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Abstract

Let G be a simple graph on n vertices. The Laplacian Estrada
index of G is defined as LEE(G) = }_._, e, where p, 2,...,4n
are the Laplacian eigenvalues of G. In this paper, threshold graphs
on n vertices and m edges having maximal and minimal Laplacian
Estrada index are determined, respectively.

1 Introduction

All graphs considered here are simple and undirected. Let G be a connected
graph with vertex set V(G) = {1,...,n} and edge set E(G). The Laplacian
matrix of G is L = D — A where A is the adjacency matrix of G and D is
the diagonal degree matrix.

The Estrada index of G, which is introduced by Estrada [6,7], is defined
as

EE(G) = Xn: e
i=1

where A1, Ag,..., A\, are the eigenvalues of A. This graph invariant has
already found a remarkable variety of applications. It was shown that
EE(G) can be used as a measure of the degree of folding of long chain
polymeric molecules [6,7]. It was also pointed out in [8] that the Estrada
index provides a measure of the centrality of complex networks, while a
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connection between the Estrada index and the concept of extended atomic
branching was found in [9]. For further properties of the Estrada index we
refer the reader to [6-8,10,12,13,23).

In analogy to Estrada index, the Laplacian Estrada index of G is defined
as (10]

n
LEE(G) =) e*
=1
where py, pia, '+ + , tn are the eigenvalues of L. Also, the Laplacian Estrada
index is used as a molecular descriptor [19]. By the power series expansion
of the exponential function, we have

LEE(G) = i @

=0

where My (G) = Y}, u¥ is the k-th Laplacian spectral moment of G, which
reflects the structural features of networks [20,21] and molecular graphs
[19]. Bamdad et al. [11] gave a lower bound for Laplacian Estrada index
of a graph using the numbers of vertices and edges, which was improved
in (2]. Du and Liu [23] determined the unique trees with minimum and
maximum Laplacian Estrada indices with some given parameters. Zhou (3]
gave lower bounds for Laplacian Estrada index using the degree sequence.
Ili¢ and Zhou (1] proved that the path P, has minimal, while the star
S, has maximal Laplacian Estrada index among trees on n vertices. Li
and Zhang [14] showed that S3 is the unique unicyclic graph on n vertices
with maximal Laplacian Estrada index, where S2 is the unicyclic graph
obtained by adding an edge to the star graph S,. For more results on
Laplacian Estrada index, we refer the reader to [1-4,11,14,22].

Recently, Li and Zhang [15] gave sharp upper bounds for Laplacian
Estrada index of graphs with n vertices and m edges. For a connected graph
Goforder n > 7 and n+1 < m < 328, they showed that LEE(G) <
LEE(ST), where ST 2 K,V (Sz+1U (n — s —z — 1)K)). Note that Sy,
S3 and ST are all connected threshold graphs, see [1,14, 15, respectively,
so it is natural to consider that if the graphs having maximal Laplacian
Estrada index among threshold graphs are those having maximal Laplacian
Estrada index among all graphs.

We will see from our results that the answer is positive. In this paper
we determined connected threshold graphs on n vertices and m edges hav-
ing maximal and minimal Laplacian Estrada index, respectively. And we
also investigated the case of disconnected threshold graphs. The paper is
organized as follows. Next section introduces some notions about thresh-
old graph. Then in Section 3 and 4, we determined connected threshold
graphs on n vertices and m edges having maximal and minimal Laplacian




Estrada index, respectively. In the last section, we investigated the case of
disconnected threshold graphs.

2 Threshold graph and its Ferrers diagram

In this section, we introduce some notions about threshold graph. Denote
by m = | E| the number of edges and by d; the degree of vertex i. We assume
throughout that the vertex numbering is such that degree sequences are
non-increasing, i.e., d; > - -+ > dn. Any degree sequence d arising this way
is an n-partition of 2m. For i € {1,--- ,n} the conjugate degree sequence
is defined as d} := |{j € V : d; > i}|, so df = n for connected graphs
and d, = 0. The conjugate degree sequence is easily visualized by means
of Ferrers diagrams, see [18]. For degree sequence d it consists of n left
justified rows of boxes where row i holds d; boxes. In this diagram, the
conjugate degree d} counts the number of boxes in column . The diagonal
width of the degree sequence f = maz{i € V : d; > i} is called the trace of
the partition. The square of f2 boxes in this diagram is called the Durfee
square of the partition. For a given n-partition d of 2m one can construct
a graph having this degree sequence if and only if 2‘_ d; < Z‘_ (df -1)
for k € {1,..., f} (Ruch-Gutman Theorem, cf. [18]).

Gis ca.lled a threshold graph ifd; = d} —1 fori € {1,--- , f}. Threshold
graphs have found numerous applications in diverse areas which include
computer science and psychology [16]. Geometrically, G is a threshold
graph of trace f if and only if its Ferrers diagram can be decomposed into:
its Durfee square; a row of f boxes directly below the Durfee square; and
the remaining boxes placed in such a way that the shape below row f 41
has the transpose shape to the right of the Durfee square.

Note that the degree sequence of a threshold graph uniquely defines the
graph itself and it is completely determined once the conjugate degrees d;
are given for i € {1,---, f}. This is easily seen from the Ferrers diagram.
There the part strictly below the diagonal boxes is the transpose of the
part on and above the diagonal.

Also, there are some equivalent ways to characterize threshold graphs.
Another way of obtaining a threshold graph is through an iterative process
which starts with an isolated vertex by adding a new vertex that is either
connected to no other vertex (an isolated vertex) or connected to every
other vertex (a cone vertex). The sequence of operations is called the
building sequence of a threshold graph. Therefore, we may represent the
building sequence of a threshold graph on n vertices using a binary sequence
b= (b1, bz, ,by). Here b; is 0 if vertex v; was added as an isolated vertex,
and b; is 1 if v; was added as a cone vertex. In our representation b; is
always 0, and b, is always 1 if G is connected. Figure 1 illustrates a
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threshold graph and its Ferrers diagram. Its degree sequence (reordered)
isd = (6,6,4,3,3,2,2), and its building sequence is b = (0,0,1,0,0,1,1).

O0a0o0o0o0O
00OoOoooo
00ooo
00oo

(]

0Oa

Figure 1: A threshold graph for (n,m, f) = (7,13,3) and its Ferrers diagram.

Now, we explain the construction of the Ferrers diagram of the candi-
date graphs for extremal laplacian estrada index, see [5].

We call T'ype I the connected threshold graph with n vertices, m edges
and trace f constructed in such a way that its conjugate degree sequence
d* is lexicographically maximal. In the algorithmic construction of such
a sequence it suffices to describe the placement of the m boxes below the
diagonal, because for threshold graphs the other m boxes have to be placed
on and above the diagonal in the corresponding transposed positions. In
order to obtain a sequence with trace f, below the diagonal the first row up
to row f+1 have to be filled with boxes then the remaining m — f(f +1)/2
boxes are placed in column-wise order, i.e., in the sequence (f + 2,1),
(f+3,1),---,(n,1), (f +2,2),(f + 3,2),---. In fact, Figure 1 illustrates
a Type I threshold graph.

We call T'ype I1 the connected threshold graph with n vertices, m edges
and trace f constructed in such a way that its conjugate degree sequence d*
is lexicographically minimal. Since we only consider connected graphs we
have d; = n—1. Thus a procedure to construct such a graph is, after filling
the first row, to fill the positions on and above the diagonal in column-wise
order without exceeding row index f, i.e., the sequence reads (2, 2), (2, 3),
(3)3)1 (214)1"', (fyf)a (27f+1)1 Ty (f1f+1)a (2!f+2)7 until m boxes
have been placed (the corresponding m boxes below the diagonal need to be
placed in row-wise order without exceeding column f). Figure 2 illustrates
a Type II connected threshold graph, its degree sequence (reordered) is
d=(6,5,4,4,4,2,1), and its building sequence is b= (0,1,1,0,1,0,1).
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Figure 2: A Type II connected threshold graph for (n,m, f) = (7,13,4) and its
Ferrers diagram.

3 Connected threshold graphs with maximal
Laplacian Estrada index

Note that for a connected graph G on n vertices and m edges, the feasible
range of traces f is determined by the constraints

fFf-1)<2(m—-n+1)and f(f+1)+2(n—-1- f)f > 2m.
Thus,

fn,m) = o~ g—/nt —n+ 7 —2m] < £ < L%+,/2(m—n)+%J =F(n,m).

We will only write f and f if the arguments n and m are clear from the
context. -

Also note that for a threshold graph G, its conjugate degree sequence
d* gives the spectrum of the Laplacian matrix L, that is, 0 = A\ = d}, <
A=dy_; <... <A, =df, see [17].

Now, we are ready to consider connected threshold graphs with fixed
n, m and f, and determine which graph has maximal Laplacian Estrada
index.

Lemma 1. Among all connected threshold graphs with n vertices, m edges
and degree sequence with trace f, the Type I graph has maxzimal Loplacian
Estrada indez.

Proof. From the Ferrers diagram of Type I graph G, one can write its
Laplacian spectrum as

{n”" ,nsd;-}-la.f—"la';' ’fﬂ!b""la-;' 1k+$7kr"’ yk$0}1
k f~k=1 diy—f-1 n—diy
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where k = |PlURDE| (< f),ifk < f,dp,, = f+1+m—f(f+1)/2—
k(n — 1 — f), and it suffices to consider this case, because the threshold
graph is determined uniquely if £ = f, so the theorem holds. Now con-
sider all connected threshold graphs with n vertices, m edges and degree
sequence of trace f that have maximal Laplacian Estrada index. Assume,
for contradiction, that G is not in this set. From the set we pick G with
degree sequence d so that the largest index with d; > d} is minimal and
ci; —df is minimal as well. Let [ be the corresponding index. Because d* is
lexicographically maximal, there must be an index 1 < { < [ with d; > J}‘

Now we consider the conjugate degree sequence d* of a threshold graph

defined by
‘i;s iE{l,ﬂ‘,ﬂ}\{i,l-},
=< dr+1, i=|
-1, i=L

The corresponding graph Gis again a connected threshold graph on n
vertices, m edges with degree sequence of trace f. It remains to show

that LEE(G) > LEE(G), then by the choice of G this yields the desired
contradiction. In fact, we have

LEE(G) - LEE(G) = (%! + &91=1) — (&% + )
=(e- 1)(e‘if - e'if—l)

>0

The last inequality holds because d}' > ci}‘ - 1.
O

Theorem 2. Among all connected threshold graphs on n vertices and m
edges, the Type I graph with trace f has mazimal Laplacian Estrada indez.

Proof. Let G be a connected threshold graph on n vertices and m edges
with maximal Laplacian Estrada index, its conjugate degree d* with trace
f. We assume that G is selected so that its trace f is minimal among
all optimal connected threshold graphs. By Lemma 1 we may assume
d* is lexicographically maximal. If f = f we are done, so assume, for
contradiction, that f > f. Since d* is lexicographically maximal with
f > f, we have d} = f+1, df,; < f and there is a smallest index
1<i< [ with dl? < n. We can define a new conjugate degree sequence

d* of a connected threshold graph G on n vertices and m edges with trace



f—1via

d:: iE{l,‘;',n}\{l, fy d;_f})
dr=] di+1, i=l
i & -2, i=f,

di+1, i=d —f.

It remains to show that LEE(@) > LEE(G), then by the choice of G this
yields the desired contradiction. In fact, we have
LEE(G) — LEE(G) = (e%i*! + &~V + &) — (e +e/+1 +&Y)
= —efHe+1)+ ei’I](e -1)
> (ef — 2" + €YY (e—1)
> (efi -/ + ei")(e -1)
>0

the last inequality holds because dF > f + 1. O

Using the Ferrers diagram, the Laplacian Estrada index of T'ype I con-
nected threshold graph G on n vertices and m edges with trace f can be
easily calculated

LEE(n,m) = (f - 1)e" + "L+ (d} — f — 1)eL + (n—d})el ™" +1,

whered; = f+1+m— f(f+1)/2—(f-1)(n—1- f).

For example, for the graph in Figure 1, f = 3, d} = 5, LEE(7,13) =
2e7 +¢®+e3+2¢e2+1 ~ 2377.5431, which is the maximal value of Laplacian
Estrada index among all connected threshold graphs with 7 vertices and

13 edges.
It is easy to check that the building sequence of Type I connected
threshold graph G on n vertices and m edges with trace f is b= (0"—!-, 1£)

ifdj =m,orb= (%L 1,0"%, 14y if dj <n.

Corollary 3. Among all connected threshold graphs on n vertices the com-
plete graph K,, has mazimal Laplacian Estrada indez.

Proof. Using the notation above, it suffices to prove that LEE(n,m+1) >
LEE(n,m). Then, for given n, LEE(n,m) is a increasing function on m,
so the maximal is obtained at K,. In fact we have

LEE(n,m + 1) — LEE(n,m) = (¢’L*" +-ef) - (¢’L + eL71) > 0.
a
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4 Connected threshold graphs with minimal
Laplacian Estrada index

In this section, we consider connected threshold graphs with fixed n and m
and determine which graph has minimal Laplacian Estrada index.

Lemma 4. Among all connected threshold graphs with n vertices, m edges
and degree sequence with trace f, the Type II graph has minimal Laplacian
Estrada inder.

Proof. From the Ferrers diagram of Type II graph G, one can write its
Laplacian spectrum as

{nf+h+2,--- f+h+2,f+h+1,---  f+h+1,f---,fk+1,1,---,1,0},
h & a f-k=-1 - n=feh=2

where h = | 22UV |k = ment1-f(f=1)/2—(f~1)h,(< f-1).
Now consider all connected threshold graphs with n vertices, m edges and
degree sequence of trace f that have minimal Laplacian Estrada index.
Assume, for contradiction, that G is not in this set. From the set we pick
G with degree sequence d so that the largest index with d* < df is minimal
and dj — d* is minimal as well. Let ! be the corresponding index. Because

d* is lexicographically minimal, there must be an index 1 < [ < T with
d* < d*. Now we consider the conjugate degree sequence d* of a threshold
graph defined by

-1, i=i

i i, iefl,---,n}\{i I},
dr =
dr+1, i=L

The corresponding graph G is again a connected threshold graph on n
vertices, m edges with degree sequence of trace f. It remains to show
that LEE(G) < LEE(G), then by the choice of G this yields the desired
contradiction. In fact, we have

LEE(G) — LEE(G) = (e% + e¥f) — (efi~1 + B +1)
= (e—1)(e% 1 =)
>0.

The last inequality holds because zf;‘ > dlf =dy > tff, s0 J;‘ -1> Jf.

Theorem 5. Among all connected threshold graphs on n vertices and m
edges the Type II graph with trace f has minimal Laplacian Estrada indez.

50



Proof. Let G be a connected threshold graph on n vertices and m edges
with minimal Laplacian Estrada index, its conjugate degree d* with trace
f. We assume G to be selected so that its trace f is maximal among
all optimal connected threshold graphs. By Lemma 4 we may assume
d* is lexicographically minimal. If f = f we are done, so assume, for
contradiction, that f < f. Using the same notation as in Lemma 4, since
d* is lexicographically minimal with f < f, we have d}yy = f, and there is
alargest index 1 < i < f with di > f+h+1. We can define a new conjugate
degree sequence d* of a connected threshold graph G on n vertices and m
edges with trace f + 1 via

d;’ ie{l,-;',n}\{i, f+1’f+h+1}1
i di+2, i=f+1,
-1, i=f+h+1

It remains to show that LEE(G) < LEE(G), then by the choice of G this
yields the desired contradiction. In fact, we have
LEE(G) — LEE(G) = (e + e%1+1 4 e%7+n+1) — (e 14 etf+1¥2 4 ett4ni171)
— (ef+h+2 + ef + ekH) — (e!+h+1 +ef+2 + e")
= [ —efle+1) +eF)(e—-1)
> (efHhH 25 L eFY (e — 1)
> (/M e/t teF)e-1)
> 0.

The last inequality holds because h > 1.
O
Using the Ferrers diagram, the Laplacian Estrada index of T'ype IT
connected threshold graph G on n vertices and m edges with trace f can
be easily calculated

TEE(n,m) =€+ kel "2+ (F—k—1)e/*! 4 &5+ 4 (n — F—2)e +1,

wherek=m—-n+1-F(F -1)/2, (f-1).

For example, for the graph in Figure 2, f = 4, k = 1, LEE(7,13) =
e’ +e8+2e5+e?+e+1 ~ 1807.9956, which is the minimal value of Laplacian
Estrada index among all connected threshold graphs with 7 vertices and
13 edges.

It is easy to check that the building sequence of Type Il connect-
ed threshold graph G on n vertices and m edges with trace z isb =
(02,1/-10n~-2 1) if k = f —1, or b = (0,1/7%-1,0,1%,07~7-2,1) if
k<f-1
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Figure 3: A Type II disconnected threshold graph for (n,m, f) = (7,13,4) and
its Ferrers diagram.

Corollary 6. Among all connected threshold graphs on n vertices the star
graph S,, has minimal Laplacian Estrada indez.

Proof. Using the notation above, it is easy to check that LEE(n,m+1) >
LEE(n,m). Therefore, for given n, LEE(n,m) is a increasing function on
m, so the minimal is obtained at S,.

5 Results on disconnected threshold graphs

In this section, we consider the case of disconnected threshold graphs. Note
that, in fact, the analysis for the case of T'ype I graph with lexicographically
maximal conjugate degree sequence can be applied without any changes.
So Lemma 1 and Theorem 2 still holds for disconnected threshold graphs.
In the case of Type II graph with lexicographically minimal conjugate
degree sequence, without the constraint di = n, its Ferrers diagram should
be changed accordingly, and the upper bound on f is now determined from
f(f+1) < 2m, thus the upper bound on f is f4(n,m) = |- +,/2m + §].
Therefore, Lemma 4 still holds and Theorem 5 holds also if we replace the
argument f by f4(n,m). The proofs of these results should be adapted
slightly, we omit the details since the lines of arguments are the same.

For example, Figure 3 illustrates a Type II disconnected threshold
graph, its degree sequence (reordered) is d = (5,5, 5,4, 4,3,0), and its build-
ing sequence is b = (0, 1,0,1,1,1,0). In this case we still have ?d(n, m) =4,
then ZEE(7,13) = 3e® + €% + €3 + 2¢° ~ 1380.7851, which is the minimal
value of Laplacian Estrada index among all threshold graphs with 7 vertices
and 13 edges.
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