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Abstract: The hamiltonian problem is a classical problem in graph the-
ory. Most of the research on hamiltonian problem is looking for sufficient
conditions for a graph to be hamiltonian. For a vertex v of a graph G, Zhu,
Li and Deng introduced the concept of implicit degree id(v), according to
the degrees of its neighbors and the vertices at distance 2 with v in G. In
this paper, we will prove that: Let G be a 2-connected graph on n > 3
vertices. If the maximum value of the implicit degree sums of 2 vertices
in S is more than or equal to n for each independent set S with x(G) + 1
vertices, then G is hamiltonian.

Keywords: Implicit degree sum; Independent set; Hamiltonian cycle

1 Introduction

In this paper, we consider only finite, undirected and simple graphs. No-
tation and terminology not defined here can be found in [2]. Let G =
(V(G), E(G)) be a graph with vertex set V(G) and edge set E(G), and H
be a subgraph of G. For a vertex u € V(G), let Ny(u) ={ve V(H) :uwv €
E(G)} and dy(u) = [Ny (u)|. If G = H, we always use N(u) and d(u) in
place of N¢(u) and dg(u) respectively. Let No(u) = {v € V(G) : d(u,v) =
2}, where d(u, v) denotes the distance between vertices u and v in G.

Let a(G) and x(G) denote the independence number and the connec-
tivity of G, respectively. For a nonempty set S C V(G), let Ax(S) =
max{}",.x d(z) : X is a subset of S with k vertices}.

A cycle containing all vertices of G is called a hamiltonian cycle. A
graph G is called hamiltonian if it contains a hamiltonian cycle. The hamil-
tonian problem is an important problem in graph theory. Various sufficient
conditions for a graph to be hamiltonian have been given in terms of degree
conditions. The following two sufficient conditions are essential.
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Theorem 1 ([7]). Let G be a graph on n > 3 vertices. If d(z) +d(y) > n
for every pair of nonadjacent vertices x and y, then G is hamiltonian.

Theorem 2 ([5]). Let G be a 2-connected graph on n > 3 vertices. If
max{d(z),d(y)} = n/2 for every pair of vertices x and y at distance 2,
then G is hamiltonian.

In 1972, by considering the relationship between the independence num-
ber and the connectivity of a graph, Chvatal and Erdds gave a sufficient
condition for a 2-connected graph to be hamiltonian.

Theorem 3 ([3]). Let G be a 2-connected graph with o(G) < k(G). Then
G is hamiltonian.

Recently, Yamashita improved Ore’s Theorem (Theorem 1) as follows.

Theorem 4 ({8]). Let G be a 2-connected graph of on n > 3 vertices.

If Ay(S) > n for every independent set S of order k(G) + 1, then G is
hamiltonian.

In order to generalize and improve the classic results of hamiltonian
problem, Zhu, Li and Deng (9] gave the concept of implicit degree of a
vertex.

Definition 1 ([9]). Let v be a vertez of a graph G and k = d(v) — 1. Set
My = max{d(u) : v € Na(v)} and mg = min{d(u) : u € Na(v)}. Suppose
dy £dy £d3 <... <d <drt1 £... 15 the degree sequence of vertices in
N(v) U Na(v). If No(v) # 0 and d(v) > 2, define

ma, if  dr <mg;
d*(v) = { di+1, if  diyr > My
dy, otherwise,

then the implicit degree of v is defined as id(v) = max{d(v),d*(v)}. If
Na(v) =0 or d(v) < 1, then id(v) = d(v).

Clearly, id(v) > d(v) for each vertex v from the definition of implicit
degree. For S C V(G) with S # 0, let iAk(G) = max{}_ . x id(x) : X is
a subset of S with k vertices}. The authors [9] used implicit degree sum
instead of degree sum in Ore’s theorem (Theorem 1), and got a sufficient
condition for a graph to be hamiltonian.

Theorem 5 ([9]). Let G be a 2-connected graph on n > 3 vertices. If
id(u) + id(v) = n for each pair of nonadjacent vertices u and v in G, then
G is hamiltonian.
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From Theorem 5, we can easily deduce Fan’s Theorem (Theorem 2).
Moreover, the authors in [9] gave an example to illustrate Theorem 5 is
stronger than Fan’s theorem. Motivated by the results of Theorem 4 and
Theorem 5, we study implicit degrees and the hamiltonicity of graphs and
obtain the following main result.

Theorem 6. Let G be a 2-connected graph on n > 3 vertices. IfilAy(S) >
n for every independent set S of order k(G) + 1, then G is hamiltonian.

‘We postpone the proof of Theorem 6 in next section. Here we give two
remarks. One shows that Theorem 6 is much stronger than Theorem 4 and
Theorem 5; the other shows that the condition “ iA5(S) > n” could not
be weaken to “ iA2(S) > n —1".

Let Gy,...,Gk be k vertex disjoint graphs. The union of Gi,...,Gk,
denoted by G, U... U Gy, is the graph with vertex set UX_,V(G;) and
edge set UX_| E(G;). We use kQ instead of Gy U ... U Gy if each G; is
isomorphic to Q. The join of Gy,...,Gg, denoted by Gy V...V Gy, is the
graph obtained from UX_, G; by joining each vertex of G; to each vertex of

Gj for i #j.

Remark 1. The graph in Fig.1 shows that Theorem 6 is much stronger
than Theorem 4 and Theorem 5. Letk > 4, V(Kar—¢) = {z1,%2,...,Z3k—6},
V(kK1) = {y1,¥y2,...,yx}. We construct a graph G, with vertex set V(G) =

V(Kak—6UkK,), and edge set E(G) = E(Kak—6)U{y1zi : 1 =1,2,...,k}U

{viZ2i4k—7,YiT2irk—6 ¢ + = 2,3,...,k}. It is easy to check that G is

o 2-connected hamiltonian graph on n = 4k — 6 vertices. Choose S =

{v1,y2,y3}, then Ay(S) = k+ 2 < n and G does not satisfy the condition

in Theorem 4. Since td(y,) = 3k — 6, id(y2) = id(y3) = k, id(y;) =3k — 6

for j = 4,5,...,k, id(z2) = 2k + 1 and id(z:) > d(z:) > 3k — 6 for
1=1,2,...,3k—6. Since yo and y3 are two nonadjacent vertices of G and
id(y2) + id(y3) = 2k < n, G does not satisfy the condition in Theorem 5.

But it is easy to check that G satisfies the condition in Theorem 6.

Remark 2. Let G = K V (k + 1)K). Clearly, G is a k-connected non-
hamiltonian graph of order n = 2k + 1. Let S = V((k + 1)K,). It is
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easy to check that iA2(S) = 2k = n — 1, This implies that the condition
iA9(S) = n” in Theorem 6 is best possible.

2 Proof of Theorem 6

A path P connecting z and y is called an H-path if V(P)NV(H) = {z,y}
and E(P)N E(H) = 0. For a cycle C in G with a given orientation and
a vertex = in C, z+ and z~ denote the successor and the predecessor of
z in C, respectively. For any I € V(C), let I~ = {z : z+ € I} and
I* = {z : 2~ € I}. For two vertices = and y in C, we define zCy to be the
path of C from z to y. yCz denotes the path from y to z in the reversed
direction of C. A similar notation is used for paths.

For a path P = z1z2...z, of a graph G, let lp(z1) = max{i : z; €
V(P) and z;x; € E(G)} and lp(xp) = min{i : z; € V(P) and 2z, €
E(G)}. Set Lp(x1) = 1p(2,) and Lp(Zp) = Zyp(z,). Our proof of Theorem
6 is based on the following lemmas.

Lemma 1 ([1]). Let G be a 2-connected graph on n vertices and C be a
longest cycle of G with length at most n — 1. If P is a path connecting x
and y in G such that |V (C)| < |V(P)|, then d(z) + d(y) < n.

Lemma 2 ([4]). Let G be a 2-connected graph and X be a subset of V(G).
If |X| < (G), then G has a cycle that includes every vertez of X.

Lemma 3 ([6]). Let G be a 2-connected graph and P = z,z5 ...z, be a path
of G. If z1zp ¢ E(G), and d(u) < id(z1) for any u € Ng_v(py(z1) U {z1},
then either

(1) there exists a vertex x; € Np(z1)~ such that d(z;) > id(x1); or

(2) Np(z1)~ = Np(z1) U {z1} — {Lp(z1)}, d(z;) < id(z,) for any vertex
z; € Np(x1)~ and id(z;) = min{d(v) : v € Na(z,)}.

Proof of Theorem 6. Suppose to the contrary that G is a graph satisfying
the condition of Theorem 6 and G is not hamiltonian. Let C be a longest
cycle of G and give C a clockwise orientation. Then |V(C)| < n.

Let H be a component of G — V(C) and yo € V(H). Set k = &(G).
By Lemma 2, |[V(C)| > k. Since the connectivity of G is k, there are k
paths P1(yo,y1), P2(v0,¥2), - -, Pe(y0, ¥x) from yo to C having only yo in
common pairwise and V(P;) N V(C) = {y;} for each 1 < i < k. Without
loss of generality, we orient P; from yp to ;. Assume without loss of gen-
erality that y1,y2, ..., ¥k occur in this order along C. Let z; = y;" for each
i=1,2,...,k. Let zo and 2y be the predecessor of y on the path P, and
the predecessor of y; on the path P), respectively.
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Claim 1. {zg,z1,3,. ..,z } is an independent set of G. Similarly, {20, z1,
Z3,...,Tk} is also an independent set of G.

Proof. If zoz; € E(G), then C’ = zoz2Cyax0 is a cycle longer than C, a
contradiction.

If zoz; € E(QG) for i # 2, then C' = z;20Poyo Py:Cz; is a cycle longer
than C, a contradiction. _ _

If z;z; € E(G) for 1 <i < j <k, then C' = z;Cy; Pjyo Py:Cz;z; is a
cycle longer than C, a contradiction. Therefore, {zo,z1,Z2,...,Zx} is an
independent set of G. Similarly, {20,Z1,232,...,%k} is also an independent
set of G. a

By Claim 1 and the hypothesis of Theorem 6, there exist at least two
vertices in {xo, Z1,Z2, ..., Tk} With implicit degree sum more than or equal
to n and there exist at least two vertices in {29, 21, Z3, . . ., T } With implicit
degree sum more than or equal to n.

Case 1. There exist some 7 and j with 1 < i < j < k such that
id(:z:i) + ‘Ld(.’L‘J) > n.

Set P = z;Cy; PjyoPy:Cx;. Clearly, [V(P)| > |V(C)|.

Claim 2. Np(z;)~ # Np(z;)U{z:} — {Lp(z:)} and Np(z;)* # Np(z;)U
{25} - {Lp()}.

Proof. By the choices of C, we know z;y; € E(G),z;y0 ¢ E(G) and
z;y; € E(G),zjyo ¢ E(G). Since yo is before y; on the path P, Np(z;)~ #
Np(z;)U{z;} — {Lp(z:)}. Since y; is before yo on the path P, Np(z;)* ;é
Np(z;) U {z;} — {Lp(z;)}.

Claim 3. There exists a path W(w,,w2) such that (i) V(P) C V(W), and
(ii) d(wy) > id(z;) and d(wg) > id(z;).

Proof. For convenience, set P = wjuy...up with u; = z; and u, = z; .
By the choice of C, we have NG—V(P) (:L',) n NG_V(p)(.’L'j) = 0.

Case 1.1. There is a vertex u € Ng_y(p)(z;) U {z;} such that d(u) >
id(:r,-).

If there is a vertex v € Ng_v(p)(z;) U {z;} such that d(v) > id(z;),

then set
W (wy, w2) = uz; Prjv, where w; = u and wy = v.
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If d(v) < id(x;) for each vertex v € Ng_y(p)(z;) U {z;}, then by
Claim 2 and Lemma 3, there exists some vertex u; € Np(z;)* such that
d(w) 2 id(z;). Set

W (w1, ws) = uz; Pu;_1z; Py, where w; = u and wy = u;.

Case 1.2. d(u) < id(z;) for each vertex u € Ng_y(py(zi) U {z:}.

By Claim 2 and Lemma 3, there is some vertex un, € (Np(z;))~ such
that d(us) > id(z;). If there is a vertex v € Ng_v(p)(z;) U {z;} such that
d(v) > id(z;), then set

W(w;,ws) = uhP:v,'uhHijv, where w; = u; and wy = v.

Next, we suppose d(v) < id(z;) for any vertex v € Ng_v(py(z;)U{z;}.
If h+1 < lp(x;) (where A is the index of up on the path P), then there is
some u; € (Np(z;))* such that d(u;) > id(z;) by Claim 2 and Lemma 3.
Set

W(wy, ws) = uhpxiuh+1Pu¢_1ijuz, where w; = up and wp = uy.

Ifh+1>1p(x;), set

A = {u, : ug41 € Np(z;) and s < h},
B = {us : us_1 € Np(z;) and s > h+1}, and
C = {us : us4+1 € Np,;(z;) s > h+ 1 ands is as small as possible}.

Clearly, T; € B and ‘CI = 1. Then |A|+IB\{.'EJ'}|+|C|+|NG_V(p)(.'Ej)| =
d(z;), Uip(z;)-1 € AN No(z;). (Since d(z;) = dp(z;) + de-v(p)(z;) =
INp(z;)|+|Na-v(p)(x;)| and |[Np(z;)| = |Nv (u; Pun) (Z3) 1INV (up 41 Pup) (T5)]
= |A[+|B\ {z;}| +|C|.) Since ux ¢ N(z;), C C Na(z;). By the definition
of id(x;), there is some vertex u; € (AUB) — {z;} such that d(v;) > id(z;).
When v; € B\ {z;}, set

W(wl,wg) = uhpxiuh.,.ll’uz_l:cjpu;, where W1 = Up and Wa = Uy.
When u; € A, set

W(wy, wa) = upPuiy17; Pupy17:Puj, where wy = up, and wy = u;.

Now we complete the proof of Claim 3. 0

By Claim 3, there exists a path W (w, wz) such that |[V(W)| > |V(P)| >
[V(C)| and d(w;)+d(wz) > id(z;)+id(z;) > n. This contradicts Lemma 1.

Case 2. There exists some 7 with 1 < 7 < &k and i # 2 such that
id(zo) + id(z;) 2> n.

Assume, without loss of generality, that id(zo) + id(z1) > n and set
Q = zoP2yo Piy1 Cxy. Clearly, [V(Q)| > [V(C)|.

Claim 4. No(zo)~ # No(z0)U{zo} - {Lo(z0)} and No(z1)* # No(z1)u
{z1} = {Lq(z1)}-
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Proof. By Claim 1, zoz2 ¢ E(G). Since zoy2 € E(G) and z3 is the pre-
decessor of y2 on the path P, Ng(zo)~ # Ng(zo) U {zo} — {Lg(z0)}.
Since z,y; € E(G),z122 ¢ E(G) and y; is before zo on the path Q,
Ng(z1)* # No(z1) U {z1} — {Lq(z1)}- O

By similar argument as in Claim 3 to the path Q, we have

Claim 5. There exists a path W'(w}, w)) such that (i) V(Q) C V(W’),
and (ii) d(w}) > id(zo) and d(wj) > id(z;). O

By Claim 5, there exists a path W’(w], w}) such that [V/(W')| > |V(Q)| >
|V(C)| and d(w})+d(wh) > id(xg)+id(x;) > n. This contradicts Lemma 1.

Case 3. id(zg) + id(z3) > n.

Set R = zoy2Czy. Clearly, |V(R)| > |[V(C)|. For convenience, set
R=ryry...75.

Claim 6. Nc(xo) n Nc(xo)+ = { and NR($2)+ # NR(I2) U {2:2} -
{Lr(z2)}.

Proof. If z € N¢(zo) N Ne(zo)™, then zozCz~xp is a cycle longer than
C, contrary to the choice of C. So N¢(zg) N Ne(zo)* = 0. Since zays €
E(G),z2z1 ¢ E(G) and v is before z; on the path R, Ng(z2)* # Np(z2)U
{z2} — {Lr(z2)}. 0

Case 3.1. There is a vertex £ € Ng_v(r)(Zo) U {Zo} such that d(z) >
id(zo)-

If there is a vertex y € Ng_y(r)(z2) U {z2} such that d(y) > id(z3),
then R’ = zzoRz,y is a path such that [V(R')| > |V(C)| and d(z)+d(y) >
id(zg) + id(z2) > n. This contradicts Lemma 1.

If d(y) < id(z2) for each vertex y € Ng_vy(r)(z2)U{z2}, then by Claim
6 and Lemma 3, there exists some vertex r, € Np(zx3)* such that d(r;) >
id(z;). Then R’ = zxoRr;.1zRr, is a path such that |[V(R')| > [V(C)|
and d(z) + d(r) > id(zo) + id(z2) > n. This contradicts Lemma 1.

Case 3.2. d(z) < id(zo) for each vertex z € Ng_y(gr)(zo) U {0}

By Claim 6, Nc(z0)+ C Nz(xo). Then ING—V(R)(xO)I + |Nc(10)+| >
dr(zo0) + de—v(r)(z0) = d(zo). If dc(zo) > 2, then by the definition
of id(z), there exists at least one vertex z € Ng(zo)t \ {2} such that
d(z) > id(zo). Then id(z) + id(x2) > id(zo) + id(z2) > n. By similar
argument as in Case 1, we can get a contradiction.
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Next, suppose dc(zo) = 1. Then by the definition of id(xg), id(zg) =
min{d(u) : v € Na(zo)}. If there exists a vertex y € Na(zo) N (V(G) —
V(R)), then by similar argument to the path yy'roRze with ¥’ € N(zo) N
N(z) as in Case 3.1, we can get a contradiction. So suppose Na(zg) N
(V(G)-V(R) =0.

By Claim 1 and the hypothesis of Theorem 6, there exist at least two ver-
tices in {29, 1, 22,...,Zx} with implicit degree sum more than or equal to
n. If there exists some ¢ with 1 < ¢ < k and  # 1 such that id(2)+id(x;) >
n, then by similar argument as in Case 2, we can get a contradiction. So
suppose id(2g) + id(z1) = n. Then id(xq) + id(z2) + id(20) + id(z1) > 2n.
Therefore, id(zg) + id(z2) = n or id(zp) + id(z1) = n. Thus, by similar
argument as in Case 2, we can get a contradiction.

Now the proof of Theorem 6 is completed.
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