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Abstract

Suppose G is a graph. Let u be a vertex of G. A vertex v is called
an i-neighbor of u if dg(u,v) = i. A 1-neighbor of u is simply called a
neighbor of u. Let s and t be two nonnegative integers. Suppose f is
an assignment of nonnegative integers to the vertices of G. If the fol-
lowing three conditions are satisfied, then f is called an (s, t)-relaxed
L(2,1)-labeling of G: (1) for any two adjacent vertices u and v of G,
f(u) # f(v); (2) for any vertex u of G, there are at most s neighbors
of u receiving labels from {f(u) —1, f(u)+1}; (3) for any vertex u of
G, the number of 2-neighbors of u assigned the label f(u) is at most
t. The minimum span of (s, t)-relaxed L(2, 1)-labelings of G is called
the (s, t)-relaxed L(2 1)-labeling number of G, denoted by A3'}(G).
It is clear that AJ')(G) is the so called L(2, 1)-labeling number of G.
In this paper, t.he (s t)-relaxed L(2, 1)-labeling number of the hexag-
onal lattice is determined for each pair of two nonnegative integers
s and t. And this provides a series of channel assignment schemes
for the corresponding channel assignment problem on the hexagonal
lattice.

Keywords: channel assignment, L(2, 1)-labeling, (s, t)-relaxed L(2, 1)-
labeling, hexagonal lattice

1 Introduction

An L(2,1)-labeling f of a graph G is an assignment f of nonnegative in-
tegers to the vertices of G such that |f(u) — f(v)| > 2 if uv € E(G), and
|f(u) = f(v)| > 1 if dg(u,v) = 2, where dg(u,v) is the length (number of
edges) of a shortest path between u and v in G. The conditions in the defi-
nition involving distances are called the distance one condition and the dis-
tance two condition, respectively. Given a graph G, for an L(2, 1)-labeling
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f of G, elements of the image of f are called labels, and we define the
span of f, denoted by span(f), to be the difference between the maximum
and minimum vertex labels of f. The L(2, 1)-labeling number, denoted by
A(G), is the minimum span over all L(2,1)-labelings of G. Distance two
labelings of graphs were introduced by Griggs and Yeh (7] and were studied
extensively since then, see surveys [4, 8, 16].

L(2,1)-labeling was motivated by a kind of channel assignment prob-
lem. The graph (referred as the interference graph) describes the network
of transmitters. Labels of vertices correspond to channels assigned to trans-
mitters. To avoid interference, “close” transmitters (corresponding to ver-
tices that are at distance two) are required to receive different channels and
“very close” transmitters (corresponding to adjacent vertices) are required
to receive channels that are at least two channels apart. The main aim is
to minimize the span of channels assigned to transmitters.

However, problems may be arisen if the channel resource is limited
(or equivalently the channel span is restricted). Suppose we are given the
channel span A. Let G be the interference graph for a channel assignment
instance. If A(G) > A, then it is impossible to produce an L(2,1)-labeling
of G with span A. One solution to this problem is to construct a function f
from the vertices of G to integers 0,1,..., A such that f is as “close” to an
L(2,1)-labeling of G as possible. We next present a method to measure the
“distance” between a function and an L(2, 1)-labeling. We need a concept
called (s,t)-relaxed L(2, 1)-labeling of a graph which was introduced in [11].

Let G be a graph. Let u be a vertex of G. A vertex v is called an
i-neighbor (resp. i~ -neighbor) of v if dg(u,v) = i (resp. dg(u,v) < ).
A l-neighbor of u is simply called a neighbor of u. Let s and ¢t be two
nonnegative integers. Suppose f is an assignment of nonnegative integers
to the vertices of G. If the following three conditions are satisfied, then f
is called an (s, t)-relazed L(2,1)-labeling of G:

(1) for any two adjacent vertices v and v of G, f(u) # f(v);

(2) for any vertex u of G, there are at most s neighbors of u receiving
labels from {f(u) — 1, f(u) + 1};

(3) for any vertex u of G, the number of 2-neighbors of u assigned the
label f(u) is at most t.

The span of f, denoted by span(f), is the difference between the max-
imum and minimum labels used under f. Without loss of generality, we
assume that the minimum label of an (s,t)-relaxed L(2,1)-labeling is al-
ways 0. Then the span of f is the maximum vertex label. The mini-
mum span of (s,t)-relaxed L(2,1)-labelings of G is called the (s,t)-relazed
L(2, 1)-labeling number of G, denoted by z\;:‘I(G). An (s,t)-relaxed L(2,1)-
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labeling of a graph using labels in {0,1,...,k} is called an (s,t)-relazed
k-L(2,1)-labeling.

Let (s,t) and (s',t') be two pairs of nonnegative integers. If s < &'
and t < t', then we say (s,t) is less than or equal to (s',t'), and is written
as (s,t) < (s',t/). This defines a partial order on the set of all pairs of
nonnegative integers. We clearly have the following lemma.

Lemma 1.1 Let (s,t) and (s,t') be two pairs of nonnegative integers. If
(s,t) X (s',t"), then AJ4(G) > A3 Y (G).

Denote by A(G) the maximum degree of a graph G and A3(G) the
maximum number of 2-neighbors of a vertex of G. The following lemma is

easy to see.
Lemma 1.2 If s > A(G) and t > Az(G), then A3'1(G) = x(G) — 1.

Since ,\2;‘1’(0) = A2,1(G), for any pair (s,t) of nonnegative integers, the
following inequality holds.

x(G)-1< A;:i(G) < A2,1(G).

Thus if A > x(G) — 1 then there are some pairs (s,t) with /\;i(G) <
A. Let f be a function from the vertices of G to integers 0,1,..., A, the
distance from f to an L(2,1)-labeling can be measured by the maximal
pair (s,t) such that f is an (s,t)-relaxed L(2,1)-labeling of G. For the
given span ), the candidate relaxing schemes are those maximal pairs (s, t)
such that G has an (s, t)-relaxed L(2,1)-labeling. By comparing the levels
of interference of the corresponding (s, t)-relaxed L(2,1)-labelings for these
maximal pairs, one may choose the best one for the practical use. Thus in
some sense, one makes the full use of the given channels in this way.

We claim that /\Z"I(G) = )\gfi" 24(@) for s > 2t + 2. Suppose f is an
(s,t)-relaxed L(2,1)-labeling of G. It is clear that there are at most t + 1
neighbors of u receiving the label f(u) + 1 (resp. f(u) — 1). Therefore,
for each vertex u, there are at most 2¢ 4+ 2 neighbors of u that could have
labels adjacent to f(u). Note that a (2,0)-relaxed k-L(2,1)-labeling of a
graph G is actually a (k + 1)-coloring of G? (the square of G) using colors
0,1,...,k. It follows that A33(G) = A3}(G) = x(G?) - 1 for s > 2.

Lattices are frequently used models for channel assignment problems.
Distance two labelings of lattices (including hexagonal, square and triangu-
lar lattices) have been investigated extensively, see [2,3,6,9,10,13-15,17].
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For any two nonnegative integers s and t, the (s,t)-relaxed L(2,1)-
labeling numbers of the square lattice and the triangular lattice are de-
termined in [5] and [12), respectively. For all nonnegative integers s and
t, lower and upper bounds of the (s, t)-relaxed L(2,1)-labeling number for
trees are obtained in [11]. These bounds are proved to be sharp.

In this paper, we determine the (s,t)-relaxed L(2,1)-labeling number
of the hexagonal lattice for any two nonnegative integers s and ¢{. And
this provides a series of channel assignment schemes for the corresponding
channel assignment problem on the hexagonal lattice.

2 Main theorem

Let e; = (1,0)T, ez = (0,1)T and f = (1/2,v/3/2)7 be three vectors in the
Euclidean plane. The trianguler lattice I's is an infinite graph with vertex
set {re; + yf : z,y € Z}, and with two different vertices (z1,91), (z2,y2)
adjacent if the Euclidean distance between them is 1. The square lattice
T4 is an infinite graph with vertex set {ze; + yez : z,y € Z}, and with
two different vertices (z1,¥1), (z2,y2) adjacent if the Euclidean distance
between them is 1. If two vertices (z1,y1) and (z2,%2) in T'; (1 = 3,4, 6)
are adjacent, then we write the edge joining them by (z1,y;)(z2, y2).

The hexagonal lattice I's is the subgraph of I'3 induced by the vertex
set V(I'3)\ {(z,z+ 3y +1): z,y € Z}. One can also view the hexagonal
lattice I's as a spanning subgraph of 'y with edge set E(['4) \ E*, where
E* ={(z,y)(z+1,y): z,y € Z and z +y is odd}. Please see Figure 1 for
illustrations. We shall use the coordinates to express the vertices of I'g in
the proof of the following theorem.

i
\T'/
\ K4
T
v~

/ \ / ol

Figure 1: Two drawings of the hexagonal lattice I'g.

322



Note that any vertex of I's has three neighbors and six 2-neighbors, we
only need to deal with (s,t)-relaxed L(2,1)-labelings for 0 < s < 3 and
0 <t < 6. For two integers a and b with a < b, let [a,b] denote the set of
- integers a¢,a + 1,...,b.

Observe that in an L(2, 1)-labeling f of a graph G with span A(G) +1
vertices of maximum degree must receive labels in {0, A(G) +1}. It follows
that Ap1(T's) = 5. On the other hand, f(i,7) = 3¢ +2j (mod 6) is an
L(2,1)-labeling of T'¢ with span 5. Thus A;,;(I's) = 5. See also (1] for this
result. Therefore /\g:‘l)(f‘s) = A, (") =5.

1 ifs=3,t=6,

ifs=3,t€[2,5), orse0,2],t =86,

ifs=0,t€[4,5), ors=1,t€[2,5], or
s=2,t€(0,5], ors=3,te (0,1},

4 ifs=0,t€2,3], ors=1,t€(0,1],

5 ifs=0,te(0,1].

w N

Theorem 2.1 23](Te) =

Proof. (1) Since I'; is bipartite, x(I's) = 2 and so ,\g;?(re) =x(l¢)-1=1.
Note that the 2-coloring of I is unique up to the permutation of colors.
It follows that )\;:tl(l"s) > 2 for all pairs (s,t) # (3,6).

(2) For this case, by Lemma 1.1, it suffices to show that ,\2;?(1‘6) <2
and /\3:3(1"6) < 2. Suppose c is a 2-coloring of I'¢ using colors 1 and 2.
For any vertex v of g, let f(v) = 0if ¢(v) = 1 and f(v) = 2 if ¢(v) = 2.
Then it is clear that f is a (0, 6)-relaxed 2-L(2,1)-labeling of I's. Thus
233(Te) < 2. Let f(i,5) = 2- [(i+35)/2) (mod 3). It is straightforward
to check that f is a (3,2)-relaxed 2-L(2, 1)-labeling of I'¢ (see Figure 2 for
an illustration). Therefore )\g:f(l"s) <2

®
1 I I
®
- (I
oo, . " T
@M b Lb b bp

Figure 2: A (3,2)-relaxed 2-L(2, 1)-labeling of Ts.

(3) By Lemma 1.1, it suffices to show that A\3}(Ts) > 3 for (s,t) €
2,1
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{(2,5),(3,1)} and A3'4(T) < 3 for (s,t) € {(0,4),(1,2),(2,0)}.

We claim that A3'3(T's) > 3. Suppose /\2:‘;’(1"6) < 2. Let f be a (2,5)-
relaxed L(2,1)-labeling of I's with span 2. If some vertex u is assigned the
label 1, then each neighbor of © must receive label 0 or 2. It follows that u
has three neighbors having labels adjacent to f(u), which is a contradiction.
Thus no vertex is assigned label 1. Let u be a vertex with label 0. Then
the three neighbors of © must have the same label 2, implying that the six
2-neighbors of u must have the same label as u. This is a contradiction.
Thus A2:3(Ts) > 3.

Now we verify that A3'}(I's) > 3. Suppose that A31(Ts) < 2 and let
f be a (3,1)-relaxed L(2,1)-labeling of I'¢ with span 2. If the label 1
is not used by f, then as in the previous paragraph, the six 2-neighbors
of a vertex u with label 0 must have the same label 0 as u, implying a
contradiction. Thus there is a vertex, say «, with label 1. Please refer to
Figure 3 for names and labels of vertices around u. Since f is a (3,1)-
relaxed L(2,1)-labeling of I's, two of the three neighbors must have the
same label 0 (or 2) and the remaining one must have the label 2 (or 0).
By symmetry, we may assume that u;,u; are labeled 0 and uj is labeled 2.
Then f(v), f(w), f(z), f(y) # 0. Since u has at most one 2-neighbor labeled
1 as u, f(v) = f(w) = 1 will not happen. If {f(v), f(w)} = {1,2}, then
f(2) = 0 and z has two 2-neighbors u; and ug with label 0, a contradiction.
Therefore f(v) = f(w) = 2. Since f(z) # 0 and f(w) = 2, we must have
f(z) = 1, otherwise v has two 2-neighbors having the same label as v.
Similarly, we have f(y) = 1. But this is a contradiction since then x and y
are two 2-neighhors of u with the same label as w.

Figure 3: Lower bound about A3'}(Ts).

Next we give a (0, 4)-relaxed 3-L(2, 1)-labeling f of I's in Figure 4 and
a (1,2)-relaxed 3-L(2,1)-labeling g of I's in Figure 5. The two labelings
just satisfy: f(0,0) =0, f(1,0) = 3, f(2,0) =0, f(3,0) =3, f(4,0) =1,
f(5,0) = 2 and f(i+6,7) = f(¢,7), f(¢+ 3,5+ 1) = f(i,j) for any two
integers i and j. ¢(0,0) =0, g(1,0) = 0, g(2,0) = 3, g(3,0) = 3, g(4,0) = 2,
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9(5,0) = 1 and g(i + 6,5) = g(¢,5), 9(¢ + 3,5 + 1) = g(3,5) for any two
integers 7 and j.

[y A
Y Y
0w o3 0 3 12 0 0 0 3 3 2 1 0
L ] ®
3000 R B o p 3 R 01 o o B P
p [ ]
3 0 B3 g 2 [ «x 0o 0 3B 2 I jo«x
0oy, N N T ool ) *
% b bbb bb B hbbb b
[ ] [}
Figure 4: A (0,4)-relaxed 3- Figure 5: A (1,2)-relaxed 3-
L(2,1)-labeling of Tg. L(2,1)-1abeling of T's.

A2%(Ts) < 3 is trivial since A3(T's) = x(T'2) — 1 and it is easy to see
that x(['?) = 4.

(4) By Lemma 1.1, it suffices to show that A;:‘I(I‘s) > 4 for (s,t) €
{(0,3),(1,1)} and A3"%(Te) < 4 for (s, t) € {(0,2),(1,0)}.

Firstly, we verify that )\g:‘?(l"s) > 4. Suppose /\gﬁ(l‘s) <3. Let fbhea
(0, 3)-relaxed L(2,1)-labeling of I's with span 3. We observe that if some
vertex is assigned the label 1 (or 2), then its three neighbors must receive
the same label 3 (or 0). We claim that if some vertex is assigned the label
1 (or 2), then none of its 2-neighbors can receive the same label 1 (or 2).
Otherwise, if a vertex u and one of its 2-neighbor v are assigned the same
label 1 (or 2), then the common neighbor of u and v, say w, must receive
the label 3 (or 0). Since all neighbors of u and v have label 3 (or 0), at least
four 2-neighbors of w have the same label 3 (or 0). This is a contradiction.
Hence, if some vertex is assigned the label 0 (or 3), then at least two of its
three neighbors must receive the label 3 (or 0). Note that using only the
two labels 0 and 3 one cannot produce a (0, 3)-relaxed L(2,1)-labeling of
Ts. Thus f assigns 1 or 2 to some vertex of I's. Without loss of generality,
assume there is some vertex u with f(u) = 2. Then the three neighbors
of u (u;,uz and us) are assigned the same label 0. Please see Figure 6 for
the locations of these vertices. Let u4 and us be the other two neighbors
of u;. Then f(u4) = f(us) = 3. For the same reason, one of the other two
neighbors of u4 (ug and u7) and one of the other two neighbors of us (ug
and ug) must receive the label 0. It follows that at least four 2-neighbors of
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u; receive the same label 0 as u,, which is a contradiction. So /\g:‘;’ (T'e) > 4.

Figure 6: Lower bound about A3 (Ts).

Secondly, we prove that /\;:}(F 6) > 4. Suppose that /\é:{(f‘s) < 3. By
symmetry, if all (1, 1)-relaxed 3-L(2, 1)-labeling of I's does not use the label
1, then all (1,1)-relaxed 3-L(2,1)-labeling of I's does not use the label 2.
However, only using the labels 0 and 3 one can not get a (1,1)-relaxed
L(2,1)-labeling of I's. So there exist a (1,1)-relaxed 3-L(2,1)-labeling f of
['s which uses the label 1. Suppose f(u) = 1 for some vertex u of ['s (See
Figure 7). Since at most one neighbor of u can receive the label 0 or 2 and
the three neighbors of u can not have the same label, by symmetry, we only
need to deal with the following two cases.

Case 1. f(u1) = f(u2) =3 and f(uz) =2.

Since f(uz) = 2 and f(u) = 1, we have f(v1) = f(v2) = 0. This
together with f(u1) = f(uz) = 3 imply that f(zy), f(z2), f(va), f(v2) €
{1,2}. If f(z1) = 1 and f(z2) = 2, then z; would have two neighbors
receiving labels adjacent to f(z;), a contradiction. Therefore f(z;) = 2
and f(z3) = 1. Similarly, we must have f(y;) = 2 and f(y2) = 1. But this
is a contradiction since then u3 has two 2-neighbors having the same label
as itself.

Figure 7: Case 1. Figure 8: Case 2.

Case 2. f(u) = f(u2) =3 and f(u3z) =0.
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Please see Figure 8 for locations of vertices in the proof of this case. If
f(z2) =1, then z; has two neighbors with label 3, implying that u; has two
2-neighbors with the same label 3 as itself, a contradiction. So f(z2) # 1.
If f(z2) = 2, then zo has two neighbors receiving label 0, implying that
f(z1) = 0 and x; has two 2-neighbors with the same label 0 as itself,
which is a contradiction. Hence f(z2) # 2. It follows that f(z2) = 0
and f(z1) € {1,2}. Similarly, we have f(y2) = 0 and f(y1) € {1,2}.
Since f(us) = 0 and f(u) =1, f(v1) # 1 and f(ve) # 1. If f(u1) = 2,
then f(z;) = 1 and so z; has two neighbors receiving the labels adjacent
to f(z1), a contradiction. Thus f(v;) # 2 and so f(v;) = 3. Similarly,
f(v2) = 3. We claim that f(z;) = f(y1) =2 and f(z) = f(y) = 0. In fact,
if f(x1) = 1, then vertex z; has two neighbors receiving label 3, implying
that v; has two 2-neighbors receiving the same label 3 as itself. Thus
f(z1) # 1. And so f(z1) = 2, implying f(z) = 0. Similarly, f(y1) = 2 and
f(y) = 0. Now look at the two vertices w; and w,. Since f(z) = f(x2) =0,
f(wy) # 0. If f(w;) = 1, then w; has two neighbors with label 3, implying
that u; has two 2-neighbors with the same label 3 as itself. Thus f(w;) # 1.
It follows that f(w;) = 2. Similarly, f(w;) = 2. Then both w; and ws
have two neighbors receiving the label 0. It follows that the vertex which is
the common neighbor of w; and wy has two neighbors receiving the same
label 0, a contradiction. Therefore Aé:}(I‘s) >4

Thirdly, let f(i,5) =2- [(¢ +35)/2] (mod 6). It is straightforward to
check that f is a (0, 2)-relaxed 4-L(2, 1)-labeling of I's. See Figure 9 for an
illustration. Thus Ay'$(T's) < 4.

Figure 9: A (0,2)-relaxed 4-L(2, 1)-labeling of [s.

Finally, let f(i,5) =2-{(1 —i+35)/2] (mod 5). It is straightforward
to check that f is a (1, 0)-relaxed 4-L(2, 1)-labeling of I's (see Figure 10 for

327



an illustration). Therefore )\21,:‘1’(1‘6) <4
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Figure 10: A (1,0)-relaxed 4-L(2,1)-labeling of I'e.

(5) Since ,\2;‘1’(1‘ 6) = A(T's) = 5, we only need to prove that )\g:}(l"s) > 5.
Suppose to the contrary that Ag:{(l"s) < 4. Let f be a (0,1)-relaxed 4-
L(2,1)-labeling of I's. We claim that the label 2 is not assigned to any
vertex of I's by f. Suppose that f(u) = 2 for some vertex u of I's. See
Figure 11. Then the three neighbors v,u;,v; must receive the labels 0
or 4. By symmetry, we may assume that f(v) = 4, f(v1) = f(v;) = 0.
Then the optional labels for u; are 0,1,2. This implies that f(u4) # 1.
Since f(u1) = f(v1) =0, f(ug) # 0. So the optional labels for 14 and us
are 2,3,4. It follows that f(uz) # 3 and f(u4) # 3. If f(us) = 2, then
f(uq) = 4 and f(2) = 0 or 4. However, both f(v,) = f(u1) = f(z) = 0
and f(v) = f(uq) = f(z) = 4 are illegal for f. Therefore f(u3) = 4,
implying f(u4) = 2 and f(ug) = 0. Similarly, we have f(v3) =4, f(vq) =2
and f(v2) = 0. Since f(uz) = f(v2) =0, f(z1) # 0 and f(y1) # 0. So
f(z1) = f(y1) = 4. Consider labels of vertices around u, (resp. v4), by
similar consideration of vertices around u, we get f(z2) = 4, f(z3) = 2

and f(zq4) = 0 (resp. f(y2) = 4, f(y3) = 2 and f(ysa) = 0). But this
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is a contradiction since f(v) = f(22) = f(y2) = 4. So the label 2 is not
assigned to any vertex of I'g by f.

0gvi Ogu! z

2°ys 2%Xs
Figure 11: Lower bound about Ag;i(l"a).

By the above discussion, f uses at most four labels 0,1,3 and 4. Since
the label 0 must be used by f, there is a vertex, say u, with f(u) = 0.
Then the three neighbors of u must have labels from {3, 4}. It follows that
the six 2-neighbors of u must have labels from {0,1}. Since at most one of
its 2-neighbors is labeled 0, at least 5 of them are labeled 1. Let w be a
2-neighbor of u that is at distance greater than 2 from the the 2-neighbor
of u with label 0 if there is a 2-neighbor of u with label 0, otherwise let w
be any 2-neighbor of u. Then it is clear that w has two 2-neighbors having
the same label 1 as itself. Hence ,\‘2’;{(1“6) > 5.

The proof of the theorem is completed. [ |

The results in the main theorem is summarized as the following table.

Aa':t

21N lo|1]2]3{4({5]6
S

0 |5|5([4]4]3|3]2
1 |4]4(3(3|3[3]2
2 |3]|3(3[3[3[3]|2
3 |3|3l2]2]2|2][1

For example, let the interference graph be I's. Suppose the given chan-
nel span is 3. Then the maximal pairs (s,t) such that I'¢ has an (s,t)-
relaxed 3-L(2,1)-labeling are (2,0), (1,2) and (0,4). The corresponding
(s,t)-relaxed 3-L(2,1)-labelings are presented in the proof of the theorem.
Since in practice the total interference level of an assignment of channels
can be computed in some way, the best choice may be made after compar-
ing the total interference levels of the (s, t)-relaxed 3-L(2,1)-labelings for
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(s,1) € {(2,0),(1,2),(0,4)}.

References

[1] T. Calamoneri and R. Petreschi L(h,1)-labeling subclasses of planar
graphs, J. Parallel Distrib. Comput. 64 (2004) 414-426.

(2] T. Calamoneri, Optimal L(h,k)-labeling of regular grids, Discrete
Math. Theor. Comput. Sci. 8 (2006) 141-158.

(3] T. Calamoneri, S. Caminiti, and G. Fertin, New bounds for the L(h, k)-
number of regular grids, Int. J. Mobile Netw. Design Innovat. 1(2)
(2006) 92-101.

[4] T. Calamoneri, The L(h,k)-labeling problem: an updated survey and
annotated bibliography, Comput. J. 54(8) (2011) 1344-1371.

[5] B. Dai and W. Lin, On (s,t)-relazed L(2,1)-labelings of the square
lattice, Inf. Process. Lett. 113 (2013) 704-709.

[6] J. Goodwin, D. Johnston, and A. Marcus, Radio channel assignments,
UMAP J. 21 (2000) 369-378.

[7] J.R. Griggs and R.K. Yeh, Labeling graphs with a condition at distance
2, SIAM J. Discrete Math. 5 (1992) 586-595.

(8] J.R. Griggs and X.T. Jin, Recent progress in mathematics and engi-
neering on optimal graph labelings with distance conditions, J. Combin.
Optim. 14 (2-3) (2007) 249-257.

[9] J.R. Griggs and X.T. Jin, real number channel assignments for lattices,
SIAM J. Discrete Math. 22(3) (2008) 996C1021.

[10] J. van den Heuvel, R.A. Leese, and M.A. Shepherd, Graph labeling
and radio channel assignment, J. Graph Theory 29 (1998) 263-283.

(11) W. Lin, On relazed L(2,1)-labeling of graphs, manuscript, 2012.

[12] W. Lin and B. Dai, On (s, t)-relazed L(2,1)-labelings of the triangular
lattice, to appear in J. Comb. Optim. (2013). DOI: 10.1007/s10878-
013-9615-y.

[13] W. Lin and J. Wu, On circular-L(2,1)-edge-labeling of graphs, Tai-
wanese J. of Math. 16(6) (2012) 2063-2075.

330



[14]) W. Lin and J. Wu, Distance two edge labelings of lattices, J. Combin.
Optim. 25(4) (2013) 661-679.

(15) W. Lin and P. Zhang, On n-fold L(j, k)- and circular L(j, k)-labeling
of graphs, Discrete Appl. Math. 160 (16-17) (2012) 2452-2461.

[16] RK. Yeh, A survey on labeling graphs with a condition at distance
two, Discrete Math. 306 (2006) 1217-1231.

[17) P. Zhang and W. Lin, Multiple L(j,1)-labeling of the triangular lat-
tice, to appear in J. Combin. Optim. (2012). DOI: 10.1007/s10878-

012-9549-9.

331



