Some Tree-book Ramsey Numbers

Lianmin Zhang, Kun Chen, Dongmei Zhu‡§

Abstract: For two given graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer n such that for any graph G of order n, either G contains G_1 or the complement of G contains G_2 . In this paper, we study a large class of tree \mathbb{T} as studied by Cockayne in [3], including paths, trees which have a vertex of degree one adjacent to vertex of degree two, as special cases. We evaluate some $R(T'_m, B_m)$, where $T'_n \in \mathbb{T}$ and B_m is a book of order m+2. Besides, some bounds for $R(T'_n, B_m)$ are obtained.

Key words: Ramsey number, Tree, Book

1 Introduction

All graphs considered in this paper are finite simple graphs without loops. Let G = (V(G), E(G)) be a graph. For two given graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer n such that for any graph G of order n, either G contains G_1 or \overline{G} contains G_2 , where \overline{G} is the complement of G. The neighborhood N(v) of a vertex v is the set of vertices adjacent to v in G and $N[v] = N(v) \cup \{v\}$. The minimum degree and maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. Let $d_G(v)$ be the degree of vertex v in G. For $S \subseteq V(G)$, G[S] denotes the subgraph induced by S in G. We use P_n and mK_n to denote a path of order

^{*}School of Management and Engineering, Nanjing University, Nanjing, China

 $^{^{\}dagger}$ School of Statistics, Southwestern University of Finance and Economics, Chengdu, China

[‡]School of Economics and Management, Southeast University, Nanjing, China

[§]Corresponding author. Email:dongmeizhu2013@126.com

n and m vertex disjoint complete graphs K_n , respectively. A tree with order n, T_n , is an undirected graph in which any two vertices are connected by exactly one path. A star of order m is a complete bipartite $K_{1,m-1}$. A book B_m is m triangles sharing one edge, that is, $B_m = K_2 + \overline{K_m} = K_1 + K_{1,m}$. The length of the longest path of G is denoted by p(G). Let $\lceil x \rceil$ denote the greatest integer not larger than x.

In[9], Rousseau and Sheehan studied the Ramsey numbers involving trees versus other graphs. They showed that the Ramsey numbers of tree versus books are given by:

$$\max\{q_1, q_2\} + 1 \le R(T_n, B_m) \le m + 2n - 2.$$

where
$$q_1 = (k+2)(n-1)$$
, $q_2 = m-1+2\lceil \frac{m-1}{k+1} \rceil$ and $k = \lceil \frac{m-1}{n-1} \rceil$.

Specifically, for some m, n, they derived that

Theorem 1.1.
$$(1)R(T_n, B_m) = m + 2n - 2$$
 when $m \equiv 1 \pmod{(n-1)}$; $(2)m + 2n - 3 \le R(T_n, B_m) \le m + 2n - 2$ when $m \equiv 2 \pmod{(n-1)}$; $(3)m + 2n - 4 \le R(T_n, B_m) \le m + 2n - 2$ when $m \equiv 0 \pmod{(n-1)}$.

Other results about Tree-book Ramsey are stated as follows.

Theorem 1.2. [5]
$$R(B_m, T_n) = 2n - 1$$
 for $n \ge 3m - 3$.

In this paper, we evaluate Ramsey numbers concerning a large class of tree, \mathbb{T} , defined in next section, which includes paths as special cases. The main result are stated as follows: let T'_n be a tree in \mathbb{T} , then

- $R(T'_n, B_m) = m + 2n 3$ for $m \equiv 2(mod(n-1))$;
- $R(T'_n, B_m) = m + 2n 4$ for $m \equiv 0 \pmod{(n-1)}$;
- $R(T'_n, B_m) = m + 2n 4$ for $m \equiv n 2(mod(n-1))$;
- $R(T'_n, K_{1,m}) = m + n 2$ for $m \equiv n 2 \pmod{(n-1)}$ and m > n 2.

In addition, some bounds about Tree-book Ramsey numbers are provided in this paper.

For Ramsey numbers concerning trees or books, many results have been obtained[5, 6, 8, 9]. For a survey, we refer readers to see [7].

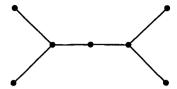


Figure 1: A tree not in T

2 The Class of Tree \mathbb{T}

The class of tree studied here is firstly defined by Cockayne[3], where he studied the Tree-star Ramsey numbers. In this section, for the sake of descriptive integrality, we here restate the description as appeared in [3].

Let T be a spanning tree of G which has n vertices, a permutation π of V(G) is T-preserving if and only if for each $[u,v] \in E(T), [\pi(u),\pi(v)] \in E(G)$. Let u be a vertex of G and U be the set of all images of u under T-preserving permutation of V(G). If the assumption that each $u \in U$ has degree n-1 in G implies that G is the complete graph K_n , (T,u) is defined as a complete pair. See an example in [3].

A tree T is in the class \mathbb{T} if there exists some vertex v with $d_T(v)=1$ and its incident edge [v,w] such that $(T-\{v\},w)$ is a complete pair. Cockayne has showed that all trees which have a vertex of degree one adjacent to vertex of degree two are in \mathbb{T} . Therefore, \mathbb{T} contains all paths P_n . It is worth noting that many trees without this property are also in \mathbb{T} . For non-star trees with $n \leq 7$ vertices, the only tree not in \mathbb{T} is that shown in Figure 1. In addition, at most five trees among the 23 8-vertex trees are not in \mathbb{T} .

3 Preliminary

In this section, we will give some results obtained in previous research, which will be used in our proof.

```
Theorem 3.1. ([1]). For m \ge n > 1,

(1)R(T_n, K_{1,m}) = m + n - 1 for m \equiv 1 \pmod{(n-1)};

(2)R(T_n, K_{1,m}) \le m + n - 1;
```

```
Theorem 3.2. ([3]). Let T'_n be a tree in \mathbb{T}, then R(T'_n, K_{1,m}) = m+n-2 if one of the following four conditions holds (1)m \equiv 0, 2(mod(n-1)); (2)m \not\equiv 1(mod(n-1)) and m \geq (n-3)^2; (3)m \not\equiv 1(mod(n-1)) and m \equiv 1(mod(n-2)); (4)m \equiv n-2(mod(n-1)) and m > n-2.
```

Lemma 3.1. Let G be a graph with $|G| \ge R(T_n, K_{1,m}) + 1$. If there is a vertex $v \in V(G)$ such that $|N[v]| \le |G| - R(T_n, K_{1,m})$ and G contains no T_n , then \overline{G} contains a B_m .

Proof. Let G' = G - N[v], then $|G'| \ge R(T_n, K_{1,m})$. Since G contains no T_n , then G' contains no T_n . This implies that $\overline{G'}$ contains a $K_{1,m}$. Hence \overline{G} contains a $B_m = v + K_{1,m}$.

4 The Ramsey Numbers

Let T'_n be a tree in \mathbb{T} . In this section, we will evaluate the Ramsey numbers of $R(T'_n, B_m)$ by separately studying those values according to the relationship between m and n. We will first give the values of Ramsey numbers when $m \leq n$.

Lemma 4.1. $R(T'_n, B_m) \le m + 2n - 3$ for $m \not\equiv 1 \pmod{(n-1)}$.

Proof Let G be a graph with |G| = m + 2n - 3. If G contains no T'_n and there is a vertex $v \in V(G)$ such that $|N[v]| \le n - 1$, we have $|G - N[v]| \ge m + n - 2 \ge R(T'_n, K_{1,m})$. Hence $\overline{G - N[v]}$ contains a $K_{1,m}$. Therefore, \overline{G} contains a $B_m = v + K_{1,m}$. Thus, for any vertex v, $|N[v]| \ge n$, which shows that $\delta(G) \ge n - 1$. So G contains every tree with m vertices. This completes the lemma.

Theorem 4.1. If $m \ge n$, then

- (1) $R(T'_n, B_m) = m + 2n 3$ for $m \equiv 2(mod(n-1))$;
- (2) $R(T'_n, B_m) = m + 2n 4$ for $m \equiv 0 \pmod{(n-1)}$;
- (3) $R(T'_n, B_m) = m + 2n 4$ for $m \equiv n 2(mod(n-1))$.

Proof (1) For each m with $m \equiv 2(mod(n-1))$, let m = k(n-1) + 2 and $G = (k+2)K_{n-1}$, so G with m+2n-4 vertices has no T'_n and \overline{G} has no

 B_m , which implies $R(T'_n, B_m) > m + 2n - 4$. According to Lemma 4.1, we have $R(T'_n, B_m) = m + 2n - 3$ for $m \equiv 2(mod(n-1))$.

(2) We now prove the upper bound by induction on m where $m \equiv 0 (mod(n-1))$. Suppose the result holds for m-(n-1), i.e. $R(T'_n, B_{m-n+1}) \leq m+n-3$. For m, let G be a graph with order m+2n-4. Identical to that of Lemma 4.1, we have $\delta(G) \geq n-2$. By the definition of \mathbb{T} , G contains a tree T_{n-1} formed from T'_n by removal of a vertex v of degree one in T'_n and its incident edge vw, and such that (T_{n-1}, w) is a complete pair. We let the vertex set of T_{n-1} be $W = \{v_1, v_2, \cdots, v_{n-1}\}$ and the remaining vertices be $H = \{v_n, \cdots, v_{m+2n-4}\}$. If the image of w under any T_{n-1} -preserving permutation of W is adjacent to any vertex of H, $T'_n \subset G$. Hence there is no such adjacency, and each such image, having degree not smaller than n-2 in G, has degree n-2 in G[W]. Since (T_{n-1}, w) is a complete pair, $G = K_{n-1} \cup G[H]$. In addition, $|H| = m+n-3 \geq R(T'_n, B_{m-n+1})$ implies that \overline{H} contains a book B_{m-n+1} . Hence $\overline{G} = \overline{K_{n-1} \cup G[H]}$ has a book B_m .

Noting that $G = (k-1)K_{n-1} \cup 3K_{n-2}$ with m+2n-5 vertices contains no T'_n and \overline{G} contains no B_m , and hence $R(T'_n, B_m) = m+2n-4$.

(3) Let m = k(n-1)+n-2. The proof of upper bound is identical to the proof in (2). Noting that $G = (k-1)K_{n-1} \cup 4K_{n-2}$ with m+2n-5 vertices contains no T'_n for $m \ge n$ and \overline{G} contains no B_m , we have $R(T'_n, B_m) \ge 3m-2$ and hence $R(T'_n, B_m) = m+2n-4$.

Theorem 4.2. If $m \ge n^2 - 7n + 11$ and $m \ne 1 \pmod{(n-1)}$, then $m + 2n - 4 \le R(T'_n, B_m) \le m + 2n - 3$.

Proof. If $m \ge n^2 - 7n + 11$, then $m + 2n - 5 \ge (n - 2)^2 - (n - 2)$. If $m + 2n - 5 = (n - 2)^2 - t$ where $0 < t \le n - 2$, then we have $m + 2n - 5 = (n - 2)^2 - t = (t - 1)(n - 2) + (n - 2 - t)(n - 1)$. If $m + 2n - 5 = (n - 2)^2 + t$ where t = ra + s and $0 \le s < a$, then we have $m + 2n - 5 = (n - 2)^2 + t = (r + a - s)(n - 2) + s(n - 1)$. In both cases, we can find some integers $p, q \ge 0$ such that m + 2n - 5 = p(n - 2) + q(n - 1). We can let $G = pK_{n-2} \cup qK_{n-1}$. So G with m + 2n - 5 vertices has no T'_n , and \overline{G} contains no B_m since $\forall uv \in E(\overline{G}), |N_{\overline{G}}(u) \cap N_{\overline{G}}(v)| < m$. The proof is completed.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant no.71501093), the Basic Research Foundation (Natural Science) of Jiangsu Province (Grant no. BK20150566).

References

- [1] S.A. Burr, J.A. Roberts, On Ramsey numbers for star, Utilitas Math., 4(1974), 217-220.
- [2] G. Chartrand, A.D. Polimeni, C.C. Rouseau, J. Sheehan and M.J. Stewart, On star-book Ramsey numbers, in "The Theory and Applications of Graphs" (G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster, and D.R. Lick, Eds.), pp. 203-214, Wiley, New York, 1981.
- [3] E.J. Cockayne, Some tree-star Ramsey Numbers, Journal of Combinatorial Theory (B), 17(1974), 183-187.
- [4] G.A. Dirac, Some theorems on abstract graphs, Proceedings of the London Mathematical Society, 2(1952), 69-81.
- [5] P. Erdös, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Book-tree Ramsey numbers, Scientia A: Mathematics, 1(1988), 111-117.
- [6] Y.S. Li and C.C. Rousseau, On book-complete graph Ramsey numbers, Journal of Combinatorial Theory (B), 68(1996), 36-44.
- [7] S.P. Radziszowski, Small Ramsey numbers, The Electronic Journal of Combinatorics, (2014), DS1.14.
- [8] C.C. Rousseau and J. Sheehan, On Ramsey numbers for books, Journal of Graph Theory, 2(1978), 77-87.
- [9] C.C. Rousseau and J. Sheehan, A class of Ramsey Problems involving trees, Journal of the London Mathematical Society (2), 18(1978), 392-396.