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Abstract: External Difference families (EDFs) are a new type of
combinatorial designs originated from cryptography. In this paper,
some constructions of EDFs are presented by using Gauss sums.
Several classes of EDF's and related combinatorial designs are
obtained.
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1 Introduction

Let (G, +) be an Abelian group of order v. A (v, k,\) difference family
over G is a collection of k—subsets of G, D = {D, Ds,..., D,}, such that
the multiset union satisfies the following;:

©

U{z —y: 2,y € Di,z # y} = MG\{0}).

i=1

If furthermore Dy, D,, ..., D, are mutually disjoint, then D = { D4, Do,
..., Dy} is called a (v, k, A) disjoint difference family, denoted by (v, k, A)-DDF.
Difference families have been well studied and have applications in cod-
ing theory and cryptography. Ogata et al.[8] introduced a type of combina-
torial designs, external difference families, which are related to difference
families and have applications in authentication codes and secret sharing.

Let (G, +) be an Abelian group of order v. A (v,k, A; u) external dif-
ference family ((v, k, A\;u)—EDF in short) D over G is a collection of u
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k—subsets of G, D = {Dy, D,, ..., Dy}, such that the multiset union sat-
isfies the following:

U D:-Dy)=xG\{o}),

1<i,j<u,igj

where D; — D; is the multiset {z —y : z € D;,y € D;}.
It is easily seen that if a (v, k, A; u)~EDF over G exists, then

Ay — 1) = k2u(u —1). (1)

Note that in an EDF the blocks D;’s are required to be pairwise disjoint,
while this is not the case for difference families. EDFS and difference
families are different combinatorial designs, but are related.

A difference system of sets (DSS) with parameters (n,7o,- -, T1-1,9) is
a collection of { disjoint subsets Q; C {1,2,--- ,n}, |Qi| =7;,0<i <11,
such that the multiset

{a-b( modn) : e€Q@i,b€Q;, 04,5 <I-1,i#5} (2

contains every number ¢, 1 <i < n—1 at least § times. A DSS is perfect if
every number i, 1 < i < n — 1, is contained exactly § times in the multiset
(2). A DSS is regular if all Q; are of the same size. Hence, a perfect
and regular DSS is an EDF over Z,,. Therefore, EDFs are an extension of
perfect and regular DSSs.

Difference systems of sets were introduced by Levenshtein[4], and were
used to construct codes that allow for synchronization in the presence of
errors(5]. Tonchev([9], Mutoh and Tonchev(6], and Mutoh[7] presented fur-
ther constructions of DSSs and studied their applications in code synchro-
nization.

In the case that D is a partition of G\{0}, ku = v — 1 and by (1) we
have A = k(u —1) = v~k — 1. Whence u = (v — 1)/k. A connection
between some DDF's and some EDFs is given in the following proposition.

Proposition 1 (2] Let (G, +) be an Abelian group of order v, and let
D = {D,,Da,,...,Dy} be a collection of k—subsets of G. If D is a partition
of G\{0}, then D is a (v,k,v—k — 1;(v — 1)/k)— EDF over G if and only
if it is a (v, k,k — 1)-DDF over G.

Let p be a prime, f a posxtlve integer, and ¢ = p/. Let F, be the finite
field of order q. Let £, = e B Forre Fg, let 1, be the map defined by

Vi Fg—C*,  y(z)=£T7ro),

where T'r is the absolute trace from Fy to F,. Then ¢, r € Fy, are all the
additive characters of Fy. Let x : Fy; — C* be a character of F;. We
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define Gauss sum

906 ) = Y x(a)¢r(a).

acF;
When r #0,

906w = > x(@)er(a) = x71(r) D x(@)¥1(a) = X (r)g(x ¥1)-

aEIF; aGF;

Usually we simply write g(x) for g(x,%1). Note that if xo is the trivial mul-
tiplicative character of IF,, then g(xo,%r) = —1. We are usually concerned
with nontrivial Gauss sums g(x, ¥r), i.e., those with x # xo. Gauss sums
can be viewed as the Fourier coefﬁments in the Fourier expansion of ¥|[r;
in terms of the multiplicative characters of F,. That is, for every c € IF

be(@) = —7 3 9%, ¥x(0),

x€F;

where ¥ = x~! and IF’“ denotes the character group of [Fy.

We first recall some properties of Gauss sums. For proofs of these
properties, see |1|

(1) 90 ¥r)g(x; ¥r) = g, if x # x0 and r £ 0,

(2) 9(x 1, %r) = x(-1)g(x, ¥r),

(3) 9(x~2) = g(?).

Lemma 1 Let G be an abelian group of order v, D be a collection of u
k—subsets of G, D = {D1, D2, ..., Dy}, where Dy, D, ..., Dy are mutually
disjoint, and let \ be a positive integer. Then D is a (v,k,A\)—DDF in G
if and only if

3" (DD = uk

for every nontriviel complex character i of G.

Lemma 2 Let G be an abelian group of order v, D be a collection of u
k—subsets of G, D = {D1, Ds,...,Dy}, where D1, D,,..., D, are mutually
disjoint, and let A be a positive integer. Then D is a (v, k, A;u)—EDF in
G if and only if

> w(Dd(D5) = -2
1<i,j<u,i#j
for every nontrivial complez character ¥ of G.

In both lemmas, ¥(D;) stands for 3, p ¥(d).

A number of results on the existence of EDFs and DDF's were presented
in {2],[3). The authors of these paper used cyclotomic class of order 2,4 or
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6 to construct external difference families. In this paper, we extend cyclo-
tomic constructions of combinatorial designs by Gauss sums and present
further results on the existence of EDFs and DDF's, and also give answers
to the problems in [2].

2 Some Results based on Gauss Sums

In this section, let N =2 (mod 4), N > 6. Let ¢ be a prime power, F,
be the finite field of order ¢, and -y be a primitive element of Fy. Assume
that (¢—1)/N and ¢ = 3 (mod 4). Let Co = {yV*| £ =0,1,2,-- , 45t —1},
and C; = vCy for 1 < i < N—1. These C; are called the cyclotomxc classes
of order N of F,. Also (i,7) =|(Ci+1)NC;j|,1< 4,5 < N, are called the
cyclotomic numbers of order N.

We need some lemmas before we give the main result.

Let Cy be the unique subgroup of order N of IF* and x be a fixed

generator of Cy. Then Cf = {x!| 1 =0,1,2,. - 1}
ForrelF;, i=0,1,...,N—-1,let n,; = w,(Ci). We have
i = Z Pr(y'zN)
::E Fa

= & IZO g~ o)X ()
= N-1 ,
= -4+% :Z:l 9O o)Xt (7).

1 1
Lemma 3. Eﬂn’)r:——Q‘q_
i=0 N
Proof:
N-1 , N N-1 . s
_Z% il = 7§z Z})('l + lZI g(x~ e )x (V) -1+
1= 1= b=

N-l_____ .
Z g(X_kv'!’r)X_k("/t))
N-1 N-1
— w2 ( g a(x~ ¥r) ;0 x (v)+
9 x~%, [Elx‘k(7‘))+
5 ot e s B ()X (1)
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Note that in the last step of the above calculations we used xl’}( 1) =
(- 1)25" T = —1, since both 97-?,—1 and & are odd.

Theorem 1 Let N = 2 (mod4), N > 6, and N|g—1, ¢ = 3 (mod
4), Dy = CouCh, D; = ‘72iDo, for 1 < i < N/2—-1. Then D =
{Do, D,...,Dny2-1} is a (g,(2¢ — 2)/N, g — (2¢ — 2)/N - 1; N/2)-EDF
and a (q,(2¢ — 2)/N, (29 — 2)/N — 1)—DDF over F,.

Proof: For r € F;, we have

Y ¥r(Dier(D5)

o<;,,<!g'- 1 1963

= Zwr(D) Z ¥r(Dj)

= ?:“0 z/),(D‘-)(g% ¥r(D;) — ¥r(D;))

N_1

- Tz 1/;,(D-)(—1—¢‘r(D‘))
- _”g we(D;) - z ¥r(D:)¥r(Ds)

i=0
-1

7=
= 1- Z (r,2i + Mr,2i41) (Tr2i + Tr2iv1)
o -
= 1- X% Nr,iTiryi — _}_:0 (Mr2iTr2i41 + N 2i4177727)
29— 2 '
By Proposition 1 and Lemma 3, D is a (g, (2¢ — 2)/N,q— (29 —2)/N —
1; N/2)—EDF and a (g, (2¢ — 2)/N, (2g — 2)/N — 1)-DDF over F,. In (3],
the authors proved that Theorem 1 in the case where when N = 6. We
generalized the result and proved that the result is valid when N = 2 ( mod
4).
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3 Concluding Remark

In this paper, we have used Gauss sums to construct DDFs and EDFs.
Several results are presented. The following problem was asked in [2].

Problem 3.1 Give more constructions (v, k, k—1)— DDFs and (v, k,v—
k —1,(v—1)/k) in Abelian groups G.

In this paper, Theorem 1 gives answer to Problem 3.1.
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