$P_m \cup P_k$ -equipackable paths and cycles *

Liandi Zhang¹ Yanfei Wang² Yuqin Zhang^{2†‡}

¹College of Science, Tianjin University of Commerce, Tianjin, 300134, China ²Department of Mathematics, Tianjin University, Tianjin, 300354, China

Abstract

A graph G is called H-equipackable if every maximal H-packing in G is also a maximum H-packing in G. In 2012, P_k -equipackable paths and cycles, M_k -equipackable paths and cycles are characterized. In this paper, $P_m \cup P_k$ -equipackable paths and cycles are characterized. **Keywords:** Equipackable, path, cycle.

1 Introduction

The problem that we study stems from the research of H-decomposable graphs, randomly packable graphs. For further definitions and results, we refer the reader to [1]. The path and cycle on n vertices are denoted by P_n and C_n , respectively. In this paper, $P_m \cup P_k$ denote the union of P_m and P_k which are vertex-disjoint. Without loss of generality, we shall assume $k \geq m$. The edge set of P_n is denoted by $E(P_n) = \{e_1, e_2, \cdots, e_{n-1}\}$. The edge set of C_n is denoted by $E(C_n) = \{e_1, e_2, \cdots, e_n\}$. A vertex with degree 1 of a path is called an end vertex of the path. Let P_n be a subgraph of P_n . By P_n we denote the graph left after we delete from P_n the edges of P_n and any resulting isolated vertices.

A collection of edge disjoint copies of H, say H_1, H_2, \dots, H_l , where each $H_i (i=1,2,\cdots,l)$ is a subgraph of G, is called an H-packing in G. A graph G is called H-packable if there exists an H-packing of G. An H-packing in G with I copies H_1, H_2, \dots, H_l of H is called maximal if $G - \bigcup_{i=1}^l E(H_i)$ contains no subgraph isomorphic to H. An H-packing in G with I copies H_1, H_2, \dots, H_l of H is called maximum if no more than I edge disjoint copies of H can be packed into G. Let P(G; H) denote the

^{*}E-mail addresses: yuqinzhang@126.com; zhangliandi2009@163.com

[†]Corresponding author.

[‡]Foundation items: This research was supported by Natural Science Foundation of Hebei province(No.A20152023010), the Natural Science Foundation of Tian-jin(No.15JCYBJC19100), National Natural Science Foundation of China (No.11401430).

number of H in the maximum H-packing of G. A graph G is called H-decomposable if there exists an H-packing of G which uses all edges in G. A graph G is called H-equipackable if every maximal H-packing in G is also a maximum H-packing in G. In 2006, Zhang and Fan([2]) characterized M_2 -equipackable graphs. In 2010, B. Randerath and P. D. Vestergaard([3]) characterized all P_3 -equipackable graphs. In [4], P_k -equipackable paths and cycles, M_k -equipackable paths and cycles are characterized.

In this paper, we investigate $P_m \cup P_k$ -equipackable paths and cycles. We first give a lemma which is important to our work:

Lemma 1. ([4]) Let G be an F-packable graph and H be an F-packable subgraph of G which satisfy: (1) H is not F-equipackable; (2) G - H is F-decomposable. Then G is not F-equipackable.

2 Main results

In 2006, Zhang and Fan([2]) characterized all M_2 -equipackable graphs. The path P_n is M_2 -equipackable if and only if $n=2t(t\in\mathcal{Z},t\geq 2)$. The cycle C_n is M_2 -equipackable if and only if $n=2t+1(t\in\mathcal{Z},t\geq 2)$. In the following, we discuss the case when k>m=2 and $k\geq m>2$.

2.1 $P_m \cup P_k$ -equipackable paths

Theorem 2. A path P_n is $P_2 \cup P_k$ -equipackable (k > 2) if and only if $\begin{cases} n = 5, 6, 8, 9, & \text{when } k = 3 \\ n = 6, 7, 8, 12, & \text{when } k = 4 \\ k + 2 \le n \le 2k, & \text{when } k > 4 \end{cases}$

Proof. 1. $n \leq k+1$, since P_n contains no copy of $P_2 \cup P_k$, P_n can not be $P_2 \cup P_k$ -equipackable.

- 2. $k+2 \le n \le 2k$, it is easy to see $p(P_n; P_2 \cup P_k) = 1$. And P_n is $P_2 \cup P_k$ -packable, so each maximal $P_2 \cup P_k$ -packing is also a maximum $P_2 \cup P_k$ -packing. Thus P_n must be $P_2 \cup P_k$ -equipackable.
- 3. $2k+1 \le n \le 3k$, it is easy to see $p(P_n; P_2 \cup P_k) = 2$. In the following, there are two subcases:
 - (a) $2k+1 \le n \le 3k-2$, there exists a $P_2 \cup P_k$ -packing H with only one copy of $P_2 \cup P_k$ such that G-H has three components denoted by H_1 , H_2 and H_3 , with $|E(H_1)| = 1$, $|E(H_2)| = k-2$, $1 \le |E(H_3)| \le k-2$. P_n is not $P_2 \cup P_k$ -equipackable.

- (b) $3k-1 \le n \le 3k$, for k=3, it's easy to verify P_n is $P_2 \cup P_3$ -equipackable. For k=4, P_{11} is not $P_2 \cup P_4$ -equipackable and P_{12} is $P_2 \cup P_4$ -equipackable. For k>4, there exists a $P_2 \cup P_k$ -packing H with only one copy of $P_2 \cup P_k$ such that G-H has three components denoted by H_1, H_2 and H_3 , with $|E(H_1)| = 2$ or $|E(H_2)| = |E(H_3)| = k-2$, $|E(H_2)| = k-2$, $|E(H_2)|$
- 4. $3k+1 \le n \le 4k$, P_n is not $P_2 \cup P_k$ -equipackable. It is easy to see $p(P_n; P_2 \cup P_k) = 3$, there are two subcases:
 - (a) n=3k+1, there exists a $P_2 \cup P_k$ -packing H with two copies of $P_2 \cup P_k$, such that G-H has three components denoted by H_1, H_2 and H_3 with $|E(H_1)| = k-2$, $|E(H_2)| = |E(H_3)| = 1$. So H is a maximal $P_2 \cup P_k$ -packing which is not maximum. By the definition, P_n is not $P_2 \cup P_k$ -equipackable.
 - (b) $3k+2 \le n \le 4k$, there exists a $P_2 \cup P_k$ -packing H with two copies of $P_2 \cup P_k$, such that G-H has five components denoted by H_1, H_2, H_3, H_4 and H_5 with $|E(H_1)| = k-2$, $|E(H_2)| = |E(H_3)| = |E(H_4)| = 1$, $0 \le |E(H_5)| \le k-2$. So H is a maximal $P_2 \cup P_k$ -packing which is not maximum. By the definition, P_n is not $P_2 \cup P_k$ -equipackable.
- 5. $n \ge 4k + 1$, there are two subcases:
 - (a) $n-(2k+1) \equiv r \pmod k$ $(r=0,1,\cdots,k-3), P_n-P_{2k+1+r}$ has $kt \ (t\in \mathcal{Z}, t\geq 2)$ edges, so P_n-P_{2k+1+r} is $P_2\cup P_k$ -decomposable. By Lemma 1, P_n is not $P_2\cup P_k$ -equipackable.
 - (b) $n (2k + 1) \equiv s \pmod{k}$ (s = k 2, k 1), there are two possibilities:
 - 5k-1 ≤ n ≤ 5k, it is easy to see p(P_n; P₂ ∪ P_k) is 4. And the number of every maximal P₂ ∪ P_k-packing of P_n is 3 or 4. So P_n is not P₂ ∪ P_k-equipackable.
 - $n \ge 6k 1$, $P_n P_{3k+1+s}$ is $P_2 \cup P_k$ -decomposable. By Lemma 1, P_n is not $P_2 \cup P_k$ -equipackable.

Theorem 3. A path P_n is $P_m \cup P_k$ -equipackable $(k \ge m > 2)$ if and only if $m+k \le n \le 2m+2k-4$ or $\begin{cases} 4m+2k-6 \le n \le 3m+3k-6, & m \le k \le \frac{3}{2}m \\ m+4k-6 \le n \le 3m+3k-6, & \frac{3m}{2} < k \le 2m \end{cases}$

Proof. 1. $n \le m + k - 1$, since P_n contains no copy of $P_m \cup P_k$, P_n can not be $P_m \cup P_k$ -equipackable.

- 2. $m+k \leq n \leq 2m+2k-4$, it is easy to see $p(P_n; P_m \cup P_k) = 1$. And P_n is $P_m \cup P_k$ -packable, so each maximal $P_m \cup P_k$ -packing is also a maximum $P_m \cup P_k$ -packing. Thus P_n must be $P_m \cup P_k$ -equipackable.
- 3. $2m+2k-3 \le n \le 3m+3k-6$, it is easy to see $p(P_n; P_m \cup P_k) = 2$. To get the maximal packing with only one copy $H = P_m \cup P_k$ which satisfies that $|E(G-H)| = |E(H_1) \cup E(H_2) \cup E(H_3)|$ is maximum, see Fig.1. There are two possibilities:
 - (i) $|E(H_1)| = |E(H_2)| = m-2$, $|E(H_3)| = m+k-2$. So |E(G-H)| = 3m+k-6;
 - (ii) $|E(H_1)| = |E(H_2)| = |E(H_3)| = k 2$. So |E(G H)| = 3k 6.

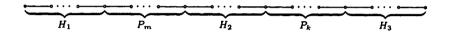


Figure 1:

When $3m + k - 6 \ge 3k - 6$, that is, $k \le \frac{3}{2}m$, $|E(H_1)| = |E(H_2)| = m - 2$ and $|E(H_3)| = m + k - 2$ which makes |E(G - H)| get to the maximum.

When 3m + k - 6 < 3k - 6, that is, $k > \frac{3}{2}m$, $|E(H_1)| = |E(H_2)| = |E(H_3)| = k - 2$ which makes |E(G - H)| get to the maximum.

Thus we have the following two cases:

- (a) $m \le k \le \frac{3}{2}m$, there are two subcases:
 - $2m+2k-3 \le n \le 4m+2k-7$, there exists a $P_m \cup P_k$ -packing H with only one copy of $P_m \cup P_k$ such that G-H has three components denoted by H_1, H_2 and H_3 , with $|E(H_1)| = |E(H_2)| = m-2, k-m+2 \le |E(H_3)| \le m+k-2$. So H is a maximal $P_m \cup P_k$ -packing which is not maximum. By the definition, P_n is not $P_m \cup P_k$ -equipackable. From above, when $|E(H_1)| = |E(H_2)| = m-2$, $|E(H_3)| = m+k-2$, the maximal $P_m \cup P_k$ -packing of P_n with one copy of $P_m \cup P_k$ makes |E(G-H)| get to the maximum.
 - $4m+2k-6 \le n \le 3m+3k-6$, the number of every maximal $P_m \cup P_k$ -packing of P_n is 2 by the Pigeonhole Principle. So P_n is $P_m \cup P_k$ -equipackable.
- (b) $k > \frac{3m}{2}$, there are two subcases:

- $2m+2k-3 \le n \le m+3k-6$, similarly, $|E(H_1)|=m-2$, $|E(H_2)|=k-2$, $2 \le |E(H_3)| \le k-m-1 < k-1$. So H is a maximal $P_m \cup P_k$ -packing which is not maximum. By the definition, P_n is not $P_m \cup P_k$ -equipackable.
- $m+3k-5 \le n \le 3m+3k-6$.
 - i. $k \le 2m$, then $m + 4k 6 \le 3m + 3k 6$. There are the following two possibilities:

When $m+3k-5 \le n \le m+4k-7$, similarly, $|E(H_1)| = |E(H_2)| = k-2$, $0 \le |E(H_3)| \le k-2$. Thus P_n is not $P_m \cup P_k$ -equipackable. When $|E(H_1)| = |E(H_2)| = |E(H_3)| = k-2$, the maximal $P_m \cup P_k$ -packing of P_n with one copy of $P_m \cup P_k$ makes |E(G-H)| maximum. When $m+4k-6 \le n \le 3m+3k-6$, the number of every maximal $P_m \cup P_k$ -packing of P_n is 2 by the Pigeonhole Principle. So P_n is $P_m \cup P_k$ -equipackable.

- ii. k > 2m. When $m+3k-5 \le n \le 3m+3k-6$, similarly, $|E(H_1)| = |E(H_2)| = k-2$, $0 \le |E(H_3)| \le 2m-1 < k-1$. So P_n is not $P_m \cup P_k$ -equipackable.
- 4. $3m + 3k 5 \le n \le 4m + 4k 8$, P_n is not $P_m \cup P_k$ -equipackable. It is easy to see $p(P_n; P_m \cup P_k) = 3$, there are two subcases:
 - (a) $3m+3k-5 \le n \le 3m+4k-7$, there exists a $P_m \cup P_k$ -packing H with two copies of $P_m \cup P_k$, such that G-H has five components denoted by H_1, H_2, H_3, H_4 and H_5 with $|E(H_1)| = m-2$, $|E(H_2)| = k-2$, $|E(H_3)| = |E(H_4)| = 1$, $0 \le |E(H_5)| \le k-2$. So H is a maximal $P_m \cup P_k$ -packing which is not maximum. By the definition, P_n is not $P_m \cup P_k$ -equipackable.
 - (b) $3m+4k-6 \le n \le 4m+4k-8$, similar to the subcase (a), $|E(H_1)|=m-1$, $|E(H_2)|=|E(H_3)|=k-2$, $|E(H_4)|=1$, $1 \le |E(H_5)| \le m-1$. So H is a maximal $P_m \cup P_k$ -packing which is not maximum. By the definition, P_n is not $P_m \cup P_k$ -equipackable.
- 5. $n \ge 4m + 4k 7$, we only discuss the case when $m \le k \le \frac{3}{2}m$, there are two subcases:
 - (a) $n-(2m+2k-3) \equiv r \pmod{m+k-2}$ $(r=0,1,\cdots,2m-4)$, $P_n-P_{2m+2k-3+r}$ has (k+m-2)t $(t\in\mathcal{Z},t\geq 2)$ edges, so $P_n-P_{2m+2k-3+r}$ is $P_m\cup P_k$ -decomposable. By case 3, P_n is not $P_m\cup P_k$ -equipackable.

- (b) $n (2m + 2k 3) \equiv s \pmod{m + k 2}$ ($s = 2m 3, 2m 2, \dots, m + k 3$), there are two possibilities:
 - $6m+4k-10 \le n \le 5m+5k-10$, it is easy to see $p(P_n; P_m \cup P_k)$ is 4. There exists a $P_m \cup P_k$ -packing H with three copies of $P_m \cup P_k$, such that G-H has seven components denoted by $H_1, H_2, H_3, H_4, H_5, H_6$ and H_7 with $|E(H_1)| = |E(H_2)| = |E(H_3)| = m-2, |E(H_4)| = k-2, |E(H_5)| = 2, |E(H_6)| = 1, 0 \le |E(H_7)| \le k-m$. So H is a maximal $P_m \cup P_k$ -packing which is not maximum. By the definition, P_n is not $P_m \cup P_k$ -equipackable.
 - $n \ge 7m + 5k 12$, $P_n P_{3m+3k-5+s}$ is $P_m \cup P_k$ -decomposable. By Lemma 1, P_n is not $P_m \cup P_k$ -equipackable.

When $k > \frac{3}{2}m$, we discuss similarly, P_n is also not $P_m \cup P_k$ -equipackable.

2.2 $P_m \cup P_k$ -equipackable cycles

Theorem 4. A cycle C_n is $P_2 \cup P_k$ -equipackable (k > 2) if and only if $\begin{cases} n = 5, 6, 7, 8, 11, & \text{when } k = 3\\ k + 2 \le n \le 2k - 1 \text{ or } 3k - 3 \le n \le 3k - 1, & \text{when } k > 3 \end{cases}$

Proof. 1. $n \leq k+1$, since C_n contains no copy of $P_2 \cup P_k$, C_n can not be $P_2 \cup P_k$ -equipackable.

- 2. $k+2 \le n \le 2k-1$, it is easy to see $p(C_n; P_2 \cup P_k) = 1$. And C_n is $P_2 \cup P_k$ -packable, so each maximal $P_2 \cup P_k$ -packing is also a maximum $P_2 \cup P_k$ -packing. Thus C_n must be $P_2 \cup P_k$ -equipackable.
- 3. $2k \le n \le 3k-1$, it is easy to see $p(C_n; P_2 \cup P_k) = 2$. For k = 3, C_n is $P_2 \cup P_3$ -equipackable. For $k \ge 4$, there are two subcases:
 - (a) $2k \leq n \leq 3k-4$, there exists a $P_2 \cup P_k$ -packing H with only one copy of $P_2 \cup P_k$ such that G-H has two components denoted by H_1 and H_2 , with $|E(H_1)| = k-2$, $2 \leq |E(H_2)| \leq k-2$. So H is a maximal $P_2 \cup P_k$ -packing which is not maximum. By the definition, C_n is not $P_2 \cup P_k$ -equipackable. When $|E(H_1)| = |E(H_2)| = k-2$, the maximal $P_2 \cup P_k$ -packing of C_n with one copy of $P_2 \cup P_k$ makes |E(G-H)| get to the maximum.
 - (b) $3k-3 \le n \le 3k-1$, the number of every maximal $P_2 \cup P_{k-1}$ packing of P_n is 2 by the Pigeonhole Principle. So C_n is $P_2 \cup P_{k-1}$ equipackable.
- 4. $3k \le n \le 4k-1$, C_n is not $P_2 \cup P_k$ -equipackable. It is easy to see $p(C_n; P_2 \cup P_k) = 3$, there are two subcases:

- (a) $3k \leq n \leq 4k-2$, there exists a $P_2 \cup P_k$ -packing H with two copies of $P_2 \cup P_k$, such that G H has four components denoted by H_1, H_2, H_3 and H_4 with $|E(H_1)| = k-2$, $|E(H_2)| = |E(H_3)| = 1$, $0 \leq |E(H_4)| \leq k-2$. So H is a maximal $P_2 \cup P_k$ -packing which is not maximum. By the definition, C_n is not $P_2 \cup P_k$ -equipackable.
- (b) n=4k-1, for k=3, it's easy to verify C_n is $P_2 \cup P_{k-1}$ equipackable. For k>3, there exists a $P_2 \cup P_{k-1}$ expanding H with two copies of $P_2 \cup P_k$ such that G-H has four components denoted by H_1, H_2, H_3 and H_4 , with $|E(H_1)| = k-2$, $|E(H_2)| = k-3$, $|E(H_3)| = |E(H_4)| = 2$, C_n is not $P_2 \cup P_k$ -equipackable.
- 5. $n \ge 4k$, there are two subcases:
 - (a) $n-2k \equiv r \pmod{k}$ $(r=0,1,\cdots,k-3)$, C_n-P_{2k+1+r} has kt $(t \in \mathcal{Z}, t \geq 2)$ edges, so C_n-P_{2k+1+r} is $P_2 \cup P_k$ -decomposable. By Lemma 1, C_n is not $P_2 \cup P_k$ -equipackable.
 - (b) $n-2k \equiv s \pmod{k}$ (s=k-2,k-1), there are two possibilities:
 - $5k-2 \le n \le 5k-1$, it is easy to see $p(C_n; P_2 \cup P_k)$ is 4. And the number of every maximal $P_2 \cup P_k$ -packing of P_n is 3 or 4. So C_n is not $P_2 \cup P_k$ -equipackable.
 - $n \ge 6k 2$, $C_n P_{3k+1+s}$ is $P_2 \cup P_k$ -decomposable. By Lemma 1, C_n is not $P_2 \cup P_k$ -equipackable.

Theorem 5. A cycle C_n is $P_m \cup P_k$ -equipackable $(k \ge m > 2)$ if and only if $m + k \le n \le 2m + 2k - 5$ or

$$\left\{\begin{array}{ll} 3m+2k-5 \leq n \leq 3m+3k-7, & \text{when } m \leq k \leq 2m \\ m+3k-5 \leq n \leq 3m+3k-7, & \text{when } k > 2m \end{array}\right.$$

- *Proof.* 1. $n \leq m + k 1$, since C_n contains no copy of $P_m \cup P_k$, C_n can not be $P_m \cup P_k$ -equipackable.
 - 2. $m+k \leq n \leq 2m+2k-5$, it's easy to see that $p(C_n; P_m \cup P_k)$ is 1. And C_n is $P_m \cup P_k$ -packable, so each maximal $P_m \cup P_k$ -packing is also a maximum $P_m \cup P_k$ -packing. Thus C_n must be $P_m \cup P_k$ -equipackable.
 - 3. $2m+2k-4 \le n \le 3m+3k-7$, it's easy to see $p(C_n; P_m \cup P_k) = 2$. To get the maximal packing with only one copy $H = P_m \cup P_k$ which satisfies that $|E(G-H)| = |E(H_1) \cup E(H_2)|$ is maximum. There are two possibilities:
 - (i) $|E(H_1)| = m-2$, $|E(H_2)| = m+k-2$. So |E(G-H)| = 2m+k-4;

(ii) $|E(H_1)| = |E(H_2)| = k - 2$. So |E(G - H)| = 2k - 4.

When $2m + k - 4 \ge 2k - 4$, that is, $k \le 2m$, $|E(H_1)| = m - 2$, $|E(H_2)| = m + k - 2$ which makes |E(G - H)| get to the maximum.

When 2m+k-4 < 2k-4, that is, k > 2m, $|E(H_1)| = |E(H_2)| = k-2$ which makes |E(G-H)| get to the maximum.

Thus we have the following two cases:

- (a) $m \le k \le 2m$. There are two subcases:
 - When $2m+2k-4 \le n \le 3m+2k-6$, there exists a $P_m \cup P_k$ -packing H with only one copy of $P_m \cup P_k$ such that G-H has two components denoted by H_1 and H_2 with $|E(H_1)| = m-2$, $k \le |E(H_2)| \le m+k-2$. So H is a maximal $P_m \cup P_k$ -packing which is not maximum. By the definition, C_n is not $P_m \cup P_k$ -equipackable. When $|E(H_1)| = m-2$, $|E(H_2)| = m+k-2$, the maximal $P_m \cup P_k$ -packing of C_n with one copy of $P_m \cup P_k$ makes |E(G-H)| get to the maximum.
 - When $3m + 2k 5 \le n \le 3m + 3k 7$, the number of every maximal $P_m \cup P_k$ -packing of P_n is 2 by the Pigeonhole Principle. So C_n is $P_m \cup P_k$ -equipackable.
- (b) k > 2m. There are two subcases:
 - When $2m+2k-4 \le n \le m+3k-6$, similarly, $|E(H_1)| = k-2$, $m \le |E(H_2)| \le k-2$. So H is a maximal $P_m \cup P_k$ -packing which is not maximum. By the definition, C_n is not $P_m \cup P_k$ -equipackable. When $|E(H_1)| = k-2$, $|E(H_2)| = k-2$, the maximal $P_m \cup P_k$ -packing of C_n with one copy of $P_m \cup P_k$ makes |E(G-H)| get to the maximum.
 - When $m+3k-5 \le n \le 3m+3k-7$, the number of every maximal $P_m \cup P_k$ -packing of P_n is 2 by the Pigeonhole Principle. So C_n is $P_m \cup P_k$ -equipackable.
- 4. $3m + 3k 6 \le n \le 4m + 4k 9$, C_n is not $P_m \cup P_k$ -equipackable. It is easy to see $p(C_n; P_m \cup P_k)$ is 3, there are two subcases:
 - (a) $3m+3k-6 \le n \le 3m+4k-8$, there exists a $P_m \cup P_k$ -packing H with two copies of $P_m \cup P_k$, such that G-H has four components denoted by H_1, H_2, H_3 and H_4 with $|E(H_1)| = m-1, |E(H_2)| = k-2, |E(H_3)| = 1, 0 \le |E(H_4)| \le k-2$. So H is a maximal $P_m \cup P_k$ -packing which is not maximum. By the definition, C_n is not $P_m \cup P_k$ -equipackable.

- (b) $3m+4k-7 \le n \le 4m+4k-9$, similarly, $|E(H_1)|=1$, $|E(H_2)|=|E(H_3)|=k-2$, $m \le |E(H_4)| \le 2m-2 \le m+k-2$. So H is a maximal $P_m \cup P_k$ -packing which is not maximum. By the definition, C_n is not $P_m \cup P_k$ -equipackable.
- 5. $n \ge 4m + 4k 8$, we only discuss the case when $m \le k \le \frac{3}{2}m$, there are two subcases:
 - (a) $n-(2m+2k-4) \equiv r \pmod{m+k-2}$, $(r=0,1,2,\cdots,2m-4)$. $C_n-P_{2m+2k-3+r}$ has (k+m-2)t $(t\in\mathcal{Z},t\geq 2)$ edges, so $C_n-P_{2m+2k-3+r}$ is $P_m\cup P_k$ -decomposable. By Lemma 1, C_n is not $P_m\cup P_k$ -equipackable.
 - (b) $n-(2m+2k-4) \equiv s \pmod{m+k-2}$, $(s=2m-3,2m-2,\cdots,m+k-3)$, there are two possibilities:
 - $6m+4k-11 \le n \le 5m+5k-11$, it is easy to see $p(C_n; P_m \cup P_k)$ is 4. There exists a $P_m \cup P_k$ -packing H with three copies of $P_m \cup P_k$, such that G H has six components denoted by H_1, H_2, H_3, H_4, H_5 and H_6 with $|E(H_1)| = |E(H_2)| = |E(H_3)| = m-2$, $|E(H_4)| = k-2$, $|E(H_5)| = 2$, $1 \le |E(H_6)| \le k-m+1$. So H is a maximal $P_m \cup P_k$ -packing which is not maximum. By the definition, C_n is not $P_m \cup P_k$ -equipackable.
 - $n \ge 7m + 5k 13$, $C_n P_{3m+3k-5+s}$ is $P_m \cup P_k$ -decomposible. By Lemma 1, C_n is not $P_m \cup P_k$ -equipackable.

Then a similar argument shows that When $k > \frac{3}{2}m$, C_n is also not $P_m \cup P_k$ -equipackable.

References

- [1] L. W. Beineke, P. Hamberger and W. D. Goddard, Random packings of graphs, *Discrete Mathematics*, 125(1994), 45-54.
- Y.Q. Zhang and Y.H. Fan, M₂-equipackable graphs, Discrete Applied Mathematics, 154(2006), 1766-1770. graphs, Discrete Mathematics, 308(2008), 161-165.
- [3] B. Randerath and P. D. Vestergaard, All P_3 -equipackable graphs, Discrete Mathematics, 310(2010), 355-359.
- [4] L.D.Zhang and Y.Q.Zhang, Two kinds of equipackable paths and cycles, *Ars Combinatoria*, 103(2012), 417-421.