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ABSTRACT. We explore new combinatorial properties of overparti-
tions which are natural generalizations of integer partitions. Build-
ing on recent work we state general combinatorial identities between
standard partition, overpartition and ¢-regular partition, functions.
We provide both generating function and bijective proofs. We also
prove the congruences for certain overpartition functions combinato-
rially.
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1. INTRODUCTION

An overpartition of a positive integer n is a partition of n, where the
first occurrence of each part-size may be overlined. Overpartitions gen-
eralize ordinary partitions. We denote the number of overpartitions of n
by p(n), with $(0) = 1. For example, 5(3) = 8 enumerates the following
overpartitions:

3), (3), (2,1), (2,1), (2,7), (2,1), (1,1,1), (1,1,1).

The three overpartitions with no overlined parts are the ordinary partitions
of 3. Given a positive integer £ a partition A is called ¢-regular if no part
of A is a multiple of €.

We will consider combinatorial identities which connect certain restrict-
ed enumeration functions of ordinary partitions, strict overpartitions and
f-regular overpartitions. We also highlight few congruence properties of
restricted overpartition functions. Related investigations have previously
appeared in (7] whereby the authors found an identity between £-regular
overpartitions and a class of overpartitions. George Andrews 2] considered
the enumeration of singular overpartitions which correspond to é-regular
overpartitions in which the parts satisfy prescribed congruences. Subse-
quently, Chen, Hirschhorn and Sellers [5] developed the arithmetic proper-
ties of these singular overpartition functions.
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In a recent work Munagi and Sellers [14] proved new identities between
sets of restricted partitions and certain overpartitions in which the over-
lined parts belong to specified residue classes. Shen [15] recently proved
a finite set of congruences satisfied hy ¢-regular overpartitions of terms in
arithmetic progressions of the forms an+b,,a > b > 0, where a € {4,9,12}.
Further relevant work on the congruence properties for p(n) may be found in
the following papers among others: Hirschhorn and Sellers [9, 10, 11], Chen,
Sang and Shi [6], Fortin, Jacob and Mathieu (8], Kim [12] and Mahlburg
13].
| {’Ve will use the notation R(n) to denote the number of ¢-regular parti-
tions of n, and R(n) for the number of £-regular overpartitions of n. Recall
the standard generating functions:

— 1+4¢"
ZP( )=H1_qn
n=0 n>1
v )(1+q™)
Z_;Re(n = E[ 1 +q‘in)

In section 2, we prove a general theorem (Main Theorem) which connects
Ry(n) with five other restricted partition functions. In section 3, we give an
identity for color partitions which extends the results of the main theorem.
The final section is devoted to new combinatorial proofs of fundamental
congruence properties of two restricted overpartition functions.

2. A GENERAL PARTITION THEOREM

This section is devoted to the statement and proof of a sequence of relat-
ed partition identities connecting Re(n) with different classes of restricted
partitions and overpartitions.

We first establish a simple identity between overpartitions and ordinary
partitions. The bijective proof of the latter highlights our approach in
assigning a partition A to an image under a map. Generally we define a
sub-function, say 7, to act on individual parts of A and then assign A to
the union of the images of the parts under 7.

Proposition 2.1. The number of overpartitions of n equals the number of
partitions of 2n in which odd parts occur with even multiplicity.



Proof.  For a generating function proof let E(n) denote the number of
partitions of n in which odd parts occur with even multiplicity. Then

oo )
ZE(2n)qn - H(l + q2n + q4n 4 )(1 + q2(2n—1) + q4(2n—1) +.. )
n=0 n=1

_fi 1
La=ana-¢o)

On replacing ¢2 by ¢ the right-hand side becomes

oo 1 _ fad (1+qn) 3 o0 _ .
==y = Il =g = 2P

n=0

The bijective proof is more insightful. In the sequel square brackets are
used to indicate corresponding enumerated sets, and exponents indicate
multiplicities of parts.

Let A = (c]',¢3%,...) € E[2n],c1 > c2 > -+ ,u; > 1V 5, and define the
map f: E[2n] = B[n] by A = f(A) = Uceafe(c*) (multiset union), where

s ifk=1,
Il =Ve s itk=s,
k1 ifk =g

and if 4 < k =7 (mod 4), 1 <7 < 4, the image is a sequence of parts:

Folc®) = fol), T

The inverse map f~1: p[n] — E[2n] is analogously given by:

M) = ¢
2¢c ifk=1
-1 k — ]
fc (C)—{c4 ifk=2

and if 2< k=7 (mod 2),1 <7 <2, then

fc—l(ck) - fc—l(cr),CZ(k-r).
]

These bijections are illustrated in Table 1 when n = 3; the lists under
respective sets correspond one-to-one under the hijection.

Remark 2.2. The action of the map f on a part of a partition X is to halve
the part (if it is even) or halve its multiplicity (up to possible overlining).
The inverse of f reverses these operations. Thus f preserves £-regularity
provided that ¢ is odd, that is, if A is £-regular, then so is f(A), and con-
versely.
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Bl 5 B3
® - 0
(4,2) - (2,1)
(4,1,1) - (2]
33 -
(2,2,2) - (21
(2,2,1,1) - (2,1)
21,1,1,1) - (1,1,1)
(1,,1,1,1,1) — (1,1,1)

TABLE 1. The bhijections of Proposition 2.1 for n = 4.

We now state our main result.

Theorem 2.3. Main Theorem. Let { and n be positive integers with
£,n>1.

Let Be(n) denote the number of partitions of n in which odd parts occur
with multiplicity 2,4, ..., or 2(£ — 1) and even parts appear at most £ — 1
times.

Let Q¢(n) denote the number of £2-regular partitions of n in which parts
not divisible by £ appear 0 or £ times. Then

(1) Be(2n) = Qe(¢n) = Re(n);

Let £ =1 (mod 2) and let G¢(n) denote the number of {-regular partitions
of n in which odd parts occur with even multiplicities. Then

(2) Ge(2n) = Re(n);
Let £ =0 (mod 2) and let Hy(n) denote the number of 2€-regular partitions

of n in which odd parts occur with even multiplicities and each part = ¢
(mod 2¢) appears at most once. Then

(3) Hy(2n) = Re(n).

We present hoth a generating function proof and a bijective proof of the
main theorem.

2.1. A generating function proof of Theorem 2.3. The generating
functions for B¢(2n) and Q(¢n) are given by
x o0

ZBe(zn)qn - H(l + q1~2n 4o q(e—l)-2n)(1 + q2(2n—1) + o
n=0 n=1

qZ(L’—l)(Zn+l))

it (1 _ q22n) (1 _ q2l(2n——l))
(4) =11 1 -¢%) (1= g@n-D)"

n=1
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H (1 _ e n (1 +q8n ﬁ 1 - Zln)(l lzn)2

(8) > Qeltn)g™ L (1- en)(l P (1= ¢™)2(1 = ¢2&n)’

n=0 n=1

On the other hand,
0 & n
_1r-g¢g™+q")
ZR'(n < H (1-g")(1+4¢")

n=0 =1
=g+ gqY)  (1-g™)(1-¢")
- H (1-q¢™)(1+g¢) 8 (1—qm)(1—g*)

n=1

n=1

rp (1—¢*")(1 —¢*)?
(6) = J;[l (1 _ qn)2(1 — q2£n) )

Replacing g by ¢¢ yields (cf. (5))
2£n)(1 _ Z n)2 oasd

]:_[ 1 — t’n)2 1__ ‘282n ZQg(ln

n=0

To complete the proof of (1) we note that (6) implies
8(21!.—1))(1 _ q‘")

ZR‘-’ n)g" = H( — (1= g1

n=0

Replacing q by ¢ gives (cf. (4))
2((211—1))(1 _

1 - = n
H ( —g2)(1 - q2(2n—1)) 233(271)‘1 .

n=1 n=0

In order to prove (2) we assume that ¢ is odd and consider the generating
function

0
ZGg(Qn)q"
n=0

_ ﬁ (1+q2n+q4n+,__)(1+q2(2n—l)+q4(2n—l)+_“)

= L {1+ gF@) 1 2020 1 )(1 + ¢F20n=D 4 g22Cn=1) 4 ..)

2(11 (1 _ 23(211-1))

a-
H (1_ 2u)(1_ 2(211—1))

= ZBe(%)q"
n=0

Thus (2) is established.
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Lastly for (3) we assume that ¢ is even and consider the generating
function

én n
q 14g¢ 1
ZHe 2n) = H X 1+q2en 1 - g2@n-1)"

n=0 n=0

Indeed a partition enumerated by He(2n) is 2¢-regular and contains at most
one distinct copy of each part = £ (mod 2¢). This is enumerated hy the
function

(1-¢91-¢*)--

=P A= ~(L+¢5) (1 +¢"24)(1 + ¢+ -

—°° 1— ln 1+q£n
_H 1+qzen

Since odd parts occur with even multiplicities, we have the contribution

oo o 1
2(2n-1) | A(2n=1) L 6(2n-1) L .y =
H(1+q(n + g1 4 g + )_H—l—q2(2n—l)'
n=0 hodrs
Hence
e 0o
1-— g% 1 — g2tn
He(2n) =
nz=o ,[‘[) (1= g®7)(1 + g2tn)(1 — g2@n-1)) ' 1 — g2n
— ﬁ 1- q tn 1 - q én
Ak AP - D) T g
= 2¢
= H 21--q n - (1 - g2@n-1)y
n=0 (1 n)(l - 02(2"‘1))
[ o] (1 . 2!7])(1 - 2((2n_l))
- 1;[0 (1-¢°)(1 - g%@n-1))
[>o]
= 3" Bi(2n)g".
n=0
This completes the generating function proof of Theorem 2.3. -

2.2. A combinatorial proof of Theorem 2.3. We provide combinato-
rial proofs of the three parts of the theorem in the following order.

First we establish the the bijection Q¢[¢n] <= R¢[n]. Then we prove
the remaining parts according to the schemes

Be[2n] <= G¢[2n] <= Ry[n] and B[2n] <= H,(2n] <= Ry(n],
corresponding to odd and even ¢ respectively.
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Let A = (c}*,c4?,--+) € Qq[n]. Define the map Q¢[fn] — Ry[n) by
A Ugeawe(c), where
c u; .
We % — {(t) lf EIC,
C ifu; =42

In other words, each multiple of £ is divided by ¢ and each non-multiple
(which occurs exactly ¢ times) is replaced by one overlined copy. The

inverse map is
-1 ¢ ifz=g¢,
w; T

kt ifx=c

This proves the bijection Q¢[¢n] <= Reln].
Next we define a new bijection § to compose with f:

Be[2n] % Gef2n] L Fyfn).
If X =(c1 =2 ¢2 > --) € Be[2n)], then each ¢; = ¢ can be expressed uniquely

in the form ¢ = £"m with 7 > 0 such that £{m. Define 0 : B,[2n] — G¢[2n]
by setting 8()A) = Uceabc(c), with

Bc(c) = 8:.(87m) =m*.

It may be verified that 4 is invertible. Note that 8 is similar to the classical
hijection of Glaisher between odd and strict ordinary partitions, see (3, 4].
To insure that the image is not divisible by ¢, each part ¢ is mapped to z
copies of ¢/z, where z is the highest power of £ dividing c.

The fact that f is the required bijection between G¢[2n] and R¢[n] follows
from the proof of Proposition 2.1 and Remark 2.2.

The second part of the proof, Be[2n] <= Hy[2n] <= Rq[n|, also
relies on the composition of two bijections ¢ and f:

Be[2n) 25 Hel2n] L Refn).

We define ¢ : B¢[2n] — H¢[2n] by ¢(A) = Ucerde(c), where ¢, is ex-
plained helow.
Let A = (c}',c3?,--+) € Be[2n] and consider ¢*/ € X. Then one can write
c={¢"m where 0 <r <1 and ¢{m. If mis odd and u; is odd, then there
are two cases:

c ifu; =1
et . T
2z {c, mf =1 f > 1.
Note that when u; > 1, @, fixes one copy of ¢ but assigns the other copies
to m¢" apiece.
For all other cases apply the following transformation to each c* € X:

dc: c* s mbE,
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I3} U2

To complete the proof, we give the inverse of ¢. Let A = (¢}?,c32,--+) €
H¢[2n]. In order to assign each c¢* € A, we first obtain the £-adic expansion
of ur u=mp+ml+---+mel,m; €{0,..., —1}. Thus each c* € A
is equivalent to ¢* = ¢™¢ ¢m2& ™t Then if A\; = ¢™*¢, we have
(i)-l(/\) = U)\ie,\(ﬁ;‘,l {A:) with

¢, (fiey™! ife=m;=1(mod2) and 0<i < 1;
(&)™ otherwise.

g5 di=cm o {

n
An illustration of the bijection B,[2n] <= H,[2n] <= Rq[n] is given
for some of the partitions when £ = 4 and n = 25 in Table 2.

B4(50) 5 Hyps0) L R4(25)
(48,2) — (3'%,2) - (3%,1)
(32,12,4,2) —  (12,4,2') o (6,29,1)
(242,2) - (68,2) - (64,1)
(24,16,8,12) —  (6%,24,1%) —  (6%,22,18,1)
(163,2) - (2,1%8) - (1%)
(162,12,4,2) - (12,4,2,13%) (6,2,1'7)
(16,122,8,12) — (12,34,24,118) 5  (6,32%,22,18,1)
(12%,8,6) - (12,6,3%,29) — (6,3%,22)
(83,72,43) - (7%,4,22,18) (7,27,14)
(8,4%,35,23,19) — (4,35,27,1) 5 (32,3,2%,2,17,1)

TABLE 2. The bijections of Theorem 2.3 for n = 25, £ = 4.

3. A PARTIAL IDENTITY FOR COLORED PARTITIONS
We state a partition identity involving 2-color partitions.

Proposition 3.1. Let T4(n) denote the number of partitions of n in which
even parts are of two kinds and distinct, and odd parts occur with multi-
plicity 4. Then

(7) Ry(n) = Ty(2n).

We remark that one part-size with two different colors are treated as
distinct parts in Proposition 3.1. It is a special case (£ = 4) of the following
generalization to every even integer £ > 0.

Theorem 3.2. Let £ be an even positive integer and let Ty(2n) denote the
number of partitions of 2n in which odd parts occur with multiplicity £ and
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even parts are of two kinds such that even parts of one kind are distinct
and each even part of the other kind appears at most '25—2 times. Then

(8) Re(n) = Te(2n).
Remark 3.3. If we combine Theorem 3.2 with the compatible functions

defined the main theorem (Theorem 2.3) we obtain the following five-way
identity for every even integer £ > 0: .

Be(2n) = Qe(tn) = H(2n) = Te(2n) = Fe(n).

Proof of Theorem 3.2. Since R_g(n) = By(2n) from Theorem 2.3 it will
suffice to prove By(2n) = T¢(2n). The generating function for T¢(2n) is

ad 0
ZTe(2n)qn = H (1+¢2")(1+¢*" +-- +q(—)2n)(1+qt(2n—l))

00 (1_ 4n) (1_ zn) (1_ 28(2n—l))
= 1;.[(1_q2n (1—q2") (1 - gf@n-D) -

From Equation (4) we have:

oo N foasd (1 _ q2£n) (1 _ q2£(2n—l))
Z Bi(2n)q" = H (1= g2n) (1- g2@n-D)

n=0 n=1
_ ﬁ (1 _ qen)(l +q£n)(1 _ q2e(2n—l)) (1 _ q4n)
ot (1 — an) (1 - q2n)

_ ad (- qen)(l _ q4n)(1 _ q2€n)(1 _ q2£(2n—l))
- H (1- 2n)2(1 _ qen)

n=1

0 (1 _ En (l _ 4n)( 22(2n—1))
= H 1 —")2(1 — gfn-D)
= ZTe(%)q"-

n=0

We now give a bijection g : Be[2n] — T¢[2n] as usual, according to parities.
Let the two kinds or colors in the theorem be distinguished by subscripting
with “a” and “b”. Thus each even part-size 2r has either the form (2r),
or (27'),, with (2r)q # (2r)s such that (2r), is distinct while (27), may also
occur in the same partition at most (£ — 2)/2 times. Since an odd part in
A € By[2n] has multiplicity 2,4,...,2(f£ — 1), we have
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J(2c),? if2<k <t
Ifc=1 (mod 2), then g.:ckw {cf ifk=¢

k=t
[(20),7 ,¢f ifk>e

’

Ce ifk=1.
ke
If c=0 (mod 2), then g.:ck— ) (2c),?_l,ca if k> 1is odd.
13
[ (2¢)y if k is even.

The inverse map is immediately seen to be g=! : T,[2n] — Be[2n]| with
ctct ifc=1 (mod 2);
gl :{camc ifc=0 (mod 2);
e+ (¢/2)? ifc=0 (mod 2).
|

An illustration of the bijection B¢[2n] <= T¢[2n] is given for some
partitions of £ = 6 and n = 6 in Table 3.

Bs[2n) s Te[27]
(12) - (12.)
(6,6) - (12s)
(4,4,4) - (85,44)
(8’4) - (80)4a)
(8,2,2) - (842,4s)
(4>472’2) - (8b94b)
(8’2’111) - (8ay2aa2b)
(2,2,2,2,2,1,1) — (45:45,24,2p)
(2,2,2,2,1,1,1,1) - (45,45,2(,,25)
(2’272’171’1,1’131) -ﬁ (4b$2ﬂ717171’1’171)

TABLE 3. The bhijections of Theorem 3.2 for n =6, ¢ = 6.

4. CONGRUENCES PROPERTIES

The number of overpartitions of n > 0 is always even. This is because an
overpartition is obtained from an ordinary partition A = (¢}, 32, -+ ,c¥")
by overlining the first occurrence of each part-size or not. Thus )\ alone gives
rise to 27 overpartitions. We strengthen this observation in the following
result.



Lemma 4.1. Foralln > 1,

B(n) = 2 (mod 4) ifn=k? for some integer k
P =10 (mod 4) otherwise.

Proof. We decompose overpartitions of n into two sets: those containing a
unique part-size and those containing two or more different part-sizes. Then
we see that the latter set of overpartitions has cardinality 27, » > 1, that
is, a cardinality divisible by 4. On the other hand, partitions with a single
part-size arise from divisors of n. Each divisor d of n gives the partition
(d™/4) which in turn generates 2 overpartitions. Since a square has an odd
number of divisors, 7(k?) = 1 (mod 2), we deduce that p(k?) =2 (mod 4).
|

We can now give a combinatorial proof of the following result which is
proved with generating functions by Alanazi-Munagi-Sellers [1].

Theorem 4.2. For alln > 1 and an integer k > 0,

iy = {

Proof. Let m(£|n) be the number of multiples ¢ dividing n. By the proof
of Lemma 4.1, it will suffice to find the parity of 7(n) — m(¢|n): a divisor d
of n generates a single part-size {-regular overpartition provided that ¢ does
not divide d. In each case we exclude the divisors enumerated by m(€|n)
and compare the parity of 7(n) — m(£|n) with the the parity of 7(n), and
conclude that Re(n) = 2 (mod 4) or Re(n) = 0 (mod 4) if 7(n) — m(¢n)
is odd or even respectively.

Consider the first case n = k% or n = £k? given that £ is not a square.
If n = k% and ¢ does not divide n, then m(£|n) = 0. So 7(n) — m(¢|n)
is odd. If n = k? and ¢ divides n, then m(¢|n) = 7(n/f) which is even.
So 7(n) — m({|n) is still odd. But if n = ¢k? then 7(n) is even and
m(£|n) = 7(k?) which is odd. So 7(n) — m(€jn) is odd.

The second case has two parts namely (i) n = k2 with ¢ a square factor
of n and (ii) n # k% and n # €k2. In (i) we find that both 7(n) and m(¢|n)
are odd; so 7(n) — m(¢|n) is even. In (ii) it is clear that both 7(n) and
m(£|n) are even. This completes the proof. |

2 (mod 4) ifn=k? orn = ¢k? where{ is not a square;
0 (mod 4) otherwise.

CONCLUSION

The main theorem, Theorem 2.3, as well as Theorem 3.2, contain seem-
ingly incomplete partition identities because some of these are given only
for selective parities of ¢. It will be of interest to obtain extensions of the
identities to all integers £ > 0.
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