## A characterization of the degree sequence of the graph with cyclomatic number k \*

Lei Meng, Jian-Hua Yin<sup>†</sup>

Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, P.R. China

E-mail: yinjh@ustc.edu

**Abstract.** Let  $(d_1, d_2, \ldots, d_n)$  be a sequence of positive integers with  $n-1 \ge d_1 \ge d_2 \ge \cdots \ge d_n$ . We give a characterization of  $(d_1, d_2, \ldots, d_n)$ that is the degree sequence of the graph with cyclomatic number k. This simplifies the characterization of Erdős-Gallai.

**Keywords.** Graph, degree sequence, cyclomatic number.

## 1. Introduction

In this paper, the graphs considered are finite, undirected and simple. Let G = (V, E) be a graph and  $V = \{v_1, v_2, \dots, v_n\}$ , the degree sequence  $(d_G(v_1), d_G(v_2), \dots, d_G(v_n))$  of G is denoted by d(G). The sequence d = $(d_1, d_2, \ldots, d_n)$  of positive integers is said to be graphic if there exists a simple graph G such that d(G) = d, and G is called a realization of d. It is obvious that if  $(d_1, d_2, \ldots, d_n)$  is graphic, then  $d_i \leq n-1$  for each i and  $\sum_{i=1}^{n} d_{i}$  is even. However, these two conditions together do not ensure that a sequence will be graphic. A well-known characterization of  $(d_1, d_2, \ldots, d_n)$ that is graphic is the following

**Theorem 1.1** (Erdős and Gallai [3]) Let  $(d_1, d_2, \ldots, d_n)$  be a sequence of positive integers with  $n-1 \geq d_1 \geq d_2 \geq \cdots \geq d_n$ . Then  $(d_1, d_2, \ldots, d_n)$ is graphic if and only if  $\sum_{i=1}^n d_i$  is even and  $\sum_{i=1}^s d_i \leq s(s-1) + \sum_{i=s+1}^n \min\{s, d_i\}$ for each s with  $1 \le s \le n$ .

<sup>\*</sup>Supported by National Natural Science Foundation of China (No. 11561017) and Natural Science Foundation of Hainan Province for Innovative Research Team (No. 2016CXTD004).

<sup>&</sup>lt;sup>†</sup>Corresponding author.

Let G = (V, E) be a connected graph. We say that |E| - |V| + 1 is the *cyclomatic number* of G, denoted by c(G). If c(G) = 1, 2 and 3, then G is said to be a *unicyclic* graph, *bicyclic* graph and *tricyclic* graph, respectively. Zhou and Cai [1] gave a characterization of  $(d_1, d_2, \ldots, d_n)$  that is the degree sequence of unicyclic graph, bicyclic graph and tricyclic graph, respectively.

**Theorem 1.2** (Zhou and Cai [1]) Let  $d = (d_1, d_2, \ldots, d_n)$  be a sequence of positive integers with  $n - 1 \ge d_1 \ge d_2 \ge \ldots \ge d_n$ .

- (1) There exists a unicyclic graph G such that d(G)=d if and only if  $n\geq 3$ ,  $\sum_{i=1}^n d_i=2n$  and  $d_3\geq 2$ .
- (2) There exists a bicyclic graph G such that d(G) = d if and only if  $n \ge 4$ ,  $\sum_{i=1}^{n} d_i = 2n + 2$  and  $d_4 \ge 2$ .
- (3) There exists a tricyclic graph G such that d(G)=d if and only if  $n \geq 4$  and d satisfies one of the following conditions: (i) n=4 and  $\sum_{i=1}^{n} d_i = 2n+4$ ; (ii)  $n \geq 5$ ,  $\sum_{i=1}^{n} d_i = 2n+4$ ,  $d_5 = 1$  and  $d_4 \geq 3$ ; (iii)  $n \geq 5$ ,  $\sum_{i=1}^{n} d_i = 2n+4$  and  $d_5 \geq 2$ .

In this paper, we give a characterization of  $(d_1, d_2, \ldots, d_n)$  that is the degree sequence of the graph with cyclomatic number k as follows. This simplifies the characterization of Erdős-Gallai.

Theorem 1.3 Let  $d=(d_1,d_2,\ldots,d_n)$  be a sequence of positive integers with  $n-1\geq d_1\geq d_2\geq \cdots \geq d_n$ . Then there exists a graph G with cyclomatic number k such that d(G)=d if and only if  $n\geq \lceil\frac{3+\sqrt{1+8k}}{2}\rceil$ ,  $\sum_{i=1}^n d_i=2n+2k-2, d_{\lceil\frac{3+\sqrt{1+8k}}{2}\rceil}\geq 2 \text{ and } \sum_{i=1}^t d_i\leq t(t-1)+\sum_{i=t+1}^n \min\{t,d_i\}$  for  $t=2,\ldots,\lceil\frac{3+\sqrt{1+8k}}{2}\rceil-1$ .

## 2. Proof of Theorem 1.3

We also need a lemma as follows.

**Lemma 2.1** (Edmonds [2]) If  $d = (d_1, d_2, \ldots, d_n)$  is a graphic sequence with  $d_1 \ge d_2 \ge \cdots \ge d_n \ge 1$  and  $\sum_{i=1}^n d_i \ge 2n-2$ , then d has a connected realization.

**Proof of Theorem 1.3.** For the necessity, let G=(V,E) be a graph with cyclomatic number k and d(G)=d. Then |E|=n-1+k and  $\sum_{i=1}^n d_i=2|E|=2n+2k-2$ . By  $n-1+k=|E|\leq \frac{n(n-1)}{2}$ , we have that  $n^2-3n+2-2k\geq 0$ . We can get that  $n\geq \frac{3+\sqrt{1+8k}}{2}$ , thus  $n\geq \lceil \frac{3+\sqrt{1+8k}}{2}\rceil$ .

By Theorem 1.1, it is obvious that  $\sum_{i=1}^t d_i \leq t(t-1) + \sum_{i=t+1}^n \min\{t, d_i\}$  for  $t=2,\ldots, \lceil \frac{3+\sqrt{1+8k}}{2} \rceil -1$ .

If  $d_{\lceil \frac{3+\sqrt{1+8k}}{2} \rceil} = 1$ , we let  $t = \lceil \frac{3+\sqrt{1+8k}}{2} \rceil - 1$ , then  $\sum_{i=1}^{t} d_i = 2n + 2k - 2 - (n - \lceil \frac{3+\sqrt{1+8k}}{2} \rceil + 1) = n + 2k + \lceil \frac{3+\sqrt{1+8k}}{2} \rceil - 3$ . On the other hand,  $t(t-1) + \sum_{i=t+1}^{n} \min\{t, d_i\} = (\lceil \frac{3+\sqrt{1+8k}}{2} \rceil - 1)(\lceil \frac{3+\sqrt{1+8k}}{2} \rceil - 2) + (n - \lceil \frac{3+\sqrt{1+8k}}{2} \rceil + 1) = n + (\lceil \frac{3+\sqrt{1+8k}}{2} \rceil)^2 - 4\lceil \frac{3+\sqrt{1+8k}}{2} \rceil + 3$ .

Since  $x^2 - 5x$  is a monotone increasing function when  $x \ge \frac{5}{2}$  and  $\frac{3+\sqrt{1+8k}}{2}+1 > \lceil \frac{3+\sqrt{1+8k}}{2} \rceil \ge \frac{5}{2}$ , we have that  $(\lceil \frac{3+\sqrt{1+8k}}{2} \rceil)^2 - 5\lceil \frac{3+\sqrt{1+8k}}{2} \rceil < (\frac{3+\sqrt{1+8k}}{2}+1)^2 - 5(\frac{3+\sqrt{1+8k}}{2}+1) = 2k-6$ . This implies that  $\sum_{i=1}^t d_i = n+2k+\lceil \frac{3+\sqrt{1+8k}}{2} \rceil - 3 = n+2k-6+\lceil \frac{3+\sqrt{1+8k}}{2} \rceil + 3 > n+(\lceil \frac{3+\sqrt{1+8k}}{2} \rceil)^2 - 4\lceil \frac{3+\sqrt{1+8k}}{2} \rceil + 3 = t(t-1) + \sum_{i=t+1}^n \min\{t,d_i\}$ , a contradiction.

For the sufficiency, we assume that  $n \geq \lceil \frac{3+\sqrt{1+8k}}{2} \rceil$ ,  $\sum_{i=1}^{n} d_i = 2n+2k-2$ ,  $d_{\lceil \frac{3+\sqrt{1+8k}}{2} \rceil} \geq 2$  and  $\sum_{i=1}^{t} d_i \leq t(t-1) + \sum_{i=t+1}^{n} \min\{t,d_i\}$  for  $t=2,\ldots,\lceil \frac{3+\sqrt{1+8k}}{2} \rceil-1$ . By Lemma 2.1, we only need to prove that d is a graphic sequence. By Theorem 1.1, it is enough to check that  $\sum_{i=1}^{t} d_i \leq t(t-1) + \sum_{i=t+1}^{n} \min\{t,d_i\}$  for t=1 and  $\lceil \frac{3+\sqrt{1+8k}}{2} \rceil \leq t \leq n$ . If t=1, then  $d_1 \leq n-1=t(t-1)+\sum_{i=t+1}^{n} \min\{t,d_i\}$ . Assume that  $\lceil \frac{3+\sqrt{1+8k}}{2} \rceil \leq t \leq n$ . Then  $\sum_{i=1}^{t} d_i \leq 2n+2k-2-(n-t)=n+2k+t-2$ . On the other hand,  $t(t-1)+\sum_{i=t+1}^{n} \min\{t,d_i\} \geq t^2-t+(n-t)=n+t^2-2t$ .

Since  $x^2-3x$  is a monotone increasing function when  $x\geq \frac{3}{2}$  and  $t\geq \lceil \frac{3+\sqrt{1+8k}}{2}\rceil \geq \frac{3+\sqrt{1+8k}}{2} \geq \frac{3}{2}$ , we have that  $t^2-3t\geq (\frac{3+\sqrt{1+8k}}{2})^2-3(\frac{3+\sqrt{1+8k}}{2})=2k-2$ . This implies that  $\sum_{i=1}^t d_i \leq n+2k+t-2 \leq n+t^2-2t \leq t(t-1)+\sum_{i=t+1}^n \min\{t,d_i\}$ . This completes the proof of Theorem 1.3.  $\square$ 

Acknowledgements The authors are very grateful to the referee for his/her valuable comments and suggestions.

## References

- [1] X. Zhou and S.Y. Cai, The degree sequence of the graph with cyclomatic number less than four, Ars Combinatoria, to appear.
- [2] J. Edmonds, Existence of k-edge connected ordinary graphs with prescribed degree, J. Res. Nat. Bur. Stand., Ser.B, 68 (1964) 73-74.
- [3] P. Erdős and T. Gallai, Graphs with prescibed degrees of vertices (Hungarian), Mat. Lapok, 11 (1960) 264-274.