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Abstract
A graph G is called H-equipackable if every maximal H-packing in
G is also a maximum H-packing in G. In 2012, Ps-equipackable paths
and cycles, Mi-equipackable paths and cycles are characterized. In
this paper, P, U Pe-equipackable paths and cycles are characterized.
Keywords: Equipackable, path, cycle.

1 Introduction

The problem that we study stems from the research of H-decomposable
graphs, randomly packable graphs. For further definitions and results, we
refer the reader to [1). The path and cycle on n vertices are denoted by P,
and C,,, respectively. In this paper, P, U P denote the union of P, and
P, which are vertex-disjoint. Without loss of generality, we shall assume
k > m. The edge set of P, is denoted by E(P,) = {ei,e2, - ,en—1}.
The edge set of C,, is denoted by E(C,) = {e1,ez2,--- ,e,}. A vertex with
degree 1 of a path is called an end vertex of the path. Let H be a subgraph
of G. By G — H, we denote the graph left after we delete from G the edges
of H and any resulting isolated vertices.

A collection of edge disjoint copies of H, say H, Ha,---, H;, where
each H;(i = 1,2,---,l) is a subgraph of G, is called an H-packing in G.
A graph G is called H-packable if there exists an H-packing of G. An
H-packing in G with ! copies Hy,Ha, -+ ,H; of H is called maximal if
G- U£=1 E(H;) contains no subgraph isomorphic to H. An H-packing in
G with ! copies Hy, Ha,--- ,H; of H is called maximum if no more than
! edge disjoint copies of H can be packed into G. Let p(G; H) denote the
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number of H in the maximum H-packing of G. A graph G is called H-
decomposable if there exists an H-packing of G which uses all edgesin G. A
graph G is called H-equipackable if every maximal H-packing in G is also
a maximum H-packing in G. In 2006, Zhang and Fan([2]) characterized
M3-equipackable graphs. In 2010, B. Randerath and P. D. Vestergaard([3])
characterized all P3-equipackable graphs. In [4], Pc-equipackable paths and
cycles, Mi-equipackable paths and cycles are characterized.

In this paper, we investigate P,,, U Py-equipackable paths and cycles.

We first give a lemma which is important to our work:

Lemma 1. ([4]) Let G be an F-packable graph and H be an F-packable
subgraph of G which satisfy: (1) H is not F-equipackable; (2) G — H is
F-decomposable. Then G is not F-equipackable.

2 Main results

In 2006, Zhang and Fan([2]) characterized all Ms-equipackable graphs.
The path P, is M-equipackable if and only if n = 2t(t € Z,t > 2). The
cycle C,, is Ma-equipackable if and only if n = 2t + 1(t € Z,t > 2). In the
following, we discuss the case when k >m =2and k>m > 2.

2.1 P, U P-equipackable paths

Theorem 2. A path P, is P, U Py-equipackable (k > 2) if and only if
n=>5,6,8,9, when k=3
n==6,7,8,12, when k=4 .
k+2<n<2k, whenk>4

Proof. 1. n £ k + 1, since P, contains no copy of P U P;, P, can not
be P, U P,-equipackable.

2. k+2 < n < 2k, it is easy to see p(Pp; P,UP,) = 1. And P, is
P, U Pi-packable, so each maximal P,U P,-packing is also a maximum
P3 U Pi-packing. Thus P, must be P, U Py-equipackable. -

3. 2k+1 < n < 3k, it is easy to see p(P,; P2U P;) = 2. In the following,
there are two subcases:

(a) 2k +1 < n < 3k — 2, there exists a P, U Pi-packing H with
only one copy of P, U Py such that G — H has three components
denoted by Hy, H; and Hj, with [E(Hy)| =1, |E(Hy)| = k — 2,
1 < |E(H3)| £ k—2. P, is not P, U Pr-equipackable.
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(b) 3k —1 < n < 3k, for k = 3, it's easy to verify P, is P, U Ps-
equipackable. For k = 4, P;; is not P, U Ps-equipackable and
P4 is P, U Py-equipackable. For k > 4, there exists a P, U P-
packing H with only one copy of P; U Py such that G — H has
three components denoted by Hj, H2 and Hs, with |E(H;)| =2
or 3, |E(Hy)| = |E(H3)| = k-2, P, is not P,U Py-equipackable.

4. 3k +1 < n < 4k, P, is not P, U P-equipackable. It is easy to see
P(Pn; P2 U Pi) = 3, there are two subcases:

(a) n = 3k + 1, there exists a P, U P-packing H with two copies
of P; U P, such that G — H has three components denoted by
Hy,H; and Hj with |[E(H,)| = k - 2, |E(H)| = |E(H3)| = 1.
So H is a maximal P, U Pi-packing which is not maximum. By
the definition, P, is not P, U Py-equipackable.

(b) 3k + 2 < n < 4k, there exists a P, U Pi-packing H with two
copies of P, U Py, such that G — H has five components denoted
by Hy,Hs, H3, Hy and Hs with |E(Hy)| = k — 2, |[E(H2)| =
|E(H3)| = |E(Hy)| = 1,0 < |E(Hs)| £ k—2. So H is a maximal
P> U Pi-packing which is not maximum. By the definition, P, is
not P, U Pe-equipackable.

5. n > 4k + 1, there are two subcases:

(a) n—(2k+1) =7 (mod k) (r=0,1,--- ,k—3), P, — Par414- has
kt (t € Z,t > 2) edges, s0 P, — Paxy14r is PoUPg-decomposable.
By Lemma 1, P, is not P, U Pi-equipackable.
(b) n— (2k+1) = s (mod k) (s = k — 2,k — 1), there are two
possibilities:
e 5k —1 < n < 5k, it is easy to see p(Pyn; P U Py) is 4. And
the number of every maximal P, U Pi-packing of P, is 3 or
4. So P, is not P, U Pr-equipackable.
en > 6k—1, P, — Psgy14s is Po U Pi-decomposable. By
Lemma 1, P, is not P, U P-equipackable.

0

Theorem 3. A path P, is P, U P-equipackable (k > m > 2) if and only if
4m+2k—-6<n<3m+3k—6, m<k<3m
m+k5"52m+2k‘4‘”{ m+dk—6<n<3m+3k—6 F<k<om '

Proof. 1. n<m+k—1,since P, contains no copy of P U Py, P, can
not be P,, U Pr-equipackable.
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2. m+k<n<2m+2k—4,it is easy to see p(Pp; P U P:) = 1. And
P, is Py U Py-packable, so each maximal P,, U Py-packing is also a
maximum Pp, U Pi-packing. Thus P,, must be P,, U Pi-equipackable.

3. 2m+2k -3 <n < 3m+ 3k — 6, it is easy to see p(Ppn; P UPy) = 2.
To get the maximal packing with only one copy H = P,, U P, which
satisfies that |E(G — H)| = |E(H;) U E(H,) U E(H3)| is maximum,
see Fig.1. There are two possibilities:

() |E(H,)| = |E(H2)| = m—2, |E(H3)| = m+k—2. So |E(G — H)| =
3m+k —6;
(ii) |E(H1)| = |E(H2)| = |E(H3)| = k — 2. So |E(G — H)| = 3k — 6.

~ A e A A 7
s — v~ v

Hy P H, Py Hs

Figure 1:

When 3m + k — 6 > 3k — 6, that is, k < 3m, |E(H))| = |E(Hy)| =
m — 2 and [E(H3)| = m + k — 2 which makes |E(G — H)| get to the
maximum.

When 3m +k — 6 < 3k — 6, that is, k > 3m, |[E(H))| = |E(H,)| =
|E(H3)| = k — 2 which makes |E(G — H)| get to the maximum.

Thus we have the following two cases:

(a) m<k< %m, there are two subcases:

e 2m+2k—3 < n < 4m+2k-7, there exists a P, UP;-packing
H with only one copy of P,, U P, such that G — H has three
components denoted by H),H; and Hi, with |E(H,)| =
|E(Hy)l=m—-2,k-m+2<|E(H;3)|<m+k-2. So H
is a maximal P, U Pi-packing which is not maximum. By
the definition, P, is not P,, U Py-equipackable. From above,
when |E(H,)| = |E(H,)| = m -2, |E(H3)| = m+k -2, the
maximal P,, U Pi-packing of P,, with one copy of P,, U P
makes |E(G — H)| get to the maximum.

e 4m+2k—6 < n < 3m+3k-6, the number of every maximal
P, U Pi-packing of P, is 2 by the Pigeonhole Principle. So
P, is Py, U Pr-equipackable.

b) k > 32, there are two subcases:
2
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e 2m+ 2k — 3 < n < m+ 3k — 6, similarly, |[E(H,)| =m -2,
|[E(H2)| =k—-2,2<|E(H3)| £k—-m-1<k—1. SoHis
a maximal P,, U P.-packing which is not maximum. By the
definition, P, is not P, U Py-equipackable.
em+3k-5<n<3m+3k—6.
i. k < 2m, then m + 4k — 6 < 3m + 3k — 6. There are the
following two possibilities:
When m +3k—5 < n < m+4k—7, similarly, |E(H,)| =
|E(Hz)| = k—2,0 < |E(H3)] < k—2. Thus P, is
not P,, U Py-equipackable. When |E(H,)| = [E(H;)| =
|E(H3)| = k — 2, the maximal Py, U Py-packing of P,
with one copy of Py, U P, makes |E(G — H)| maximum.
When m+4k—6 < n < 3m+3k—6, the number of every
maximal P,, U Pi-packing of P, is 2 by the Pigeonhole
Principle. So P, is P, U Pc-equipackable.
ii. k> 2m.
When m+3k—5 < n < 3m+3k—6, similarly, |[E(H,)| =
|E(Hz)|=k—2,0<|E(H3)| <2m -1<k~-1. So P,
is not P,, U P-equipackable.

4, 3m+3k—5<n < 4m+ 4k — 8, P, is not P,, U Pc-equipackable. It
is easy to see p(Pyn; Pm U Pi) = 3, there are two subcases:

(a) 3m +3k —~5 < n < 3m+ 4k — 7, there exists a Py, U Py-packing
H with two copies of Py, U Pk, such that G — H has five compo-
nents denoted by H,, Hy, H3, Hy and Hs with |[E(H,)| =m -2,
|E(Hz)| = k — 2, |E(H3)| = |E(Hy)} = 1,0 < |[E(Hs)| < k- 2.
So H is a maximal P,, U Py-packing which is not maximum. By
the definition, P, is not P,, U Pi-equipackable.

(b) 3m + 4k —6 < n < 4m + 4k — 8, similar to the subcase (a),
\B(Hy)| = m — 1, |E(Hy)| = |B(Hs)| = k -2, |E(H)| = 1,
1 < |E(Hs)] £ m—1. So H is a maximal P, U Pi-packing
which is not maximum. By the definition, P, is not P, U Pj-
equipackable.

5. n > 4m + 4k — 7, we only discuss the case when m < k < 3m, there
are two subcases:

(a) n—(2m+2k-3)=r (mod m+k—-2) (r=0,1,---,2m — 4),
P, — Pomyok-3+r has (k+m = 2)t (t € Z,t > 2) edges, so
Pn — Py y9k—34r is Py U Pi-decomposable. By case 3, P, is not
P, U Pe-equipackable.
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(by n—-(2m+2k—-3)=s (modm+k—2) (s =2m—3,2m —
2,---,m+ k — 3), there are two possibilities:

e 6m+44k—10 < n < 5m+5k—10, it is easy to see p(P,; PnU
Py) is 4. There exists a P, U Pi-packing H with three
copies of P, U Py, such that G — H has seven components
denoted by H,, Hy, H3, Hy, Hs, Hg and H; with |E(H,)| =
|E(Hz)| = |E(H3)| = m — 2, |E(Hy)| = k — 2, |E(Hs)| =2,
|E(He)| = 1, 0 < |E(H+)| < k—m. So H is a maximal
P,, U P-packing which is not maximum. By the definition,
P, is not P,, U Pi-equipackable.

o n > Tm+5k—12, P~ P3ypy3k—5+s i8 PnUP-decomposable.
By Lemma 1, P, is not P,, U Py-equipackable.

When k > %m, we discuss similarly, P, is also not P,,UP,-equipackable.
O

2.2 P, U P-equipackable cycles

Theorem 4. A cycle C,, is P, U Py-equipackable (k > 2) if and only if
n=25,6,7,8,11, when k=3
k+2<n<2—-1o0r3k-3<n<3k-1, whenk>3 "

Proof. 1. n £ k+ 1, since C, contains no copy of P, U P;, C, can not
be P, U P-equipackable.

2. k+2<n<2k—1,it is easy to see p(Cp; R UP,) = 1. And C,, is
P, U Py-packable, so each maximal P,U Py-packing is also a maximum
P, U Py-packing. Thus C, must be P, U P.-equipackable.

3. 2k <n<3k-—1,it is easy to see p(Cp; LUP,) =2. For k=3, C,
is P, U Py-equipackable. For k > 4, there are two subcases:

(a) 2k < n < 3k —4, there exists a P, U Pc-packing H with only one
copy of P, U Py such that G — H has two components denoted
by Hy and Hs, with |[E(H,)| = k-2, 2 < |E(Hp)] < k—-2.
So H is a maximal P, U Px-packing which is not maximum. By
the definition, C,, is not P, U Pi-equipackable. When |E(H;)| =
|E(H2)| = k — 2, the maximal P, U P-packing of C,, with one
copy of P; U P, makes |E(G — H)| get to the maximum.

(b) 3k — 3 < n < 3k — 1, the number of every maximal P U Py-
packing of P, is 2 by the Pigeonhole Principle. So C,, is P, U Pi-
equipackable.

4. 3k < n < 4k —1, C, is not P, U P-equipackable. It is easy to see
P(Cr; P2 U P,) = 3, there are two subcases:
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(a) 3k < n < 4k—2, there exists a P,UPi-packing H with two copies
of P, U P, such that G — H has four components denoted by
H,, H,, H; and H, with |E(H,)| = k-2, |E(H2)| = |E(H3)| =1,
0 < |E(H,)| < k—2. So H is & maximal P,U Py-packing which is
not maximum. By the definition, C,, is not PoU Pi-equipackable.

(b) n = 4k — 1, for k = 3, it’s easy to verify Cp is P, U Py~
equipackable. For k > 3, there exists a P, U Py-packing H with
two copies of P,U P, such that G—H has four components denot-
ed by Hy, Hy, H3 and Hy, with |E(H,)| = k-2, |E(H;)} = k-3,
|E(H3)| = |E(Ha)| = 2, Cy is not P, U Pr-equipackable.

5. n > 4k, there are two subcases:

(8) n—2k=r (mod k) (r =0,1,--+ ,k—3), Cp — Pak414r has kt
(t € Z,t > 2) edges, 50 Cn — Pakq14r is Py U Pi-decomposable.
By Lemma 1, C, is not P, U Pi-equipackable.
(b) n—2k = s (mod k) (s = k—2,k—1), there are two possibilities:
e 5k — 2 < n < 5k — 1, it is easy to see p(Cr; P, U Py) is 4.
And the number of every maximal P, U P,-packing of P, is
3 or 4. So Cy, is not P2 U Py-equipackable.
en > 6k—2, Cp— P3ky14s is P, U Pe-decomposable. By
Lemma 1, C, is not P, U Pr-equipackable.

O

Theorem 5. A cycle C, is Py, U Pi-equipackable (k > m > 2) if and only
fm+k<n<2m+2k-5or

Im+2k-5<n<3m+3k~-7 whenm<k<2m
m+3k—-5<n<3m+3k-7 whenk>2m

Proof. 1. n < m+k —1, since C,, contains no copy of P, U P, C, can
not be Py, U Pi-equipackable.

2. m+k < n < 2m+2k—>5, it’s easy to see that p(Cpn; PnUP;) is 1. And
C, is P U Pi-packable, so each maximal P,, U Pi-packing is also a
maximum P,, U P,-packing. Thus C,, must be P, U Py-equipackable.

3. 2m+2k—4<n <3m+3k—17, it’s easy to see p(Cpn; Pn U Px) = 2.

To get the maximal packing with only one copy H = P, U P which
satisfies that |E(G — H)| = |E(H,) U E(H3)| is maximum. There are
two possibilities:

(i) |E(H))| = m—2, |E(H2)| = m+k—2. So |E(G — H)| = 2m+k—4;
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(ii) [E(H,)| = |E(Hs)| = k — 2. So |E(G — H)| =2k — 4.

When 2m + k — 4 > 2k — 4, that is, ¥ < 2m, |E(Hy)| = m - 2,
|E(H3)| = m + k — 2 which makes |E(G — H)| get to the maximum.

When 2m+k—4 < 2k—4, that is, k > 2m, |E(H,)| = |E(H,)| = k-2
which makes |F(G — H)| get to the maximum.

Thus we have the following two cases:

(a) m <k < 2m. There are two subcases:

e When 2m + 2k — 4 < n < 3m + 2k — 6, there exists a
P, U Pi-packing H with only one copy of P,, U P such
that G — H has two components denoted by H, and Hj
with |[E(H))l = m -2, k < |[E(H)] < m+k—-2. So
H is a maximal P,, U Pe-packing which is not maximum.
By the definition, C,, is not P,, U Py-equipackable. When
|E(H,)| = m—2, |E(H,)| = m+k—2, the maximal P,,U Py-
packing of C, with one copy of P, U P, makes |E(G — H)|
get to the maximum.

e When 3m + 2k -5 < n < 3m + 3k — 7, the number of
every maximal P, U Py-packing of P, is 2 by the Pigeonhole
Principle. So C,, is P,, U Py-equipackable.

(b) k > 2m. There are two subcases:

e When 2m+2k—4 < n < m+3k—6, similarly, |[F(H,)| = k—
2, m < |E(H;)| < k—2. So H is a maximal P,,U P;-packing
which is not maximum. By the definition, C,, is not P,,UP;-
equipackable. When |E(H,)| =k - 2, |[E(H2)| = k — 2, the
maximal P, U Pi-packing of C,, with one copy of P,, U P,
makes |E(G — H)| get to the maximum.

e When m + 3k — 5 < n < 3m + 3k — 7, the number of ev-
ery maximal P, U Pi-packing of P, is 2 by the Pigeonhole
Principle. So C, is P,, U Pi-equipackable.

4. 3m+3k—-6<n<4m+4k -9, C, is not P, U Pr-equipackable. It
is easy to see p(Cp; P, U Pi) is 3, there are two subcases:

(a) 3m+3k—6 < n < 3m+4k—8, there exists a P, U P-packing H
with two copies of Py, U P, such that G— H has four components
denoted by Hy, Hy, H3 and Hy with |[E(H,)| = m—1, |E(H;)| =
k-2, |E(H3)| =1,0 < |E(Hy)| < k—2. So H is a maximal
P, U Pi-packing which is not maximum. By the definition, C,,
is not P,, U Pi-equipackable.
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(b) 3m+4k—7 < n < dm+4k-9, similarly, |E(Hy)| = 1, |E(Hz)| =
|[E(H3)| = k-2, m<|EH)| <2m-2<m+k—-2. SoH
is a maximal P,, U Py-packing which is not maximum. By the
definition, C, is not P, U Px-equipackable.

5. n > 4m + 4k — 8, we only discuss the case when m < k < %m, there
are two subcases:

(a) n—(2m+2k—4) =7 (mod m+k-2), (r=0,1,2,---,2m—4).
Cn — Panyok—34+r has (k+m — 2)t (t € 2,t > 2) edges, so
Cp — Poniok—3+4r is Pm U Pe-decomposable. By Lemma 1, Cy
is not P,, U Py-equipackable.

(b)) n—-(2m+2k—-4)=s (modm+k-2), (s =2m—-3,2m —
2,---,m+ k — 3), there are two possibilities:

o 6m+4k—11 < n < 5m+5k—11, it is easy to see p(Cr; PrU
Py) is 4. There exists a P, U P;-packing H with three copies
of P, U Py, such that G — H has six components denoted
by Hy, Hy, H3, Hy, Hs and Hg with |E(H,)| = |E(H)| =
|E(H3)| = m =2, |[E(Ha)] = k-2, |[E(Hs)| =2, 1%
|E(Hg)| < k—~m+ 1. So H is a maximal Py, U Pe-packing
which is not maximum. By the definition, C,, is not P, UP;-
equipackable.

e n > Tm+5k—13, Cp— P3my3k—5+s is PnUPg-decomposible.
By Lemma 1, C,, is not P, U P,—equipackable.

Then a similar argument shows that When &k > %m, C,, is also not

P,, U P-equipackable.
O
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