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Abstract

In this paper, formulas of the resistance distance for the arbitrary
two-vertex resistance of Gy J G2 and G 8 G2 in the electrical net-
works are obtained in a much simpler way. Furthermore, XK f(G18Gz2)
and K f(G1BHG32) can be expressed as a combination of K f(G1) and
Kf(Ga).
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1 Introduction

All graphs considered in this paper are simple and undirected. The
resistance distance is a distance function on graphs introduced by Klein
and Randic [1]. The resistance distance r;;(G) between any two vertices i
and j in G is defined to be the effective resistance between them when unit
resistors are placed on every edge of G. The Kirchhoff index K f(G) is the
sum of resistance distances between all pairs of vertices of G. The resistance
distance and the Kirchhoff index has attracted extensive attention due to its
wide applications in physics, chemistry and others. For more information on
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resistance distance and Kirchhoff index of graphs, the readers are referred
to Refs. ([2] — [9]) and the references therein.

Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set
E(G). Let d; be the degree of vertex ¢ in G and D¢ = diag(dy,ds, - - - djv(ay))
the diagonal matrix with all vertex degrees of G as its diagonal entries. For
a graph G, let Ag and B¢ denote the adjacency matrix and vertex-edge
incidence matrix of G, respectively. The matrix Lg = Dg— Ag is called the
Laplacian matrix of G, where D¢ is the diagonal matrix of vertex degrees
of G. We use 1£1(G) > u2(G) 2 - - un(G) = 0 to denote the eigenvalues of
L. The {1}-inverse of M is a matrix X such that MXM = M. If M is
singular, then it has infinite {1}- inverse [10]. We use M} to denote any
{1}- inverse of a matrix M, and let (M), denote the (u,v)- entry of M. It
is known that resistance distances in a connected graph G can be obtained
from any {1}- inverse of G ([11), [17}).

In [18], two graph operations based on S(G) graphs: The subdivision-
vertex and the subdivision-edge neighbourhood corona, are introduced, and
their A-spectra(resp., L-spectra) are investigated. The subdivision graph
S(G) of a graph G is the graph obtained by inserting a new vertex into
every edge of G. Let I(G) be the set of newly added vertices, i.e I(G) =
V(S(@)\V(G).

Let Gy and G3 be two vertex-disjoint graphs.

Definition 1.1 ([18]) The subdivision-vertex neighbourhood corona of
G1 and Gy, denoted by G; 0 G is the graph obtained from S(G;) and
|[V(G,)| copies of Gs, all vertex-disjoint, and joining the neighbours of the
ith vertex of V(G,) to every vertex in the ith copy of Ga.

Definition 1.2 ([18]) The subdivision-edge neighbourhood corona of
G) and G3, denoted by G; B G, is the graph obtained from S(G;) and
[I(G1)| copies of G2, all vertex-disjoint, and joining the neighbours of the
ith vertex of I(G;) to every vertex in the ith copy of Gs.

Bu et al. investigated resistance distance in subdivision-vertex join and
subdivision-edge join of graphs [13]. Liu et al. [9] gave the resistance dis-
tance and Kirchhoff index of R-vertex join and R-edge join of two graphs.
Liu et al. [19] gave the Laplacian generalized inverse of subdivision-vertex
and subdivision-edge neighbourhood corona. Motivated by this work, in
this paper, we further investigate the resistance distances and Kirchhoff
index of G, 0 G; and Gy B G,. Compared with the paper [19], we com-
pute the resistance distance of Gy [d G2 and Gy B G5 in a much simpler
way. Furthermore, we show that K f(G; & G;) and K f(G, B G2) can be
expressed as a combination of K f(G,) and K f(G2).
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2 Preliminaries

At the beginning of this section, we review some concepts in matrix
theory. The Kronecker product of matrices A = (a;;) and B, denoted by
A® B, is defined to be the partition matrix (a;B). See [16]. In cases where
each multiplication makes sense, we haveM; Mo @ M3 M, = (M@ M3)(M2®
My).

For a square matrix M, the group inverse of M, denoted by M#, is the
unique matrix X such that MXM =M, XMX =X and MX = XM. It
is known that M# exists if and only if rank(M) = rank(M?2) ((12],[10]). If
M is real symmetric, then M# exists and M# is a symmetric {1}- inverse
of M. Actually, M# is equal to the Moore-Penrose inverse of M since M
is symmetric [12].

Lemma 2.1 ([11],[12]) Let G be a connected graph. Then

r(@ = (LGt LG = (LP)aw = (L
= (Lg)uu + (Lg)uu - 2(LG)uv-

Let 1,, denotes the column vector of dimension n with all the entries
equal one. We will often use 1 to denote an all-ones column vector if the
dimension can be read from the context.

Lemma 2.2 ([13]) For any graph, we have Lgl =0.

For a vertex i of a graph G, let T'(2) denote the set of all neighbors of ¢
in G.

Lemma 2.3 ([13]) Let G be a connected graph. For any %, j € V(G),
ri(G) =d 1+ Y m(G)=dit D ru(G)).

keT(i) k€T (3)

For a square matrix M, let tr(M) denote the trace of M.
Lemma 2.4 ([14]) Let G be a connected graph on n vertices. Then

Kf(G) = nir(L¥) —1TLP1 = ntr(LE).

Lemma 2.5 ({15]) Let G be a connected r-regular graph of order n,
let I(G) denote the line of a graph G. Then

Kf(i(G)) =

Lemma 2.6 Let



be the Laplacian matrix of a connected graph. If D is nonsingular, then
X = H#* ~H#BD!
~\ -D'BTH#* D-'4 D 'BTH#BD™!
is a symmetric {1}-inverse of L, where H = A — BD-'BT,

Proof Since H = A — BD~!'BT is symmetric, H# exists and is
symmetric. Since

L - (1 BD'\(H 0 I 0
= \o I o b )\ D'BT I )"

we know that

¥ = I 0 H#* 0 I —-BD™!
- -D-1BT 0 D! 0 I

is a symmetric {1}- inverse of L.

Remarks: The above result is similar to Lemma 2.8 in [14], which can
be viewed as another form of Lemma 2.8.

3 Resistance distance in G; 0G4y and G; H G,

Theorem 3.1 Let Gy be an ;- regular graph on n; vertices and m,
edges, and G, an arbitrary graph on ny vertices and my edges. Then the
following holds:

(a) For any e, f € E(G;1), we have

T
Tef(G1 g G2) = 1+1n2 res(1(G1)).

(b) For any u,v € V(G,), we have

r5(GC1EG2) = (In, ® (La, + 7100, ) Vi + (Iny, ® (L, + r1lny) 1) 5
_2(Im ® (Laz + rlInz)_l)ij'

(c) For any u € V(G)), let e;,ez,...,e, be r edges incident to u in G;. For
any u € V(G1), f € E(G,1), we have

1 1
Tuf(Gl 0Gy) = (r—lIn, +—r1(1+n )RL;&(EGI)RT) +(1+n t(G,))ff
uu

2 #
—m‘(RLz(G.))uf-
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(d) For any u,v € V(Gi1)uv, let e, eq,...,e (resp. f1, f2, ..., fr) be r edges
incident to u(resp.v) in G, we have

2 + 1
T ri(ng +1)

(BLg, R )oo =

1
ri(ng +1)

T
(RL{ 6 R Juo-

r(G1 0 Gy) (RL¥G ) R )uu +

2
ri(ne+1)

(e) For any u € V(G,), let ey, €z, ..., € be r edges incident to u in G;. For
any u € V(G,), v € V(G3), we have
Lyl
"‘1("12 +1)
7‘1[“2 )‘pv - 2(-[111 ® (LG2 + TIInz)—l)uv-

(f) For any e € E(G,), v € V(Gz), we have

Tij(Gl B G2) (RLg(GI)RT)uu + (Inl ® (ch +

Tev(GlDG2) = 1+n ( l(G,))e¢+(Iﬂ1 ®(LG2 +TlIng) )vv

2 #
T 1+mn, (RLigy))ev-

Proof Let R be the incidence matrix of G;. Then with a proper labeling
of vertices , the Laplacian matrix of G1 [J G5 can be written as

(2+2n2)Im, | —RT -RT®1%,
L(G,BGy) = ~R 1l Onyxn, ® 17,
—R ® 1n2 Oru XNy ® lnq Im ® (LGQ + 7'1.["2)

where 0, ; denotes the s x ¢ matrix with all entries equal to zero.
By Lemina 2.6, we are ready to calculate H.
Let K = RT®1T , Q = I,, ® (Lg, +1ly,), then
H=(2+2n)1p, —

I, 0 1T \"'/ -R
_RT _ Tidny nyXny na
(8" =) (g, ™) ()
= LE2Le,,

so, we have H# = ; ey Lf(écl)
According to Lemma 2.6, we calculate —H#BD~! and —D~'BTH#.

~H#BD™!
;1;‘["1 0"1 Xng ® 1171‘2 )

= —H#( -RT _—
= H ( R K ) g Onlxnl ® 1n2 Q—l
= ( £H*RT LH*(RT®1]))
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and
L #
-D-'BTH# = (—H#BD-)T = ( RH )

(R® 1n,)H#

Next we are ready to compute the D-!BT H#BD~1,
D-'BTH #BD‘1

- ( 1 In Oﬂl Xny ® ].Zz
Onl an ® l‘nz Q_
% RH#RT L RH#(RT ®17,)
;‘,(R ® 1,,)H#*RT -,(R ® 1.,)H#¥(RT ®17%))

Let P = Lﬁc,)’ based on Lemma 2.6, the following matrix

1':"2 P PRT +'n2 PK

TP W T RP ol + WRIT’RT i mRPK 1)

Tk P muma K PRT Q7' g KTPK
is a syminetric {1}- inverse of L(G; I G3y), where Q = I, ® (Lg, +711n,),
K=RT@®I1l.

For any e, f € E(G;), by Lemma 2.1 and the Equation (1), we have
T
res(G180Ga) = 1 =res(UGL).

For any u,v € V(G2), by Lemma 2.1 and the Equation (1), we have
rij(G1BGa) = (In, ® (Lg, +711n,) )i + (In, ® (La, +711n,) 1)
_2(In1 ® (LG2 + TlInz)_l)ij'

For any u € V(G,), let ey, e, ..., e, be  edges incident to « in G;. For any
u € V(G,), f € E(G1), by Lemma 2.1 and the Equation (1), we have

1 1 T
ru(C18G2) = (ln + s LG B s + (7375 Lllon i1
2 #
T, e

For any u,v € V(G1)(u # v), let ey, es, ..., ex(resp. f1, f2, ..., f) be r edges
incident to u(resp.v) in G1, by Lemma 2.1 and the Equation (1), we have

- _ 2 1 # pT _1
T:J(Gl HG,) = 'rl + 7'1(”2 + 1) (RLl(Gl)R )uu + (’n,g + 1)
2
# T
(RLfion RN = oy RElien F
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For any u € V(G,), let e, 2, ..., e, be  edges incident to « in G1. For any
u € V(G1), v € V(G2), by Lemma 2.1 and the Equation (1), we have

1,1
1 Ti(nz +1)
(LG2 + rlIﬂz)_l)UU - 2(Iﬂx ® (ch + TlInz)_l)uv'

For any e € E(G,), v € V(Gz), by Lemma 2.1 and the Equation (1), we
have
reo(G18Gy) = (Lo )ee + (I ® (Lay +710a) v

2 #
_m.z.(RL,(Gl))e,,.

Next we will give the formulae for resistance distance in G; HG: as
follows.

Theorem 3.2 Let G, be a graph on n; vertices and m; edges and G»
be a graph on ny vertices and m, edges. Then the following holds:

(a) For any i,j € V(G,), we have

ri(G1EG,) = (RLY G RT)uu + (In, ®

‘I','j(Gl =) Gz) = Tij(Gl).

2
14+ n,
(b) For any %, j € V(G2), we have

Tij(Gl = G2) = (Iml ® (ch + 21112)—1)1'1' + (Iml ® (ch + 2Inz)_1)j.'i
—2(Im, ® (La, +2In,)™)i5-

(c) For any i € V(Gy), j € V(G2), we have

2 -
r5(G1BG2) = (L8 )i+ (Im ® (Lo, +20n) )5
L «&T # Ty,
2(1 + n2) ((R ® lnﬂ)LG‘ (R ® 1112))1.7'
(d) For any i = uv € E(G,), j € V(G1) U V(G2), we have
1 1 1
Tij(G] 8 G2) = 5 + §Tu‘.j(G1 EGQ) -+ E’I‘v‘.j(Gl 8 GQ)
1
_Zruivi(Gl 8 Gg)

(e) For any i = u vy, = ugve € E(G1)( # 7), we have

1
Tij(Gl =] Gz) = 1+ Z (Tuiuj (G1 =] Gz) + Tu‘u,.(Gl 8 Gz) + Tyiu;
(G118 G2) +7v;0; (G1 BG,) - Tugv; (G, 8 G2)
—Tu;v;(G1 B Gz)) .
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Proof Let R be the incidence matrix of Gy. Then with a proper labeling
of vertices , the Laplacian matrix of G; B G2 can be written as

DG‘ + 1'1,2.DG1 l -R -R® 122
L(G1BG,) = —R? 2L, Omyxmy ® 15, )
_RT ® lnz 01111 Xmy ® 1112 Im1 ® (LGQ + 2Iﬂ2)

where 0, denotes the s x ¢ matrix with all entries equal to zero.
By Lemina 2.6, we are ready to calculate H.
Let K = RT® 1,,, M = In, ® (Lg, + 2I,,,), then
H = D¢, + noDg,—

I 2, Omyxemy ® 1T \ 7'/ —RT
( R K )<0m1xm1®1n3 M ’ _‘K

1
=_‘ti'_'zLG“

so, we have H# = T fnz Lg,.
According to Lemma 2.6, we compute —H#BD~! and —D~1BT H#,

-H#BD-!

31, 0 ®17
— _H#( — — 24my m; Xmy n.
H¥(-R —K)( o Zre, o )
= ( %H#R %H#(R®1£2) )
and
ipTr#
_D-1BTH# — (_g#*BD-1\T =
D-'B"H# = (—H#*BD™1) (%(R%®1n,)H#)
Next we are ready to compute the D-!BTH#BD-1,
D-'BTH#BD"!
_1lpTo#
( -—%KH# (-R _KT)
§Im1 0m1Xn111® 13,'2 )

O’ﬂh xXmy ® lng
1RTH*R LRTH#KT
—( kH*R LKH#KT )

Let P = Lf(ecl), based on Lemma 2.6, the following matrix

2 1 1 T
}"'—";f 1 T"HPR T Tina PI{{ T
ﬁ-TzKP mKPR M-+ mKPK

36



is a symmetric {1}- inverse of L(G1 B G2), where K = RT @ 1n,, M
=In, ® (ch + 2Iﬂ2)’
For any i,j € V(G,), by Lemma 2.1 and the Equation (2), we have

r;(G1BG2) = ri;(G1),

1+ n2

as stated in (a).
For any i,j € V(G2), by Lemma 2.1 and the Equation (2), we have

1 (C18G2) = (Imy ® (Lay +2In,) ™) + (Imy ® (L, +26n;) ™ )is
—~2(Im, ® (La, +2In,) ™ Y)ij,

as stated in (b).
For any i € V(G)), j € V(G2), by Lemma 2.1 and the Equation (2), we

have
‘ 2
14+ng

1 # 7T
1+ns (KL(;‘K i

r(G1BGy) = (LE )i + Imy ® (L, + 20n,) )5

as stated in (c).
For any i = wv € E(G)), j € V(G1) UV(G2), by Lemma 2.3, we have
1 1 1
rij(G1BG2) = 5+5mui(G1BG) + 5ru(G1BGr)

~run(G1EGa),

as stated in (d).
For any i = ujv1,j = ugv2 € E(G1)(i # j), by Lemma 2.3, we have
T,'j(Gl E Gz)

1

2
1

= 147 (ru;(G1BG2) + 14, (G1 B C2) + 10y, (G1 B Ga)

+7'v;vj (Gl E Gz) - rueve (G1 B Gz) bt "'ujvj (Gl E Gz)) 3

1 1 1
+ é"l‘u‘j(Gﬁ BG,) + E'ru‘,,-(Gl 8 Gz) - Z'I‘u‘.u‘.(Gl 8 Gz)

as stated in (e).

4 Kirchhoff index in G; 0 G2 and G; B G,

Theorem 4.1 Let G, be an ;- regular graph on n; vertices and m;
edges, and G2 an arbitrary graph on ny vertices and mg edges. Then
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Kf(G,0G,)

7.2

TR

RL¥ RT)

1
= (nl +my + nlng) ( ——(-H_—n—)tr( Iy

1 T 01T
+nlz G2)+r1 r1(1+n )tr [(R®1"’)L‘(° (R ®1"’)] +

n1(nar? — 2047y + 8my + 8m1n2) _mitnng
817117‘1(1 + ng) 71 )

Proof Let Lc(sl,)DGQ be the symmetric {1}-inverse of Lg,mg,. Then
1)
g (L(c:,mcz
- _n # 1y 41 pr# gT
= = tr (Lf, ) +tr (r; Iy + ey RLE R
tr (In, ® (Lg, +m1ln,) ™) +

1 T o 1T
Tl(l +n )tr [(R® 1n2) I(G )(R ® 1"2)] .

Note that the eigenvalues of (Lg, + r1ln,) are pi(Ga) + r1,u2(G2) +
T1y oy Uny(G2) + 71. Then

1
tr (In, ® In = = —_——
7 (Iny ® (Lay +711np)) ™ =1 ;(#z(az) +r1)7 an .
By Lemma 2.5, we have
tr(LGne,)
™ (r1 — 2)nf) ny 1
- G M= 4" a2y -
mi(1 + ng) ( Kf(Gi)+ 8 + 2 +r1(1+n2)
# pT z 1 1
tr(RLT, \R
T ( {(Gh) ) T ; wi(G2) + 71 + 71(1 + ny)
tr [(R ® 1n,) LG, (RT ® 17, )] .
Next, we calculate the lT(LG Be,)1: By Lemma 2.1, we have
IT(L(Gll)Ele)l
1 1
T T —_ TR #
' (1"1 I r(1 +n2)RLl‘° f ) t ri(1 +712)1 Heey
1
(RT®17 )1+ —m—)lT(R ® 1n,) L e \RT1+17 (I,
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1
r1(1 + n2)

Note that 1TR = RT1 =21, then
1"RLY; \RT1 = 1T(R® 1n,) i, ) RT1 = 1TRLY; \(RT ®1a,)1 = 0. (3)

&(Lg, +In,)"Y) 1+ 1"(R® 1,,) L, (RT®1T) L.

According to the operation of Kronecker product, we have

1T(R® 1n,) LG, (RT ® 1)1 = (ngr)"17 L 1 = 0. (4)
Let T =12 . (In, ® (L, +T11ny) ") lnings @ = In, ® (La, +711n,), then
-1
Q ot 1"2
( lzz lz:z U 122 nz
Q—l 1,,2
= ml1T(La, +71lp,)  n, = 22 (5)

m

Plugging (3), (4) and (5) into IT(LG,EIG,)L we get

1 n1 + NNy
lT(L(Gl)EIGg)l = —;1——

Lemma 2.4 implies that

Kf(LEge,) = (m +my + mna)tr(LE ge,) — 1T(ngmz ).

Then plugging tT(LG,E]Gg) and IT(LG Dg,)1 into the equation above, we
obtain the required result.

Theorem 4.2 Let G; be a graph on n; vertices and m; edges and G

be a graph on ny vertices and my edges. Then
Kf(G18G,)

= (nl + my + mlng) ( Kf(Gl) + (1 _: )tT (DGIL:’G#I)

1(1 + ng)

n2 1 1

my+mng —ny +1 _ n2+11l'TL# o my + mineg
2(1 4+ ny) 2 G 2 ’
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where 7 = (dy,da, "+ ,dn,)7T.
Proof The proof is similar to those of Theorems 4.1, omitted.

Corollary 4.3 Let G; be an r;- regular graph on n; vertices and m,
edges and G» be a graph on n, vertices and mg edges. Then
Kf(G1BG,)

241

= (m +m +m1n2) (WKJ:(GI) —+m Z—W
i=1 i

1 T my+mng —n3 +1
Wxng) (Re1)LE (R 81.,)) 51 + n3) )
_m +m1n2

2

Proof Since R-1 = r;1 and Lgl = 0, then tr(DclLﬁl) = rltr(Lgl) =
LK f(G1) and WTLglvr = r%lTLgll = 0. By Theorem 4.2, the required
result is obtained.

Remark: In [18], the authors investigated the Laplacian spectrum of
the subdivision-vertex and the subdivision-edge neighbourhood corona of
G, and G2 when G, is an r-regular graph. Morever, the expression of the
Kirchhoff index is complex according to the definition of Kirchhoff index
on eigenvalues. Thus we think the proposed method is better than that in
(18].
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