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Abstract

If X is a geodesic metric space and z1,z2,23 € X, a geodesic
triangle T = {z1,%2,z3} is the union of the three geodesics [z1x2),
[z2x3] and [zaz,) in X. The space X is 8-hyperbolic (in the Gromov
sense) if any side of T is contained in a é-neighborhood of the union
of the two other sides, for every geodesic triangle T in X. The study
of hyperbolic graphs is an interesting topic since the hyperbolicity of
a geodesic metric space is equivalent to the hyperbolicity of a graph
related to it. Regular graphs are a very interesting class of graphs
with many applications. The main aim of this paper is to obtain
information about the hyperbolicity constant of regular graphs. We
obtain several bounds for this parameter; in particular, we prove that
8(G) £ An/(8(A—1))+1 for any A-regular graph G with n vertices.
Furthermore, we show that for each A > 2 and every possible value
t of the hyperbolicity constant, there exists a A-regular graph G
with 6(G) = t. We also study the regular graphs G with §(G) < 1,
i.e., the graphs which are like trees (in the Gromov sense). Besides,
we prove some inequalities involving the hyperbolicity constant and
domination numbers for regular graphs.
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1 Introduction

Hyperbolic spaces play an important role in geometric group theory and in
the geometry of negatively curved spaces (see [1, 22, 23]). The concept of
Gromov hyperbolicity grasps the essence of negatively curved spaces like
the classical hyperbolic space, Riemannian manifolds of negative sectional
curvature bounded away from 0, and of discrete spaces like trees and the
Cayley graphs of many finitely generated groups. It is remarkable that a
simple concept leads to such a rich general theory (see 1, 22, 23]).

The first works on Gromov hyperbolic spaces deal with finitely gener-
ated groups (see [23]). Initially, Gromov spaces were applied to the study
of automatic groups in the science of computation (see, e.g., [34]); indeed,
hyperbolic groups are strongly geodesically automatic, i.e., there is an au-
tomatic structure on the group [15].

The concept of hyperbolicity appears also in discrete mathematics, algo-
rithms and networking. For example, it has been shown empirically in [44]
that the internet topology embeds with better accuracy into a hyperbolic
space than into an Euclidean space of comparable dimension; the same
holds for many complex networks, see [29]. A few algorithmic problems
in hyperbolic spaces and hyperbolic graphs have been considered in recent
papers (see, e.g., [19]). Another important application of these spaces is
the study of the spread of viruses through on the internet (see [25, 26]).
Furthermore, hyperbolic spaces are useful in secure transmission of informa-
tion on the network (see [25, 26, 33]). The hyperbolicity has also been used
extensively in the context of random graphs (see, e.g., [16, 27, 41, 42, 43)).

The study of Gromov hyperbolic graphs is a subject of increasing inter-
est (see, e.g., {2, 3,4, 5,6, 7,9, 10, 11, 12, 13, 14, 18, 21, 24, 25, 26, 27, 28,
29, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 46, 47] and the references therein).

We say that a curve v : [a,b] — X in a metric space X is a geodesic if
we have L(v|;,s) = d(7(t),7(s)) = |t — s| for every s,t € [a,b], where L
and d denote length and distance, respectively, and 7|} ) is the restriction
of the curve v to the interval (¢, s] (then « is equipped with an arc-length
parametrization). The metric space X is said geodesic if for every couple
of points in X there exists a geodesic joining them; we denote by [zy] any
geodesic joining = and y; this notation is ambiguous, since in general we do
not have uniqueness of geodesics, but it is very convenient. Consequently,
any geodesic metric space is connected. If the metric space X is a graph,
then the edge joining the vertices u and v will be denoted by [u,v].
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Along the paper we just consider graphs with every edge of length 1.
In order to consider a graph G as a geodesic metric space, we identify (by
an isometry) any edge [u,v] € E(G) with the real interval [0,1] in the
real line; then the edge [u,v] (considered as a graph with just one edge) is
isometric to the interval [0, 1]. Thus, the points in G are the vertices and,
also, the points in the interior of any edge of G. In this way, any connected
graph G has a natural distance defined on its points, induced by taking
shortest paths in G, and we can see G as a metric graph. Throughout
this paper, G = (V, E) = (V(G), E(G)) denotes a simple (without loops
and multiple edges) connected graph such that every edge has length 1 and
V(G) # 0. These properties guarantee that any graph is a geodesic metric
space. Note that to exclude multiple edges and loops is not an important
loss of generality, since [5, Theorems 8 and 10] reduces the problem of
compute the hyperbolicity constant of graphs with multiple edges and/or
loops to the study of simple graphs.

If X is a geodesic metric space and 21, 2,23 € X, the union of three
geodesics [z12), [r2z3) and [z3z4] is a geodesic triangle that will be denoted
by T = {z1,z2,z3} and we will say that x;,z2 and z3 are the vertices of
T; it is usual to write also T = {[z1%2], [x223], [z321]}. We say that T
is 8-thin if any side of T is contained in the §-neighborhood of the union
of the two other sides. We denote by 6(T") the sharp thin constant of T,
ie. 8(T) := inf{6 > 0 : T is 6-thin}. The space X is d-hyperbolic (or
satisfies the Rips condition with constant §) if every geodesic triangle in
X is é-thin. We denote by §(X) the sharp hyperbolicity constant of X,
i.e., 8(X) :=sup{6(T) : T is a geodesic triangle in X }. We say that X is
hyperbolic if X is é-hyperbolic for some é§ > 0; then X is hyperbolic if and
only if §(X) < o0.

If we have a triangle with two identical vertices, we call it a bigon; note
that since this is a special case of the definition, every geodesic bigon in a
é-hyperbolic space is d-thin.

We want to remark that the main examples of hyperbolic graphs are
the trees. In fact, the hyperbolicity constant of a geodesic metric space can
be viewed as a measure of how “tree-like” the space is, since those spaces
X with §(X) = 0 are precisely the metric trees. This is an interesting
subject since, in many applications, one finds that the borderline between
tractable and intractable cases may be the tree-like degree of the structure
to be dealt with (see, e.g., [17]).

Given a Cayley graph (of a presentation with solvable word problem)
there is an algorithm which allows to decide if it is hyperbolic. However, for
a general graph or a general geodesic metric space deciding whether or not
a space is hyperbolic is usually very difficult. Therefore, it is interesting to
obtain inequalities involving the hyperbolicity constant and to study the
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hyperbolicity of a particular class of graphs.

The papers [6, 2, 9, 30, 47, 12, 14, 32, 35, 39, 36, 45] study the hyperbol-
icity of, respectively, complement of graphs, chordal graphs, line graphs,
Cartesian product graphs, cubic graphs, tessellation graphs and median
graphs. The main result in [6] states that if the graph G does not have
small diameter, then the hyperbolicity constant of its complement satisfies
§(G) < 2. [2, 9, 30, 47] provide several generalizations of the concept of
chordality and give some necessary or sufficient conditions for hyperbolicity.
The main results in [12, 14] are that the line graph L(G) (of the graph G) is
hyperbolic if and only if G is hyperbolic and §(G) < 6(L(G)) < 56(G)+5/2.
In [32] it is proved that the Cartesian product of the graphs G; and G.
is hyperbolic if and only if some G; is hyperbolic and the other one is
bounded. The main result in [36) is that a planar graph L(G) is hyperbolic
if and only if its dual graph is hyperbolic. In [45] it is proved that a median
graph is hyperbolic if and only if every bigon is §p-thin for some constant
do. The nature of the results in [35, 39] is very different of the previous
ones: these papers obtain inequalities relating the hyperbolicity constant
of a cubic graph G with other parameters of G (such as its order, size,
Laplacian spectral radius, vertex cover number or algebraic connectivity).
Furthermore, [39] studies the complement of cubic graphs.

The main aim of this paper is to obtain results about the hyperbolicity
constant of A-regular graphs (graphs with all of their vertices of degree A),
since they are a very interesting class of graphs with many applications,
and they are the natural generalization of cubic graphs. We obtain several
bounds for this parameter (see Theorems 2.6 and 2.14, and Proposition
2.9); in particular, Theorem 2.6 gives §(G) < An/(8(A — 1)) + 1 for any
A-regular graph G with n vertices. Furthermore, we show in Theorem
2.19 that for each A > 2 and every possible value ¢ of the hyperbolicity
constant, there exists a A-regular graph G with §(G) = t. We also study in
Theorems 3.7 and 3.9 and Corollary 3.8 the regular graphs G with §(G) < 1
(since the hyperbolicity constant of a graph can be viewed as a measure of
how “tree-like” the graph is, it is interesting to study the graphs with small
hyperbolicity constant). Besides, we prove some inequalities involving the
hyperbolicity constant and other parameters for regular graphs (Theorem
2.12 gives that for any regular graph G with n vertices and k-domination
numbers v,(G), we have §(G) +vx(G) < n forevery 1 < k < A). We want
to remark that, except for Theorems 2.6, 2.12 and 3.7, the results in this
paper are new even in the context of cubic graphs. Although Theorem 3.7
generalizes (39, Theorem 2.4], the proof devised now is different and more
sophisticated.
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2 Bounds for the hyperbolicity constant of
regular graphs

Recall that a graph is A-regular if every vertex has A neighbors. A graph
is regular if it is A-regular for some A.

As usual, by cycle we mean a simple closed curve, i.e., a path with
different vertices, unless the last one, which is equal to the first vertex.

Denote by J(G) the set of vertices and midpoints of edges in G. Con-
sider the set T; of geodesic triangles T in G that are cycles and such that
the three vertices of the triangle T belong to J(G), and denote by 4,(G)
the infimum of the constants A such that every triangle in T; is A-thin.

The following three results, which appear in [4], will be used throughout
this paper.

Theorem 2.1. [{, Theorem 2.5] For every graph G we have 6;(G) = 6(G).

The next result will narrow the possible values for the hyperbolicity
constant 4.

Theorem 2.2. [{, Theorem 2.6] If G is a hyperbolic graph G, then §(G)
is a multiple of 1/4.

Theorem 2.3. [4, Theorem 2.7] If G is a hyperbolic graph G, then there
ezists a geodesic triangle T € Ty such that §(T) = §(G).

If G is a graph and v € V(G), we denote by deg(v) or degg(v) the
degree of v in the graph G.

We will need also the following result appearing in [31, Theorem 30].
Lemma 2.4. If G has n vertices, then 6(G) < n/4.
This inequality can be improved for regular graphs.

Theorem 2.5. If G is a graph with n vertices, minimum degree §p > 2
and mazimum degree A, then

(G) Snﬁn{_SGOAf—l)_!-l’ %}

Proof. By Lemma 2.4, it suffices to prove

An

8G) < 8—(60_—1)'{'1.

Without loss of generality we can assume that §(G) > 1, since otherwise
the inequality is trivial.
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By Lemma 2.4, G is hyperbolic and Theorem 2.3 gives that there exist
a geodesic triangle T = {z,y,2z} = {71,72,73} in G and p € 7 := [zy]
with d(p,v2 U v3) = 6(G). Let us define the curve v§ C v by 7 :={z €
7 : d(z,p) < §(G) — 1}. Note that 1 < §(G) = d(p, 7 U) < d(p, {z, y})-
Then, v, = [zz'] U ~f U [y'y] with d(z/,p) = d(¥',p) = §(G) — 1. Note
that if v € V(G) N~} and w € V(@) N (2 U 73), then [v,w] ¢ E(G), since
otherwise d(p, y2 U v3) < §(G).

Consider the set of curves joining = and y

A: = {72U}U {([zuz] U [uz, us] U [usy]) : u2 € V(G) N e,
uz € V(G) N7s, [uz,us) € E(G) },

and gp € A such that L(ge) < L(n) for every n € A. Since gp is a shortest
curve in A, if a,f are non-adjacent vertices in go (i.e., we have either
[, B] € E(G) or |a, B8] € go), then [a, B8] € E(G).

Given o, 8 € V(G) N go, we denote by g4 g the subcurve of go joining o
and 8. Consider now the set of curves joining [zz'] and [y'y]

B: = {g0}U{([a,0]UgapViB,b]): a € V(G)N[z2'], b€ V(G)N[yy],
@, B € V(G)Ngo, [a,0},[8,b] € E(G) },

and g € B such that L(g) < L(n) for every n € B. If g = [a,a]Uga,gU[B,b),
let v, be the curve with 4] C ~,5 C 7 joining a and b. Since g is a
shortest curve in B and gq is a shortest curve in A, if v, w are non-adjacent
vertices in 0 := v, 3 Ug, then [v,w] ¢ E(G). Hence, if v,w € V(G)No and
[v,w] € E(G), then [v,w] C 0.

Recall that L(7f) = 26(G) — 2, ¥} C 7a,» and g is a shortest curve in
B. Thus,

L(o) = L(7a,6) + L(9) 2 2L(7a,) = 2L(77) = 48(G) - 4.

Since G has minimum degree §y > 2, for each v € V(G) N o there exist
at least §o — 2 edges in E(G) \ o adjacent to v. Furthermore, if v,w are
different vertices in V(G) N o and e,, e,, are edges in E(G) \ o adjacent to
v,w (i.e.,, v € e, and w € e,), respectively, then e, # e, (recall that if
[v,w] € E(G), then [v,w] C 0). If m is the cardinality of E(G), then

m 2 L(0) + (6o — 2)L{0) 2 (do — 1)4(6(G) - 1).

Since

1 An
m=g z deg(v)_<_—2—,
veV(C)

we obtain the inequality. O



We have the following direct consequence for regular graphs.

Theorem 2.6. If A > 2 and G is a A-regular graph with n vertices, then
An n
< min{ ————— S
3(G) "mm{S(A-l) +1, 1 }

The inequality in Theorem 2.6 is essentially sharp, as the following
example shows: denote by G, ..., G, graphs isomorphic to the “diamond
graph” (the complete graph K4 with an edge removed); let G be the 3-
regular graph obtained by connecting G; with Gj;, by an edge e;, for
j=1,...,r =1, and G, with G; by an edge e,; then n = 4r and §(G) =
3r/4=3n/16 = 3n/(8(3 —1)).

From (31, Proposition 5 and Theorem 7] we deduce the following result.
Lemma 2.7. Let G be any graph with a cycle g. If L(g) > 3, then §(G) >
3/4. If L(g) = 4, then §(G) > 1.

The following lemma is a consequence of [20, Proposition 1.3.1].

Lemma 2.8. If m > 2 is a natural number and G is a finite graph with
minimum degree 6o > m, then there ezists a cycle n in G with L(n) > m+1.

Lemmas 2.7 and 2.8 give directly the following proposition.

Proposition 2.9. If G is a finite A-regular graph with A > 3, then §(G) >
1.

The equality in Proposition 2.9 is attained in the complete graph Ka 41
and in the complete bipartite graph Ka a.

We say that a subset A C V(G) is an independent set if [v,w] ¢ E(G)
for every v,w € A. We denote by B(G) the independence number of G,
i.e., the cardinality of the largest independent set in G.

Given a graph G with maximum degree A, a set X C V(G) is a k-
dominant set of G with 1 < k < A, if any vertex in V(G) \ X is adjacent
to at least k vertices of X. The k-domination number of a graph G, v+(G),
is the minimum cardinality of a k-dominant set of G.

For any graph G, we define

diam V(G) := sup { dg(v,w) | v,w € V(G)},
diam G := sup { de(z,y) | z,y € G}.

Theorem 2.10. [{0, Theorem 8] In any graph G the inequality 6(G) <
(diam G)/2 holds.
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We have the following direct consequence.

Corollary 2.11. In any graph G the ineguality §(G) < (diam V(G) +1)/2
holds.

Denote by |t| the lower integer part of ¢, i.e., the largest integer k with
k<t

The following result relates, for regular graphs, the hyperbolicity con-
stant and the k-domination numbers vx(G) for every 1 < k < A.

Theorem 2.12. If G is a A-regular graph with n vertices, A > 2 and
1<k <A, we have
8(G) +1(G) < n.

Proof. Consider first the case A = n — 1. Then G is isomorphic to the
complete graph K, and we have 6(G) < 1 by (40, Theorem 11]. Further-
more, Yx(G) = k for every 1 < k < n—1, and we conclude §(G) +x(G) <
1+k<n.

Assume now 2 < A < n — 2. Let us consider a geodesic v in G with
L(v) = diam V(G). We have diam V(G) > 2 since G is not isomorphic to
a complete graph. Since v is a geodesic, if v,w € yN V(G) and d(v,w) >
2, then [v,w] ¢ E(G). Hence, it is possible to choose a set of vertices
Viyy Vig, .., U, € YNV(G) with d(vy;,v,,) =2 and r = | diam V(G) /2| +
1. Thus B(G) > r, and Corollary 2.11 gives

5(G)2[ ZdlamV(G)+12
2

Since G is a A-regular graph, X C V(G) is a A-dominant set of G if

and only if V(G) \ X is an independent set. Therefore, ya(G) 4+ B(G) = n

and 1 (G) + B(G) < n since 1(G) < ya(G) for every 1 < k < A. Thus we
obtain the inequality. 0

A cycle C in a graph G is called a dominating cycle if V(G) \ V(C) is
an independent set in G.

We say that a vertex v of a graph G is a cut-verter if G \ {v} is not
connected. A graph is two-connected if it does not contain cut-vertices.

diasz(G)J +1 5(G).

It is well-known that Bondy (8] proved the following theorem.

Theorem 2.13. Let G be a two-connected graph with n vertices such that
deg(z) + deg(y) +deg(z) > n+2 for all independent sets of vertices z,y, z.
Then every longest cycle in G is a dominating cycle.

Given a graph G and v € V(G), let us denote by N(v) the set of
neighbors of v. If C C G, we denote by V(C) the set V(G) N C. Given a
path h joining z and y, we denote by int(h) the set b\ {z,y}.
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The next result provides another good upper bound of the hyperbolicity
constant for a large class of regular graphs.

Theorem 2.14. Let G be a non-Hamiltonian two-connected A-regular
graph with n vertices, A > (n+1t)/3 andt > 2. Then

2n+21-—t
12 ’

Proof. Consider a longest cycle C in G. Since A > (n+1)/3 > (n +2)/3,
C is a dominating cycle by Theorem 2.13. Since G is not a Hamiltonian
graph, there exists w € V(G) \ V(C).

We are going to bound diam V(G). Let u,v € V(G).

Case (I). Assume first that u,v € V(C). Since G is a A-regular graph
and V(G)\ V(C) is an independent set in G, we have

§(G) <

n+t 2n-—t

((VO\N@) U{w}| < V@ \N@w)| =n-a<n-2T2 =2

Case (I.1). Assume that there exists a curve g joining u and v with
int(g) contained in C\ N(w). Thus N(w) C C, := C\int(g). Let w;, w; €
N (w) such that

dc‘ (wl, 'wz) = max { dcl (w’, wn) | w',w" € C] n N(w)},
and g; the geodesic in C} joining w; and ws. Consider the cycle
C':=(C\ g1) U [w;,w] U [w, wy).

Thus u,v,w € V(C'), g C', |V(C') N N(w)| =2 and

M-t . 2n+6-t
L(C") = [V(C")] < [(V(C\N(w))U{w, w1, wz}| < ”3 2= _213__
Hence,
do(w,v) < dov(w0) < SL(C) s ZELZE (2.1)

Case (I.2). Assume that there is no curve g joining « and v with int(g)
contained in C' \ N(w). Thus there exists two paths g;, go contained in
C\ {u, v}, with endpoints in N(w), L(g1 Ug2) > A =2 and N(w) C g1Ug>.
Therefore,

do(u, N(w)) +do(v, Nw)) < £ (L(O) ~ L{g: Ug2)) < 5 (L(©) - (A - 2))
1 n+t 43—t
<j(r-1-T )= =5 —

403



and so

2n+15—1¢

dg(u,v) < de(u, N(w)) +do(v, N(w)) +2 < s

Case (II). Assume that u € V(C) and v € V(G)\V(C). The argument
in Case (I.1) also gives the inequality (2.1) in this case.

Case (III). Finally, assume that u,v € V(G) \ V(C).

Case (I11.1). If N(u) N N(v) # 0, then dg(u,v) = 2.

Case (II1.2). Assume that N(u) N N(v) = 0. Consider two paths
hi, ha contained in C joining N(u) and N(v) so that int(h;) Nint(he) =0
and int(h;) N (N(u) U N(v)) = @ for j = 1,2. Since V(G) \ V(C) is an
independent set in G and N(u) N N(v) = @, we have

2min {L(h1), L(h2)} < L(hy Uhy) <2+ |V(G) \(N(x)u N(v))]
n+t n+6—-2¢
3 3 ’

=24n-20<2+n-2

and so

n+6—2t_n+18—2t
6 - 6 ’

Since 3 £ n +t, we deduce n + 18 — 2t < 2n + 15 — t. Therefore, we
have in any case

dG(’u, 'U) <1+ mm{L(hl),L(hg)} +1<2+

diamV(G)Smax{zn+6_t n 415 — ¢ n+168—2t}=2n+15—t

6 ] 6 1 21 6 k]
and Corollary 2.11 gives the result. O

Definition 2.15. Given any edge in G, let us consider the mazimal two-
connected subgraph containing it. We call to the set of these mazimal two-
connected subgraphs {G,}s the canonical T-decomposition of G.

We will need the following result, which allows to obtain global infor-
mation about the hyperbolicity constant of a graph from local information
(see [5, Theorem 3)).

Theorem 2.16. Let G be any graph with canonical T-decomposition {Gs}s.
Then
0(G) = sup 8(Gs).
8

If H is a subgraph of G and w € V(H), we denote by degy(w) the
degree of the vertex w in the subgraph induced by V(H).



Theorem 2.17. [3, Theorem 3.2/ Let G be any graph. Then 6(G) > 5/4
if and only if there exist a cycle g in G with length L(g) > 5 and a vertezx
w € g such that deg,(w) = 2.

The following result appears in [35, Theorem 3.16).

Theorem 2.18. For each possible value t of the hyperbolicity constant,
there exists a cubic graph G with 6(G) =t. Furthermore, G can be chosen
as a finite graph if t > 1.

The next result shows that the statement of Theorem 2.18 holds for the
set of A-regular graphs, for any fixed A > 2.

Theorem 2.19. For each A > 2 and every possible value t of the hyper-
bolicity constant, there ezists a A-regular graph G with §(G) = t. Further-
more, G can be chosen as a finite graph if t > 1.

Proof. First of all, recall that ¢ is a multiple of 1/4 by Theorem 2.2. Fur-
thermore, ¢t # 1/4,1/2, by [31, Theorem 11].

Let us start with A = 2. If G is the Cayley graph of the group Z (a
2-regular tree isometric to the real line), then §(G) = 0. For any r > 3 the
cycle graph C, satisfies §(C,) = r/4 by [40, Theorem 11].

Let us fix any A > 3. If G is a A-regular tree, then §(G) = 0. Let
Ta_1 be a “rooted tree with A — 1 sons” (every vertex has A — 1 sons,
i.e., the degree of the root is A — 1 and the degree of the other vertices
is A). Fix r > 3 and consider a graph Go obtained by attaching A — 2
edges to each vertex of a cycle graph C;, such that Gy has r vertices with
degree A and r(A — 2) vertices v1,...,vr(a—2) With degree one. Consider

graphs T} _,,..., TZ(_Al—z) isomorphic to Ta_1, with roots wy,...,wra-2)-
Let G be the graph obtained from Go and TL_,,...,Ta? by identi-
fying v; with w; for 1 < j < r(A —2). Thus G is A-regular. Since
Go,Ti_1y--- T, Z(ﬁ_z) is the canonical T-decomposition of G, Theorem
2.16 gives

5(G) = max {6(C;), 6(T4_,)} = max {§(C), §(Ta-1)} = mex {2, 0} = 7.

This finishes the proof of the first statement.

Since the complete graph Ka41 is A-regular and 6(Ka+1) = 1, the
second statement holds for ¢ = 1.

Fix now r > 5. By Theorem 2.18, there exists a finite cubic graph G™
with §(G") =r/4. Fix A > 4.

Consider the complete graph Ka+1, u,v € V(Ka+1) and a point w ¢
Ka41. Let G4 be the graph with V(Ga) = V(Ka41)U{w} and E(Ga) =
E(Ka+1)V{[u,w], [v,w]}\[u,v]. Note that degg, (w) = 2 and degg, (z) =
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A for every z € V(Ga)\ {w}. Let us show now that 6(Ga) = 5/4 for every
A > 4. One can check that diam(Ga) = 5/2 and Theorem 2.10 gives
0(Ga) < 5/4. If we choose any cycle g in Ga with length L(g) = 5 and
w € g, then deg,(w) = degg, (w) = 2 and Theorem 2.17 gives §(Ga) 2
5/4. Therefore, we conclude §(Ga) = 5/4.

Assume that A is even. Consider the cycle graph C, with vertices
v1,...,v and 7(A/2 — 1) isomorphic graphs {G"’ } to Ga with w;; €
V(G") and deggi;i(wi;) =2fori=1,...,randj=1,...,A/2 - 1. Let
G be the graph obtained from C, and {sz } by identifying v; and w; ;
(=1,...,A/2~-1) for each ¢ = 1,...,7. Thus G is a A-regular graph
and {Cr} {G"’ Yi=t,.r i=1,0A)2-1 18 1ts canonical T-decomposition, and
so Theorem 2.16 gives

5(6) = max {3(C:), B(GK)} = max {4(C), 6(Ga)} = max {2, 3} =T

Finally, assume that A is odd and consider a finite cubic graph G™ with
6(G") = r/4 and vertices vy, ..., vx. Consider k(A —3)/2 isomorphic graphs
{G¥} to Ga withw; ; € V(G"’) and deggis(wi,;) =2fori=1,...,k and

Jj=1,...,(A—3)/2. Let G be the graph obtained from G™ and {G"j } by
identifying v;and w;; (F =1,. »(A=3)/2) foreachi=1,...,k. Thus G
is a A-regular graph and {G"} {G X Yi=1,...k, j=1,...,(A—3)/2 IS its canonical
T-decomposition, and so Theorem 2.16 gives

8(G) = max {5(G"), 6(G¥)} = max {8(G"), 6(Ga)} = max {T, -Z-} =z
This finishes the proof. a
3 Regular graphs with small hyperbolicity con-
stant

Definition 3.1. Given a graph G and its canonical T-decomposition {G,},,
we define the effective diameter as

effdiam V(G) := supdiam V(G,),
8
effdiam(G) := supdiam(G,).
3
Note that if G is a two-connected graph, then effdiam V(G) = diam V(G)
and effdiam(G) = diam(G).

The hyperbolicity constant §(X) of a geodesic metric space can be
viewed as a measure of how “tree-like” the space is, since those spaces



with §(X) = 0 are precisely the metric trees. Hence, it is interesting to
study the regular graphs with small hyperbolicity constant.

It is not difficult to characterize the graphs with §(G) < 1 (see [31,
Theorem 11)). The next result provides a characterization of the graphs
with 6(G) = 1 (see (3, Proposition 4.5 and Theorem 4.14]).

Theorem 3.2. A graph G verifies (G) = 1 if and only if effdiam(G) = 2.
Furthermore, §(G) < 1 if and only if effdiam(G) < 2.

Given two graphs G,T’, we write G =T if G and I are isomorphic.

The following result characterizes the finite cubic graphs with hyper-
bolicity constant 1 (see [39, Theorem 2.4]).

Theorem 3.3. If G is a finite cubic graph with 6(G) = 1, then G = K4 or
G=Ks3.

Let G, = (V(G1), E(G1)) and G2 = (V(Gz), E(G2)) be two graphs
with V(G,) N V(G2) = 0. The graph join G; W G of Gy and G has
V(G1WG2) = V(G,1)UV(G2) and two different vertices u and v of G1 WGz
are adjacent (i.e., [u,v] € E(G1 ¥ G?)) if u € V(G1) and v € V(Gz), or
[u,v] € E(G)) or [u,v] € E(G3).

We say that a graph F' is an empty graph if E(F) = @. Denote by E.
the empty graph with r vertices.

The following result is the main tool in order to generalize Theorem 3.3.

Lemma 3.4. If G is a A-regular graph with n vertices, A > 1 and §(G) <
1, then G is two-connected, diam(G) <2 and A +1 <n < 2A.

Furthermore, n = A + 1 if and only if G = Ka41, and n = 2A if and
only if G = Ka a.

Given any fized vertex v in V(G), denote by G* the subgraph of G
induced by N (v) and by F the subgraph induced by V(G)\N(v). Then F is
an empty graph with n — A vertices, G* is a (2A — n)-regular graph with A
vertices, N(u) = N(v) for everyu € V(GI\N(v), G = G*0F = G*WE,_4,
and G* either is an empty graph or it verifies diam(G*) < 2.

Proof. Every finite 1-regular graph is isomorphic to the path graph P,
n = 2 and §(P2) = 0. Hence, the statements for A =1 follow from these
facts.

Every finite 2-regular graph with n vertices is isomorphic to the cycle
graph C,, and 6(C,) = n/4. Thus we have either n = 3 or n = 4 and the
statements for A = 2 follow from these facts.

Assume now A > 3.

Seeking for a contradiction assume that G has some cut-vertex. By
Theorem 3.2, G verifies effdliam(G) < 2. Let {G,} be the canonical T-
decomposition of G. Since G is a finite graph, there exists G in the
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canonical T-decomposition of G containing just one cut-vertex of G. We
have diam(G,) < effdiam(G) = 2. Let u € V(G) be the cut-vertex of G
contained in G;. Since u is the unique cut-vertex in G,, we have N(w) C
V(G,) for every w € V(G;) \ {u}. Since [N(u) N V(G,)| < A, we have
N(w) € ({u}UN(u))NV(G,) for every w € N(u)NV(G,) and there exists
z € V(G,)\ ({u} UN(u)). Since u ¢ N(z) and |N(u) NV(G,)| < A, there
exists 2’ € V(G,) \ ({«} U N(u)) with (z,2'] € E(G;). Since dg, (u,z) =
dg,(u, 2') = 2, if p is the midpoint of [z, z’], then dg, (u,p) = 5/2 > 2. This
contradicts diam(G;) < 2, and we conclude that G is two-connected.

If v € V(G), then n > |[N(v)| + |{v}] = A + 1. Let us prove now
n < 2A. By Theorem 3.2, G verifies diam(G) = effdiam(G) < 2, since G
is two-connected. Let v € V(G) be any fixed vertex in V(G). If V(G) =
N(v)U {v}, then n = |[N(v)| + |[{v}| = A+1 < 2A. If V(G) # N(v)U {v},
then let us fix u € V(G)\ (N(v)U{v}). Seeking for a contradiction assume
that there exists z € V(G) \ (N(v) U {v}) with [u,2] € E(G). Since
de(v,u) = dg(v,2) = 2, if p is the midpoint of [u, z], then dg(v,p) =
5/2 > 2. This contradicts diam(G) < 2, and we conclude that the subgraph
F induced by V(G) \ N(v) is an empty graph and N(u) C N(v). Since
G is a regular graph, N(u) = N(v) for every u € V(G) \ N(v). Hence,
[V(G)\ N(v)] < A and n = |V(G) \ N(v)| + |N(v)| < 2A. Furthermore, if
we denote by G* the subgraph induced by N(v), then G = G* W F.

We have n = 2A if and only if |V(G) \ N(v)| = A, i.e., G* is an empty
graph (G is isomorphic to the complete bipartite graph K A).

Note that n = A + 1 if and only if V(G) \ N(v) is a single vertex and
G* is isomorphic to the complete graph K,, i.e., G is isomorphic to the
complete graph Ka4;.

Assume that G* is not an empty graph (n < 2A). Let us prove now
that diam(G*) < 2.

Let vy € V(G*) and p; € J(G*) \ V(G*). Since diam(G) < 2, we have
de(v1,p1) < 3/2. If a curve g joins v; and p; and contains some vertex
in V(G) \ V(G*) = V(G) \ N(v), then L(g) > 2; therefore, dg-(v;,p1) =
dg(vi,p1) < 3/2. Hence, dg- (w1, w2) < 2 for every wy, ws € J(G*), and
diam(G*) < 2. In particular, G* is connected.

Since N(u) = N(v) = V(G*) for every u € V(G) \ N(v) and

A-V(F) =A-|V(GO\N@)|=A-(n-|N(@)|) =2A—n,
the graph G* is (2A — n)-regular. Furthermore, |V(G*)| = |N(v)| = A.
We have seen |V(F)| = n — A. Since F is an empty graph, we have
F=E, poandG=G*"WE,_A. a

The following result is a kind of converse of Lemma 3.4, and it is inter-
esting by itself (note that we do not require regularity).
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Theorem 3.5. Let G* be a two-connected graph with diam(G*) < 2 and
F an empty graph with V(G*)NV(F) = 0. If G is the graph G := G* W F,
then diam(G*) < 2 and 6(G) < 1. Furthermore, §(G) = 1 if and only if
[V(G*)| = 2 and |V(G)| > 4.

Proof. Since diam(G*) < 2, we have dg-(z,y) < 2 for every z,y € V(G*)
and dg-(z,y) < 3/2 for every z € J(G*) \ V(G*) and y € V(G*).

If z,y € V(G), then it is clear that dg(z,y) < 2.

If z € J(G*)\ V(G*) and y € V(F), then dg(z,y) < 3/2; therefore,
dg(z,y) < 2 for every z € J(G*)\ V(G*) and y € J(G).

If z € J(G)\(V(G)U J(G*)) and y € V(G), then dg(z,y) < 3/2; thus,
de(z,y) < 2 for every z € J(G) \ (V(G)U J(G*)) and y € J(G).

Hence, diam(G) < 2 and Theorem 3.2 gives §(G) < 1.

Note that |V (G*)| > 2 and |V(G)| > 4if and only if G contains a cycle
C with L(C) > 4, and by {31, Theorem 11], this is equivalent to 6(G) > 1.
Since §(G) < 1 in this context, the previous requisite is fulfilled if and only
if 6(G) = 1. O

We need the following result (see [40, Theorem 11}).

Theorem 3.6. The complete graph K, verifies 6(K,) = 1 if and only if
n > 4. The complete bipartite graph Ky, n, verifies 6(Kn, n,) =1 if and
only if ny,ng > 2.
Given two graphs Iy, T'3, we define I'; (¢ T'3)" inductively as T'y (¢ T'5)° :=
Ty, Ti(wly)! :=T1 Wy and Ty ()" := (T1(wT2)" 1) Wy for r > 2.
The following result generalizes Theorem 3.3 to A-regular graphs.

Theorem 3.7. Let G be a A-reqular graph with n vertices and A > 3.
Then 6(G) = 1 if and only if we have either

A

n=2—+—2A for some 0< 5 < J:= [—2-—1J, (3.2)

n=A+1
+ or T+l

and G =Ko ifn=A+1,G=Kaanifn=2A(j=0), and G =
Kn-an-a(WEn_p) ifn=A3G+2)/(G+1) for some1<j<J.

Proof. Let us define ng :=n, Ag := A,

Aj+l = 2AJ' —Nj, MNj41 = Aj, fOI‘j >0.
A direct computation gives nj41 — Aj41 = Aj — (24 —n;) = n; — 4;
for every j > 0. Hence, n; — A; = n — A for every j > 0. Since Aj4; =

2A; —nj = Aj — (nj — Aj) = Aj — (n— A), we conclude
Aj=A—-jn-4A), nj=A7Aj1=0-(j—-1)(n-28), forj=0.
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We have Njp1 =Ny ——(n—A) < nj —1and Aj+1 = Aj —(n—A) < Aj -1.
Note that J is the greatest integer j satisfying the inequality

J+2
A+2<=——A,
i+l

and thus J+3
Frad<a+2 (3.3)

Assume first that §(G) = 1.

Given any fixed vertex v in V(G), denote by G*! = G* the subgraph
of G induced by N(v). Lemma 3.4 gives that G*! is a (2A — n)-regular
graph with A vertices (i.e., a Aj-regular graph with n; vertices), G =
G*'WE,_a, and G*! either is an empty graph or it verifies diam(G*!) < 2.
Furthermore, A+1 < n <2A,n=A+1if and only if G = Ka,;, and
n = 2A (i.e., Ay = 0) if and only if G*! is an empty graph, and then
G = Ka,a. If n < 2A, then diam(G*!) < 2 and §(G*!) < 1 by Theorem
3.2.

Let us define inductively G*7. Assume that G*J is defined and it is
a Aj-regular graph with n; vertices, A; > 1 and §(G*7) < 1. Given any
v; € V(G*7), denote by G*7*1 the subgraph of G* induced by Ng-.;(v;).
Lemma 3.4 gives that G*7 = G HWE, _A, = G**1WE,_,, and G*I+!
either is an empty graph or it verifies diam(G*7+1) < 2. Furthermore,
Aj+1 < n; <24;, and nj = 24 (i.e, Ajyp = 0) if and only if G*i+!
is an empty graph, and thus G* is isomorphic to the complete bipartite
graph Ka; a;; since Aj4; = 0, we deduce A; — (n — A) = Ay = 0,
Aj=n—-A and Kp;a; = Kn—an-a. If nj = 2A;, then the sequence
stops for this value of j. If n; < 24;, then Ajy; > 1, diam(G*i+1) < 2
and §(G*9*!) < 1 by Theorem 3.2.

We have n; < 24; if and only if A — (j —1)(n — A) < 2A - 2j(n— A),
e, n<A(G+2)/(+1).

The same argument gives that n; = 2A; if and only if n = A(j+2)/(F +
1).

Hence, if n = A(j+2)/(j+1) forsomel < j < J, then G = G*'WE,_a,
G" = G YE,, A, = GVHWE,_pfor1<i<jand G = Kaa, =
Kn—A,n—A- Thus G = K, —A,n—A(w En_A)j.

Now, if n # A(j +2)/(j + 1) for every 0 < j < J, then ny < 2A;
and n < A(J + 2)/(J + 1). Seeking for a contradiction, assume that
n# A(j+2)/(j+1) for every 7 > 0; therefore, A+1 <n < A(j+2)/(F+1)
for every j > 0 and thus A +1 < A, which is a contradiction. Hence,
n=A(F+2)/(F+1) forsomej > J,andson = AGF+2)/G+1) <
A(J+3)/(J+2). Therefore, (3.3) gives A+1 < n < A(J+3)/(J+2) < A+2

and we conclude n = A + 1.
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Finally assume that we have G = Kay ifn=A+ 1, G = Kpa if
n=2A(j=0),or G=Kpnan-a(WE._a) if n=A@G +2)/(F+1) for
some 1 < j < J. Theorem 3.5 gives that §(G) < 1.

Theorem 3.6 gives §(G) = 1if n = A+ 1 or n = 24, since A > 3.
~ Assume now that G = Kn—an-a(WEa-a) and n=A(j +2)/(j + 1) for
somel <j<J Thus Aj;1=0and A—-j(n—-A)=A4A; 2 Aj+1=1
Since

[V(Kn-an-a(@Ea_a)’™Y)| 2 [V(En-an-a) = [V(Ka;a,) =28, 22,

V(G)l=n=2A+12>4,
Theorem 3.5 gives 6(G) = 1. O

The hypothesis A > 3 in Theorem 3.7 is not a real restriction, since
the cases A = 1 and A = 2 are very simple, as Corollary 3.8 below shows.
Furthermore, it shows explicitly the graphs with 6(G) = 1 for small values
of A.

Corollary 3.8. Assume that G is a finite A-regular graph.

IfA =1, then §(G) =0.

IfA = 2, then J(G) =1 if and only ’LfG = C4 = Kg’z.

If A =3, then §(G) =1 if and only if G = K4 or G = Ka3.

IfA =4, then§(G) =1ifand only if G = K5, G = K44 or G =
K; 2w E,.

IfA =5, then 6(G) =1 if and only if G = Kg or G = Ks5.

IfA =6, thend(G) =1 ifand only if G = K7, G = Kg 6, G = K3,3WE3
orG = (K2’2 W Es) @ E.

IfA=1, then §(G) =1 if and only if G = Kg or G = K7 7.

Proof. If A =1, then G = P, and §(G) = §(P;) =0.

Every finite 2-regular graph G is isomorphic to the cycle graph C, with
n = |V(G)| = 3, and §(C,) = n/4. Thus §(G) = 1 if and only if G is
isomorphic to the cycle graph Cy = K3 5.

If A=3,A=50r A =17, then Theorem 3.7 gives the result.

If A = 4, then J = 1 and Theorem 3.7 gives that 6(G) =1 if and only
if we have either G = K (if n =5), G = K44 (if n =8), or G = K32 WE;
(ifj=landn=(1+2)A/(1+1)=6).

If A = 6, then J = 2 and Theorem 3.7 gives that 6(G) = 1 if and only
if we have either G = K7 (if n=7), G = Kg¢ (if n = 12), G = K33 W Ej3
(ifj=landn=(14+2A/(1+1)=9) or G = (K24 E3)WE; (if j =2
and n=(2+2)A/(2+1) =8). O
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Theorem 3.7 and Corollary 3.8 have the following beautiful and unex-
pected consequence (it provides a sophisticated characterization of prime
numbers in terms of hyperbolic graphs).

Theorem 3.9. Let A > 3. The following statements are equivalent:

e A is a prime number.

o We have §(G) = 1 with G a finite A-regular graph if and only if
G= KA-H orG = KA,A~

Proof. Assume first that A is a prime number. Since j+1 < J+1 =
|A/2] < A, we have
ged{A,j+1} =1

Furthermore,
ged{j+2j+1} =1
if 7 > 1, and hence, 0
Jj+
—A¢N
j+1 ¢
for every 7 > 1, and Theorem 3.7 gives the result.

Assume now that §(G) = 1 with G a finite A-regular graph if and only
if G = Ka41 0r G = Ka a. By Theorem 3.7, we have that A(j+2)/(j+1)
is not an integer number for every 1 < j < J. By Corollary 3.8, we
can assume A > 8. Seeking for a contradiction assume that A is not a
prime number, and then A = m;m; with integers m; and mg verifying
my, my > 2. By symmetry, we can assume 2 < m; < my and, therefore,
my < |VA]. Since

\/ZS%—I

for every A > 8, we have that m; < J and A(my+1)/m; = ma(m;+1) isan
integer number, which is a contradiction. Hence, A is a prime number. 0O

4 Conclusion

The main aim of this paper is to obtain results about the hyperbolicity
constant of A-regular graphs. We obtain several bounds for this parameter
(see Theorems 2.6 and 2.14, and Proposition 2.9); in particular, Theorem
2.6 gives 6(G) < An/(8(A — 1)) + 1 for any A-regular graph G with n
vertices. Furthermore, we show in Theorem 2.19 that for each A > 2
and every possible value t of the hyperbolicity constant, there exists a A-
regular graph G with 6(G) = t. We also study in Theorems 3.7 and 3.9 and
Corollary 3.8 the regular graphs G with §(G) < 1. Besides, we prove some
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inequalities involving the hyperbolicity constant and other parameters for
regular graphs (Theorem 2.12 gives that for any regular graph G with n
vertices and k-domination numbers vx(G), we have §(G) + 7 (G) < n for
every 1 <k < A).

A natural open problem is to obtain a generalization of the inequalities
for the hyperbolicity constant of cubic graphs in [35, 39] to the context
of regular graphs. Also, it would be desirable to relate the hyperbolic-
ity constant of regular graphs with other parameters (such as its girth,
circumference or the first eigenvalue of the adjacency matrix). For fu-
ture works, it would be interesting to study how to improve the results in
6, 2, 9, 30, 47, 12, 14, 32, 36, 45] when we just consider regular graphs.
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