;),
with equality holds if and only if G = G ;.

Proof: Let Gg be a graph with the maximal reciprocal degree distance among
all the graphs with n vertices and k cut vertices. If X = 0, then by Lemma 2.1,
Go = K, = G, 0. Suppose in what follows that | <k < n-2.

Claim 1: Gy is connected.

If Gy is disconnected, then Gg has at least two components. Let z be a cut
vertex of Go. Then z is also a cut vertex of some component, say H;, of Go.
Let H; be another component of Go. If there is a cut vertex, say z’, in H,, then
Go + 2z’ possesses & cut vertices, and by Lemma 2.1, RDD(Go) < RDD(Gyp + 27°),
a contradiction. If there is no cut vertex in H,, then denote by G the graph
obtained from Gy by adding the edges between z and all vertices of H,. Thus
G, also possesses k cut vertices, and by Lemma 2.1, RDD(Gy) < RDD(Gy), a
contradiction again. Hence Gy is connected.

By Lemma 2.1, each block of Gg is complete, and each cut vertex of Gy is
contained exactly in two blocks. If each block of Gy has exactly two vertices,
i.e., each block is a single edge, then Gy is a tree with maximum degree two, i.e.,
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Go = P, = G, 2. Suppose in what follows that there is at least one block of Go
with at least three vertices.

Claim 2: If Gy # G, 1, then each pendent block of Gy is an edge.

If B, is a pendent block of Gg and |V(By)| > 2, we assume u is a vertex different
from the unique cut vertex, say w, of B,. Denote by B, the block adjacent to B,.
By deleting the edges between u and V(B;) — {u,w}, and adding all the edges
between V(B)) — {u,w} and V(B,) — w, we obtain a new graph G;. Notice that
the number of cut vertices of Gy is also k, and by remark 3.2 (if |V(B2)| = 2) and
remark 3.5 (if |V(B,)| > 2), we have RDD(Go) < RDD(Gy), a contradiction.

Choose a pendent path, say P, at v, with minimal length in Go. Obviously, v
lies in some block, say B, of Gy with at least three vertices. Note that v is not a
cut vertex of Gy if s = 1.

Claim 3: The component attached at any vertex of B is a path(possibly being
trivial).

For x € V(B), let H* be the component of G — E(B) containing x. Obviously,
H™ = P,. Suppose u is an arbitrary vertex of Band u # v. Obviously, Ng(v)\{u} =
Ng(u)\{v}. Let G* be the component of G — ((E(H™)u E(Py)) containing 4, which
surely contains the block B.

Suppose that H® is not a (possibly trivial) path. Then H* contains a block
with at least three vertices. By the proof of Claim 2, H® must contain a nontrivial
pendant path P, attached at some nontrivial block By of H*), where s > r. There-
fore H* contains a shortest path P, from u to the pendent vertex of P,, where
rzt+12s+1. 1If s = 1,then by Remark 3.2, we may get another graph with n
vertex and k cut vertices, which has a larger reciprocal degree distance, a contra-
diction. If s > 1 and r > s + 2, then by Lemma 3.1, we also get a contradiction.
So in what follows we only need to consider the case:s > 1 and r = s+ 1. In
this case, By share with B the common vertex u, and H® is obtained from By by
attaching P, at each of its vertices except u. Applying Lemma 3.4, we can get
another graph of order n with k cut vertices, which has a larger reciprocal degree
distance, a contradiction. Therefore H“ is a pendent path attached at u which
contains at least s vertices.

Claim 4: All paths attached at the vertices of B have almost equal lengths.

Obviously, t > 5. If t > s+ 2, then by Corollary 3.3, we may get another graph
with n vertices and & cut vertices, which has a larger reciprocal degree distance, a

313



contradiction. So H*) = P, or P,,;.
Consequently, we get G = G ;. [

4 Maximum reciprocal degree distance of graphs with

given number of cut edges

Similar to section 3, we first introduce two edge-grafting transformations to study
the mathematical properties of the reciprocal degree distance of G. Then using
these mathematical properties, we characterize the extremal graphs with the max-
imum RDD-value among all the graphs of order n with given number of cut edges.
In addition, we also provide an upper bound on the reciprocal degree distance in
terms of the number of cut edges. The following lemma is a special case of The-
orem 2.1 in [14].

LemMMa 4.1. Let wywy € E(G) be a cut edge in G, and G — w w, = G| U G, where
Gi is nontrivial and w; € V(G)) for i = 1,2. Assume that H is a graph obtained
Jrom G by identifying wy with w, (the new vertex is labeled as w) and attaching at
w a pendent vertex wy. G and H are shown in Fig. 4.1, Then RDD(G) < RDD(H).

Fig. 4.1 The graphs G and H in Lemma 4.1.

Lemma 4.2. Let Gy, Gy, G, be pairwise vertex-disjoint connected graphsandu,v €
V(Go) such that Ng,(u)\{v} = Ng,(W\{u}, w) € V(G)), wa € V(Gp). Let H
be the graph obtained from Go, G\, Gz by identifying u with w, and v with wa,
respectively. Let H\ be the graph obtained from Go, G\, G2 by identifying three
vertices u, wy, wa, and let Hy be the graph obtained from Go, G, G, by identifying
three vertices v,w\,wa2. H,H, and H, are shown in Fig. 4.2. Then we have
RDD(H;) > RDD(H) for i = 1,2.
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Fig. 4.2 The graphs H, H, and H, in Lemma4.2.

Proof: Denote Go—{u, v} by Gy, G1 —w) by G| and G2 -w» by G3, then V(H) =
V(H)) = V(H3) = V(G)UV(G})UV(G3)U{u, v}. Obviously, V(Gy), V(G)), V(G3)
and{u, v} are four vertex sets disjoint in pair. Since Ng,(u)\{v} = Ng,(W)\[u}, we
have dg,(u) = dg,(v) and for any x € V(Gp), dg,(u, x) = dg,(v,x). Note that
from H to H;(i = 1,2), the vertices which degree changed only are u and v. Also
in H, H, or H,, u and v have the same distance. For simplicity, we denote by
d(u,v) the distance between u and v in H, H, or H,. Similarly, d(x,u) (d(x,v),
respectively) denotes the distance between x and « (v, respectively) for any x €
V(Gy), d(wy, y) denotes the distance between wy and y for any y € V(G}), and
d(w, z) denotes the distance between w, and z for any z € V(G3). Therefore,

RDD(H,) — RDD(H)
= Z [d(x) Z (‘IH(I') dy(\“))l+ Z |d(}’) Z (m_d_ﬂfl’)ﬁ)]

xeV(G}) 2eV(G3) V(G €V(G3)
1 11
+ EVZG )ld(‘)(\e‘?;‘c (dn (5.2} dH(X.:)) yevz(:c-)(d”l("'z) dn(, '))+ dn.(:u) dy(zu)
he 1

bt dn X 3 fst T mhst T ploe
dy, (~ V)~ duzv) ! VG d(xu) YEVGY) d(wy,3) «V(G3) d(Wz) *+ Tuw

- 1 1 —l
d”(“)( Z d(x o+ VZ(:G.) Ty t _GVZ(:G,) dardond T d(u.v))
1 e 2
1 .1
+dp, (V)( Z d(x »+ %G. Tmrrdan T _s‘?%c ., Tov e Tum)

- R S 1
dH(V)( Z d(a v) \E‘G -y d(w).y)+d(u.v) + E%G' d(w2 2 d(u,v))

|
> (dGn(“) + dol (Wl) - dc.,( W VZ(IG;)( T ~ Tawedm) 46 (w2) Xe‘%c. (o

-A+ T Y @W+ AN s — Taes)
A" (VG eViGy Trmrdoms ~ doordon

- L 1
= dGl (Wl):el%cg)(d(wz':) - d(u,v)+¢l(w;.:))
> 0.

Similarly, we have RDD(H») — RDD(H) > 0. The result follows. [ ]
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THEOREM 4.3. Forany G € ?,,.k, where0 <k<n-1,
(Difk=n-2,then

3, 11
RDD(G)SEn —7n+5,

with equality holds if and only if G = S,_, UK.
) ifk + n—2, then

RDD(G) < n® - (;-k +2)n® + k% + 12—'k + Dn- (%/é +2k% + gk),

with equality holds if and only if G = G .

Proof: Let Gy be a graph with the maximum reciprocal degree distance in ?,,‘,(
and E; = (e, ey, ..., e} be the set of cut edges of Gy.

If k = 0, then by Lemma 2.1, Go = K, = Gnp.

If Kk = n- 1, then Gp must be a tree. By Lemma 4.1, we can easily get
Go = S,, = 6,,.,,_1.

If £k = n -2, then Gp must be the union of two trees. By Lemma 4.1, the
two trees are both stars, say S, and S,.,,, where | < m < n— 1. By a simple
calculation, we can get RDD(S; U Sn_m) = 3m? — 3nm + 3n® — 3n + 2. Hence,
whenm =l orm = n—1,RDD(S,, U S,-.n) gets the maximum value, that is
3n2 — Ln+5. In this case, Go = S,_| UK.

Suppose in what follows that | <k < n-3.

Firstly, by Lemma 2.1, we can get that each component of Go — E| is a clique.

In addition, we can get that Gy is connected. Assume Gy that is disconnected.
If Gy is a forest, then Go has at least three components. And by Lemma 4.1, each
component is a star. Then denote by G, the graph obtained from G, by adding the
edges between all centers of these components. Thus G; possesses & cut edges,
and by Lemma 2.1, RDD(Go) < RDD(Gy), a contradiction. If Gy is not a for-
est,then Gy has at least two components and there exists a clique which contains
at least three vertices in some component. Let H;, H, be two components of Gy,
and Q;(Q, respectively) be a clique of H,(H, respectively), where Q) contains at
least three vertices. Then denote by Gy, the graph obtained from Gy by adding the
edges between all vertices of @, and all vertices of Q,. Thus Gj, also possesses
k cut edges, and by Lemma 2.1, RDD(Go) < RDD(Gy), another contradiction.
Hence Gy is connected.
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Moreover, by Lemma 4.1, e, ez,...,e; must be the pendent edges in Go.
Hence, Gp must be the graph obtained from K,_; by attaching k pendent edges
to some vertices.

Finally, by Lemma 4.2, all these pendent edges in Go must be attached to one
common vertex. Thus Gg = G .

So we only need to calculate RRD(Gy). By the structure of Gux, we get

RDDGny) = k(1+22)+(n=1P+(n—k-Df(n—k=-1n-k—-1+ 5]
= = (Gk+2n? + (26 + B+ Dn~ (38 + 262 + 34).
This completes the proof. [ |
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