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Abstract

The crossing number problem is in the forefront of topologi-
cal graph theory. At present, there are only a few results concerning
crossing numbers of join of some graphs. In this paper, for the special
graph @ on six vertices we give the crossing numbers of its join with
n isolated vertices as well as with the path P, on n vertices and with
the cycle C...
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1 Introduction

Let G be a simple and undirected graph with the vertex set V=V(G) and
the edge set E=FE(G). The crossing number cr(G) of the graph G is defined
as the minimum number of edge crossings in a drawing of G in the plane. A
drawing with the minimum number of crossings(an optimal drawing) must
be a good drawing, meaning that no edge crosses itself, no two edges cross
more than once, and no two edges incident with the same vertex cross. Let
D be a good drawing of the graph G, we denote the number of crossings
in D by erp(G).Let G; and G; be edge-disjoint subgraphs of G, we denote
by erp(Gi, G;) the number of crossings between edges of G; and edges of
G;,and by crp(G;) the number of crossings among edges of G; in D.Let H
be a subgraph of G, the restricted drawing D|y is said to be a subdrawing
of H.In the proofs of the paper, we will often use the term “region” also in
nonplanar drawings. In this case,crossings are considered to be vertices of
the “map”. The following Theorem and Proposition are trivial observation.
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Jordan Curve Theorem!!): Any simple closed curve J in the plane par-
titions the rest of the plane into two disjoint arcwise-connected open sets
called the interior and the exterior of J. We denote them by int(J) and
ext(J), and their closures by Int(J) and Ezt(J), respectively. Clearly I'nt(J)
N Ezxt(J) = J. The Jordan Curve Theorem implies that every arc joining a
point of int(J) to a point of ext(J) meet J in at least one point.
Proposition 1.1. Let D be a good drawing of a graph G, G;,G; and G
are three mutually disjoint edge subsets of G, then

(1) C'I'D(Gi U G]) = CY’D(G,') =+ C‘I‘D(Gj) + CTD(G,', GJ)

(2) erp(Gi U Gj,Gr)=crp(Gi, Gr)+erp(Gj, Gi).

Proposition 1.2. If G, is a subgraph of Gs,then ¢r(G1) < er(G2).
Proposition 1.3.Let G; be a graph homeomorphic to Gz, then cr(G;) =
er(Ga).

Computing the crossing number of a given graph is,in general,an elu-
sive problem.In fact,determining the crossing number of a graph is NP-
completelz], and exact values are known only for very restricted classes of
graphs. At present the crossing number is not even known exactly for com-
plete or complete bipartite graph. The crossing number of the complete
bipartite graphs K,,» was computed by Kleitman!3), More precisely, he
proved that

er(Kma) = PN IG IS5 i m<s. (1)

Where the number |%]{25L]|2]|252] is often denoted by Z(m,n)(for
any real number z,|z] denotes the maximum integer that is no more
than x).So it is important to study crossing numbers of join product of
graphs. Kulli and Muddebihal®! gave the characterization of all pairs of
graphs the join of which is plannar graph. It thus seems natural to inquire
about crossing numbers of the join of graphs.

Let G; and G; be two disjoint graphs, the join product of two graphs of
G and G2, denoted by Gy VGy, has vertex set V(G VG3) = V(G )UV(Gs)
and edge set E(G, V G2) = E(G1) U E(G2) U {e(w,v) | Vu € V(G,),and
v € V(G2)}, (where e(u,v) denotes the edge connecting vertex u and ver-
tex v). Let nK; denote the graph on n isolated vertices and let P, and C,
be the path and the cycle on n vertices, respectively. In {5] M. Kles¢ gave
the exact values of crossing numbers for join of two paths, join of two cy-
cles,and for join of path and cycle. Moreover, the exact values for crossing
numbers of G V P, and G V C,, for all graphs G of order at most four are
given. Recently, M.Kle3&®! proved that the crossing numbers of join of a
special graph on six vertices with Path P, and cycle C,.In this paper, we
determine the crossing number for the join of the graph nK; with the
special graph @ on six vertices shown in Fig.1.
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Figure 1: The graph Q on six vertices.

This result enables us, in Section 3 and 4, to give the crossing numbers
of QV P, and QV C,,. Our method is simple and differs from M.Kles¢. The
following theorems are our main results:

Theorem 2.1 cr(Q VnK;) = Z(6,n)+n forn > 1.
Theorem 3.1 cr(QV P,) =Z(6,n)+n+1forn>2.
Theorem 4.1 cr(Q VvV C,) = Z(6,n) +n+3 for n > 3.

2 The Crossing Number of Q VnKj;

Let the six vertices of Q be v, vs, ..., Vs, and the 3-degree vertices be v; and
v4. The graph Q V nK consists of one copy of the graph Q and n vertices
t1,ta, ..., tn, where every vertex t;,i = 1,2, ...,n,is adjacent to six vertices
of Q.For i = 1,2,...,n,let T; denote the subgraph induced by six edges
incident with the vertex ¢;(Fig.3).In Fig.2 one can easily see that

n

QVnKi = QUKsn, BQVnKy) = EQU({ BT) )

Figure 2: A good drawing of Q V nKj.

Lemma 2.1. er(Q V K;) = 1,er(Q V2K,) = 2.

Proof. The drawing in Fig.2 shows that cr(QV K;) < 1 and er(QV2K,) <
2. Moreover Q V K contains a subgraph homeomorphic to complete bipar-
tite graph K3,3;Q V 2K, contains a subgraph homeomorphic to complete
tripartite graph K3 3 2, whose crossing number is 2 (see (7]). By Proposition
1.3, hence,cr(Q vV K)) = 1,er(Q V 2K;) = 2.

Lemma 2.2. Let D be a good drawing of Q V2K, if erp(T1, T2) = 0, then

359



crp(Q,ThuTs) > 2.

Proof. Let (T3 UT3) be the subgraph induced by the edges of T) UT5. Since
crp(T1,T;) = 0,and in good drawing two edges incident with the same
vertex can not cross, the subdrawing of (T UT3) induced by D induces the
map in the plane without crossing as shown in Fig.3(b).

As the two 3-degree vertices of Q are v; and v4,let E(v;) denote the
edges incident with v; in Q, thus,crp(E(v1), T1 UTs) 2 1,crp(E(vy), TH U
T5) > 1. Moreover, the two vertices v; and v4 are non-adjacent, therefore,
ch(Qy Tl ) T2) >2.

(e) (b)

Figure 3: The drawing of T; and (T} U T3).

Theorem 2.1 cr(Q V nK;) = Z(6,n) +n for n > 1.

Proof. The drawing in Fig.2 shows that cr(QVnK;) < Z(6,n)+n and that
the theorem is true if the equality holds. We prove the reverse inequality
cr(QV nK,) > Z(6,n) + n by induction on n. By Lemma 2.1, the theorem
is true for n = 1,2. Suppose now that for n > 3

er(QV (n—2)Ky) > Z(6,n—2) + (n — 2). (3)
and consider such a good drawing D of Q V nK; that
crp(Q VvV nKy) < Z(6,n) + n. (4)

Our next analysis depends on whether or not there are different sub-
graphs T; and T; that do not cross each other in D.
Case 1. Assume that there are two different subgraphs T; and T},i,j =
1,2,...n,i # j,such that crp(T;, T;)=0.

Without loss of generality, let erp(Tn,Tn-1) = 0. When1 < i <n—2,as
(TaUT,,_1UT;) is isomorphic to complete bipartite graph K3 ¢, moreover, by
formula (1) er(K3,6) = 6, we have

erp(TaUTao1,Ty) = erp(Kse) — erp(Ta UTa 1) —erp(Ti) 2 6. (5)

Since Q VnKi = (QUTaUTn y U "QTT) and (QU (’DfT,-)):—Q V(n—
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2)K,, using Proposition 1.1 and Lemma 2.2, we have

n—2
erp(@QVnK,) = ep(QUT,UT,1U 'Ul T:)

n—2
crp(Tn UTh-y, .U Ti)+ crp(Th UTn-1,Q)

erp(QU U T+ erp(T,UTa-1)

6(n — 2)+2+Z(6n 2)+(n—2)
Z(6,n) + n.

ViV +

This contradicts (4).
Case 2. For all 4,7 = 1,2, ...n, © # j, there holds crp(T3,T;) > 1.
Using Proposition 1.1 and (2) together with c¢r(Kg ) = Z(6,n), we have

crp(QVnK)) = crp(Ken)+crp(Q)+ crp(Ken, Q)
> Z(6,n) + crp(Q) + crp(Ken, Q).

This, together with the assumption (4),implies that
crp(Q) + erp(Ken, Q) < m. (6)

and hence, in D there is at least one subgraph T; which does not cross Q.
Without loss of generality, let crp(Q,T,) = 0.In D there is at least one
subgraph T;,1 € {1,2,...,n — 1}, for which

ep(QUT,,T;) < 3. 7
Otherwise, crp(QUT,,T;) 2 4,as Q VnK| = Kg n—1 U (Q UT,), we have

crp(Q VvV nK,) erp(Ken-1) +crp(QUT,) + erp(Ken-1,QU Ty)

Z6,n—1)+1+4(n—-1)
Z(6,n) +n.

VIV I

(8)
This contradicts (4).

Considering now the restricted drawing D|q, since crp(Q, T,) = 0, then,
the restricted drawing D]q divides the plane in such a way that there is a
disk C such that the vertices of @ are all located on the boundary of C, and
the edges of @ are all located in the inner of C. Furthermore, as D is a good
drawing and the edges of Q can be presented by straight lines, vertex ¢,, and
the edges incident with t,, are all located on the outside of C. Since Q has
two 3-degree vertices v, and v4. Regarding to the symmetry of @, firstly, we
have drawn all the six vertices of Q on the boundary of C and all possibil-
ities of the subdrawing of E(v;) as dotted line as shown in Fig.4.
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As the two vertices of v;,v4 are non-adjacent, according to the charac-
terization of Q,the vertex v4 can only be vertex a or b in Fig.5. Connecting
the three edges of v4.It is easy to see that in the inner of C in Fig.5(1-
5), there are at most three vertices of Q on the boundary of the arbitrary
region. Only in Fig.5(6),there is a region w with 4 vertices of Q on its
boundary. Since crp(Q,T5) = 0,it is easy to see that erp(Q) > 1.By (6)

we have that
crp(Ken, Q) <n—1. 9)

Figure 4: The drawing of D|q.

Case 2.1. Considering the drawing in Fig.4(1-5). Since ¢rp(Q,T,) =0,
adding the edges of T, to outside of the C,it is easy to see that in these
cases there are at most three vertices of QUT, on the boundary of the arbi-
trary region in QUT,,. Hence, crp(QUT,,T;) > 4, according to (8),crp(QV
nK,) 2 Z(6,n) + n.This contradicts (4).

Case 2.2. Considering the drawing in Fig.4(6). Since ¢rp(Q,T) = 0, adding
the edges of T}, to outside of the C,its accordant drawing is Fig.5.

Figure 5: The subdrawing of Q U T, of Fig.4(6).

(1) When vertices t;, 7 € {1,2,...,n—1},are located in the region labeled
as w.Since the region w contains four vertices of Q,then crp(Q,T;) >
2.Using erp (T3, T;) 2 1, we have crp(QUT,, T;) > 3. Let r be the number
of vertices t;,¢ € {1,2,...,n—1},which satisfy crp(QUT,, T;) = 3.By (7) at
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least one subgraph T3,i € {1, 2,...,n — 1}, for which erp(QUT,,T;) < 3,50
we have r > 1.

(2) When the vertices t;,4 € {1,2,..,n — 1},are located in the re-
gion labeled as a. We have crp(Q U Ty, T;) > 5, moreover when crp(Q U
T.,T:) = 5 we have crp(Q,T;) > 1.Let s; be the number of vertices
ti,i € {1,2,...,n — 1}, which satisfies crp(QUT,, Ti) = 5; s2 be the number
of vertices t;,i € {1,2,...,n — 1}, which satisfies erp(QU T, T3) > 5.

(3) When the vertices t;,i € {1,2,...,n — 1},are located in the other
regions.We have crp(QUT,, T;) > 6. Then, n—r—s;—s2—1 be the number of
vertices t;,1 € {1,2, ...,n— 1}, which satisfies crp(QUT,, T;) > 6. Hence, we
have

crp(Q V nKj) crp(Ken-1) +crp(QUTy) + crp(Ken-1,Q UTy)
Z(6,n—1)+1+3r+5s; +6s2
6(17.—1‘—31—-82—1)

Z(6,n) —6[25L] +1+6(n—1)—3r —s;.

This, together with the assumption (4), gives

+vi

3Ir+ s >6(n—1)—6|_n—;—1_|—n+1=6l_gj -(n-1).

When n is odd: 3r+s; > 3(n—1)—(n—1) = 2(n—1); On the other hand, by
(9) we have 27 + s; < n — 1 and the inequality

2(2r+ ) <2(n—1)<3r+s
implies that
r+35 <0.

This contradicts r > 1 and s; > 0.

When n is even:3r + s; > 3n — (n — 1) = 2n + 1,which implies that
3r+5s;—1 > 2n; On the other hand, 2r+s; < n—1,implies that 2r+s;+1 <
n and the inequality

22r+s1+1)<2n < 3r+s5; -1

implies that
r+s+3<0.

This contradicts 7 > 1 and s; > 0. Hence, we have
erp(@VnKy) > Z(6,n)—62%1]+1+6(n—1)-3r—s
> Z(6,n) - 6|25t] +1+6(n—1)~(6]3] — (n—1))
> Z(6,n)+n.

This contradicts (4).
Thus formula (4) doesn’t hold. So, we have shown that er(Q V nK;) >
Z(6,n) + n. Hence, cr(Q V nK1) = Z(6,n) + n. This completes the proof.C]
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3 The Crossing Number of Q V B,

Let P, denote the path on n vertices of QV P, which does not belong to the
subgraph @, we will use the same notation as above. Obviously, The graph
Q V P, contains Q V nK) as a subgraph.One can easily see that

QV Po=QUKenU P, E(@QV Pa) = EQ)U(| ) ET)) UE®).

i=1

Lemma 3.1 Let D be a good drawing of mK, V Cn,m > 2,n > 3,in
which no edge of C,, is crossed, and C,, does not separate the other vertices
of the graph. Then, for all 1 < 7 # j < m,two subgraphs T; and T; cross
each other in D at least [3|252] times.

As the graph QV P is QV K;.So er(Q V Py) = er(Q V K;) = 1,the
case n = 1 is trivial. For n > 2 we have the next result.
Theorem 3.1 cr(Q V P,) =Z(6,n) +n+ 1 forn > 2.
Proof. Fig.2 shows the drawing of the graph Q vV nK,; with Z(6,n) + n
crossings. One can easily see that in this drawing it is possible to add n —1
edges which form the path P, on the vertices of nK in such a way that only
one edge of P, is crossed by an edge of Q.Hence,er(QV P,) < Z(6,n)+n+
1. To prove the reverse inequality er(Q V P,) > Z(6,n) + n + 1, we assume
that there is a good drawing D of the graph @ V P, such that

crp(QV FP,) < Z(6,n)+n+1. (10)

As the graph QV P, contains QVn K as a subgraph. By Theorem 2.1, cr(QV
P,) > Z(6,n) + n and therefore, no edge of the path P, is crossed in D.

For n = 2,in Fig.2 it is easy to see that cr(Q V P,) < 3.Moreover
Q V P, contains a subgraph homeomorphic to complete tripartite graph
K3 3,1, whose crossing number is 3(see [8]). Hence, cr(Q V P,;) = 3. The the-
orem is true for n = 2.

Assume n > 3, we divide the problem into several cases to prove that
crp(QV P,) > Z(6,n) + n + 1. Consider the subdrawing D* of Q induced
by D.Since crp(P,) = 0,the subdrawing D* divides the plane in such a
way that all of P, is located in one region.

Case 1. Assume that all of P, is located in the region with at most 4

vertices of Q in the subdrawing D*. So, the edges of every T}, ¢ € {1,2,...,n},
n

cross the edges of Q at least twice, thus, }_ erp (T3, Q) > 2n. Hence

i=1

erp(QVP) > erp(Kon)+ Z";l erp(T, Q) > Z(6,n) +2n
> Z(6,n)+n+1.
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Case 2. Assume that all of P, is located in the region with 5 vertices of
Q in the subdrawing D*.So,the edges of every T;,i € {1,2,...,n},cross
the edges of Q at least once. Moreover all of P, is located in the region
the boundary of which forms a 5-cycle. As there is no crossing between the
edges of the 5 vertices cycle and P,, which possesses the qualifications of
Lemma 3.1 and therefore, in D there are at least C2| £ | 5] crossings. Hence
crp(QVP,) > CH23+n>2Z(6,n)+n+1.

Case 3. Assume that all of P, is located in the region with 6 vertices of
Q in the subdrawing D*,in this case it is easy to see that crp(Q) > 1(see
Fig.6).

Figure 6: The possible placements of T}, inside D(Q) with 6 vertices.

So, the n — 1 vertices ¢;,i € {1,2,...,n — 1}, can be located only in one
region,and there are exactly two vertices of Q on the boundary of each
region. No matter which region does ¢; locate in, it is easy to see that there
are two vertices of @@ that haven’t locate in the region with the common
boundary. By Jordan Curve Theorem, we have crp(Q UT,,T;) > 5. Hence

C‘I‘D(Q \Y Pn) CTD(Ks,n_l U (Q U Tn) U Pn) .
erp(Ken-1) +crp(QUTL) + erp( LJI Ti,QUT,)

Z6,n—1)+14+5(n-1)
Z(6,n)+n+1.

v

v Iv

This contradicts (10).

Thus, formula (10) doesn’t hold. So, we have shown that er(Q V Pr) >
Z(6,n) + n + 1.Hence,cr(Q V P,) = Z(6,n) + n + 1. This completes the
proof. O

4 The Crossing Number of Q V C,

The graph Q V C,, contains both Q VnK; and Q V P, as subgraphs. Let
C,. denote the subgraph of Q Vv Cy induced on the vertices not belonging
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to the subgraph @. One can easily see that

QVC,=QUKn,UC,, E(QVC,)=EQ)U (Lnj E(T:)) U E(Cy).

k=1

On the other hand, the graph Q Vv C, contains the graph 6K, vV C, as a
subgraph and

6 6
QVC,=QU(|JT)UCn, EQVCn)=EQ (| ET)UEQC,),

k=1 k=1

where T denotes the subgraph induced by n edges of Kg n incident with
the ith vertex of Q. The proof of the main result of this section is based on
the Lemma 3.1 and Lemma 4.1.

Lemma 4.1 Let ¢ be an optimal drawing of QVCp, then erg (E(Cy)) = 0.
Theorem 4.1 cr(Q V C,,) = Z(6,n) + n+ 3 for n > 3.

Proof. In the drawing Fig.2 it is possible to add n edges in such a way
that they form the cycle C,, and that the edges of C,, are crossed only three
times. Hence, cr(Q V C,) < Z(6,n) + n + 3. To prove the reverse inequality
er(Q Vv Cp) 2 Z(6,n) + n + 3, we assume that there is an optimal drawing
of the graph Q v C,, with at most Z(6,n) + n + 2 crossings and let ¢ be
such a drawing. As the graph Q Vv C, contains Q V P, as a subgraph, by
Proposition 1.2 and Theorem 3.1

Z6,n)+n+1<crg(QVECr) < Z(6,n)+n+2. (11)

Claim. crgy(Q VCy) > Z(6,n) + n + 2.

Proof. Firstly by Lemma 4.1, in the optimal drawing ¢, cry(E(C)) = 0 (no
edge of C,, has a self-intersection). Our next analysis depends on whether
or not the edges of C,, is crossed by other edges. We divide the problem
into several cases to prove that cry(Q Vv Cy) > Z(6,n) + n + 2.

Case 1. Assume that there is at least one edge of C,, which is crossed in
@.
Subcase 1.1 Assume now that the edges of C, is crossed by the edges
of Q.By Theorem 2.1,cr4(Q V nK,) = Z(6,n) + n and therefore, C,, can
not be crossed more than twice in ¢,since the graph Q v C,, contains a
subgraph isomorphic to @ V nK;. By Proposition 1.2 and Theorem 2.1

re(@VCn) 2 er(QVnK))+3=2Z(6,n)+n+3
> Z(6,n)+n+2.

Thus, the edges of C,, can be crossed at most twice. Moreover C,, and
Q are 2-connected graphs,when @ is crossed by C,,there are at least
two crossings on the edges of C,.So,when C, is crossed by Q,it must
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only produce two crossings and no edge of C, is crossed by edges of
Ti,k = 1,2,...,6.0n this condition, the two 3-degree vertices v, and vy
of Q either locate in the inner or on the outside of C,. Otherwise there are
more than two crossings on the edges of C,,. Without loss of generality, let
the two 3-degree vertices locate in the inner of C,.

Subcase 1.1.1. Assume that one 2-degree vertex of @ locate on the outside
of C,,, other five vertices of Q locate in the inner of C,,. Because no crossing
is crossed in the edge of Cy, by Tk, every subgraph T,k = 1,2, ...,6,induced
on the edges of incident with a vertex of Q) possesses the qualifications
of Lemma 3.1 and therefore,in ¢ there are at least CZ|2|| 25| cross-
ings, hence

cre(QV Cy) 203{-’23]["—;1] +2> Z(6,n)+n+2.

Subcase 1.1.2. Assume that two 2-degree vertices of Q locate on the
outside of C,,. According to the characterization of Q only are the vertices
v2,v3 locate on the outside of Cp,other four vertices of @ locate in the
inner of Cy,.In this case its accordant drawing is Fig.7.

Figure 7: The possible vz,v3 of Q locate on the outside of C,.

Considering the case in Fig.7(1-2), the case in Fig.7(3-4) are similar. Firstly,
the two crossings can not be in the same edge of C,. Otherwise deleting
the edge from C,, results in the drawing of the graph Q V C, containing a
subgraph isomorphic to @ V P,. By Proposition 1.2 and Theorem 3.1

cre(QVCn) > crg(@VP)+2=2(6,n)+n+3
> Z(6,n)+n+2.

This implies that there are at least one vertex of C, inside the cycle of
v1U2v3v4vsy in Cp, denoting it with v. When the edge v1vs does not cross
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the edge v4vg(Fig.7(1)). Using Lemma 3.1, then, we have

rs(@VCn) = ers(@UC,u (U T)

= ory UTk)+cr¢(QUC)+cr¢(QUC,,,CJTk
= CT¢((T2UT3)U(T1 uT4uT5uT6))+cr¢(QuC)
+ cr¢(Quc,,,kL;JlTk)

= 3122+ i3I 4241+ (n—1)

> Z(6,n) +n+2.

When the edges v vs is crossed by the edge v4us(Fig.7(2)). Using Lemma
3.1, then, we have

To(@VCa) = ere(QUC,U(U T)

= ra(U T+ ers(@UCa) +rs(@U Cn, U T0)
= crs(TaUTs) URUT VT UTe) + ers(QUCn)
CT'¢(QUC,., U Tk

= |3 Jl""J+Czl 2P 41404242
> (6 n)+n+2.

Subcase 1.1.3. Assume that the six vertices of @ are all located in the
inner of C,,. As C,, does not cross the edges of T}, every subgraph T,k =
1,2,...,6,induced on the edges incident with a vertex of Q possesses the
qualifications of Lemma 3.1 and therefore, in ¢ there are at least CZ| 7 | [ ™5 ]
crossings, hence

cre(QV Cn) chtg“nglj+2>Z(G,n)+n+2.

Subcase 1.2. Assume that C,, is crossed by the edges of T3,k =1, 2,...,6.
Then C, is crossed by the edges of Ty, k = 1,2, ..., 6, at most twice, and C,,
does not cross the edges of Q. Otherwise, according to Subcase 1.1, ¢rs(Q V
Cp) > Z(6,n) + n + 2. Thus, the Q is either located in the inner or on the
outside of C,,, without loss of generality, let Q locate in the inner of Cy,.
Subcase 1.2.1. Assume that C,, is crossed by the edgesof Ty, k = 1,2, ..., 6,
once.

When erg(Q) = 0(Fig.8(1)): Obviously, there exists one T, k = 1,2, ..., 6,
satisfying cry(Tk, @) = n, using Lemma 3.1, then, we have

ers(QVCr) 2 GBI 5175 M%) +n

> Z(6,n)+n+2.
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When cry(Q) > 1(Fig.8(2)): Using Lemma 3.1, then, we have

cre(@VCn) = CEBIL"FM+515 52 +1+1
> Z(6,n)+n+2.

(1 2

Figure 8: The drawing of cry(Q) = 0 and crg(Q) > 1 of Q locate in the
inner of C,,.

Subcase 1.2.2. Assume that C,, is crossed by the edgesof T, k = 1,2, ..., 6,
twice. Firstly, C,, can not bhe crossed by the edges of any one T} twice, or by
Lemma 3.1

ero(@VC) 2 G 42> Z(6,m) 4+ 2

Thus, without loss of generality, let there is one crossing caused by C,, and
the edges of T ; one crossing caused by C), and the edges of T,, and C, does
not cross the edges of Ty, k = 3,4,5,6.

Subcase 1.2.2.1 Considering the case n = 3 at first: Because the two
crossings caused by C3 and the edges of T}, T> can not happen in the same
edge of Cj, in this case its accordant drawing is Fig.9, it is easy to see that
cre(Th,To) > 1.

When cry(Q) = 0(Fig.8(1)): Obviously there exits Tk, k = 1,2, ..., 6, satisfies
cre(Tk, @) = 3, using Lemma 3.1, then, we have

3.2
crs(Q V Cs) 20}[2JL2J+3+2+1>Z(6,3)+3+2.

When cry(Q) > 1(Fig.8(2)): Because the diameter of Q is 3. Denoting P, ;
is the shortest path from vertex v; to vj, then there are four vertices of Q on
P, ; at most. Without loss of generality, let vs and vg be not on P, ». Because
Ty UT> U C3 U Py, divides the inner of C3 into several regions,and the
two crossings of C3 can not happen in the same edge of Cjs,thus there
are at most two vertices of C3 on the boundary of every region in these
regions(Fig.9).

Because vs,vs aren’t on P, 2, then vs,vg must be located in these re-
gions, hence cry(Tk, Ty U T2 U Py 2) = 1,k = 5,6.Moreover C3 does not

369



cross the edges of Ty, k = 3,4,5,6. By Lemma 3.1,cry (T3 U Ty U Ts U Tg) >
C313) L%Jacrcb(Th C3) = 1,k = 1, 2. Hence,we have

c7’¢(Q \% 03) C7’¢(T3 UTyuTsU Te) +ere(Ts, 1 UTo U P 2)
cre(Te, Ty UT2 U Py 2) + cry(T1, Cs) + cry (T2, Cs)
erg (71, T2) + cre(Q)
CZl313)+1+1+1+1+1+1

Z(6,3) + 3 +2.

VIV 44

Figure 9: The drawing of Q locate in the inner of Cs.

Subcase 1.2.2.2. Considering now the case n > 4. By Lemma 3.1,
cre(TsUT,UTsUT) > Cgl_ JL"_IJ,CT¢(T1,T2) > l_" 2J|_" 3J CT¢(Tk,T3U
T4UT;UTe) > 4["'1J | 255 2J(k = 1,2). Hence, we have

crs(QV Ch) cre(QUC, U ( U T%))

er( U Tie) + ers(QU Cn) + ers(QU Ch, U Tx)
CT¢((T1 uTy) U (T3uT4uTs UTe)) + CI‘¢(Q uCy)

CT¢(Q UCy, kU Tk
=1

22122+ GBI ) + 2 x 4t L5 + 2
Z6,n)+n+2(n>4).
Hence, subcase 1.2.2 for n > 3,ery (Q V Cy) > Z(6,n) + n + 2.
Subcase 1.3. Assume that C,, is crossed by the edges of Q and T}, k =

2,...,6.By Subcase 1.1,if @ is crossed by C, there are at least two
crossings on the edges of C,,and C,, is crossed by the edges of Ty, k =
1,2,...,6,then there are at least three crossings in C,,then deleting the

crossed edges from C, results in the drawing of the graph @ v C,, contains
a subgraph isomorphic to @ V nK, hence

cae(@VC,) 2 er(@VnK))+3=2Z(6B,n)+n+3

> Z(6,n)+n+2.

ViV +

Case 2. Assume that no edges of C, is crossed in ¢. Since crg(Cr) = 0,it
implies @ is either located in the inner or on the outside of C,,,and T}, &k =
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1,2,...,6,does not cross the edges of C,,without loss of generality,let @
be located in inner of C,,. Every subgraph Tx, k = 1,2,...,6,induced on the
edges of incident with a vertex of Q possesses the qualifications of Lemma
3.1 and therefore, in ¢ there are at least CZ| 3 || ;"] crossings, hence

ero(@V Cn) zcgt’;“";lj > Z(6,n) + 1 +2.

In conclusion, by er(QVC,) < Z(6,n)+n and the proofs of Claim, crg (QV
Cn) = Z(6,n) + n + 3,formula (11) doesn’t hold. So, we have shown that
cr(Q VvV Cy) > Z(6,n) +n + 3. Hence,er(Q vV Cy) = Z(6,n) + n + 3. This
completes the proof. a
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