Some Tree-book Ramsey Numbers
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Abstract: For two given graphs G; and G5, the Ramsey num-
ber R(G,,Gs) is the smallest integer n such that for any graph
G of order n, either G contains G; or the complement of G
contains G3. In this paper, we study a large class of tree T as
studied by Cockayne in (3], including paths, trees which have a
vertex of degree one adjacent to vertex of degree two, as special
cases. We evaluate some R(T},,By,), where T}, € T and By, is
a book of order m + 2. Besides, some bounds for R(T},, By,) are
obtained.
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1 Introduction

All graphs considered in this paper are finite simple graphs without loops.
Let G = (V(G), E(G)) be a graph. For two given graphs G; and G,
the Ramsey number R(G1,G3) is the smallest integer n such that for any
graph G of order n, either G contains G; or G contains G, where G is
the complement of G. The neighborhood N(v) of a vertex v is the set of
vertices adjacent to v in G and N{v] = N(v) U {v}. The minimum degree
and mazimum degree of G are denoted by §(G) and A(G), respectively.
Let dg(v) be the degree of vertex v in G. For S C V(G), G[S] denotes the
subgraph induced by S in G. We use P, and mX, to denote a path of order
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n and m vertex disjoint complete graphs K,,, respectively. A tree with order
n, Ty, is an undirected graph in which any two vertices are connected by
exactly one path. A star of order m is a complete bipartite Ky m—1. A book
B, is m triangles sharing one edge, that is, By, = Kz + K, = K1 + K1,m.
The length of the longest path of G is denoted by p(G). Let [z] denote
the greatest integer not larger than z.

In[9], Rousseau and Sheehan studied the Ramsey numbers involving
trees versus other graphs. They showed that the Ramsey numbers of tree
versus books are given by:

max{q1,q2} +1 < R(Ty,Bm) <m+2n -2,
where g1 = (k+2)(n — 1), g2 =m — 1+2[2}] and k = [2]].

Specifically, for some m, n, they derived that
Theorem 1.1. (1)R(T;, Bn) = m + 2n — 2 when m = 1(mod(n — 1));
(2)m+2n — 3 < R(Ty, Byn) < m+ 2n — 2 when m = 2(mod(n — 1));
(3)m +2n — 4 < R(T,,, Bn) < m+ 2n — 2 when m = 0(mod(n — 1)).

Other results about Tree-book Ramsey are stated as follows.
Theorem 1.2. [5] R(Bp,T,) =2n -1 forn > 3m - 3.

In this paper, we evaluate Ramsey numbers concerning a large class of
tree, T, defined in next section, which includes paths as special cases. The
main result are stated as follows: let T}, be a tree in T, then

¢ R(T},Bn)=m+2n -3 for m = 2(mod(n — 1));

e R(T,,Bn) =m+ 2n —4 for m = 0(mod(n — 1));

e R(T},Bn)=m+2n — 4 for m = n — 2(mod(n — 1));

o R(T},Kim)=m+n-2form=n-2(mod(n—1)) and m >n—2.

In addition, some bounds about Tree-book Ramsey numbers are pro-
vided in this paper.

For Ramsey numbers concerning trees or books, many results have been
obtained(5, 6, 8, 9]. For a survey, we refer readers to see [7].
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Figure 1: A tree not in T

2 The Class of Tree T

The class of tree studied here is firstly defined by Cockayne[3], where he
studied the Tree-star Ramsey numbers. In this section, for the sake of
descriptive integrality, we here restate the description as appeared in [3].

Let T be a spanning tree of G which has n vertices, a permutation 7
of V(G) is T-preserving if and only if for each [u,v] € E(T), {7 (u),n(v)] €
E(G). Let u be a vertex of G and U be the set of all images of u under
T-preserving permutation of V(G). If the assumption that each u € U has
degree n—1 in G implies that G is the complete graph K,,, (T, u) is defined
as a complete pair. See an example in (3.

A tree T is in the class T if there exists some vertex v with dr(v) = 1 and
its incident edge [v, w] such that (T — {v},w) is a complete pair. Cockayne
has showed that all trees which have a vertex of degree one adjacent to
vertex of degree two are in T. Therefore, T contains all paths P,. It is
worth noting that many trees without this property are also in T. For
non-star trees with n < 7 vertices, the only tree not in T is that shown in
Figure 1. In addition, at most five trees among the 23 8-vertex trees are
not in T.

3 Preliminary

In this section, we will give some results obtained in previous research,
which will be used in our proof.

Theorem 3.1. ({1]). Form >n > 1,
(1)R(Tn,K1,m) =m+n—1 for m = 1(mod(n — 1));
(2)R(Tn, Kym) Sm+n—1;
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Theorem 3.2. ([3/). Let T, be a tree in T, then R(T,, K1,m) =m+n—2
if one of the following four conditions holds

(1)m = 0,2(mod(n — 1));

(2)m % 1(mod(n — 1)) and m > (n — 3)%;

(3)m # 1(mod(n — 1)) and m = 1(mod(n — 2)) ;

(4)m =n — 2(mod(n — 1)) and m > n —2.

Lemma 3.1. Let G be a graph with |G| > R(T,K1,m) + 1. If there is a
vertez v € V(G) such that |N[v]| <| G| - R(Tn, K1,m) and G contains no
T, then G contains a Bp,.

Proof. Let G’ = G — N[v], then |G'| > R(T,, K1,m). Since G contains no
Ty, then G’ contains no T,,. This implies that G’ contains a K ,,. Hence
G contains a By, = v+ Ky m. |

4 The Ramsey Numbers

Let T, be a tree in T. In this section, we will evaluate the Ramsey numbers
of R(T}, B,,) by separately studying those values according to the relation-
ship between m and n. We will first give the values of Ramsey numbers
when m < n.

Lemma 4.1. R(T},, By,) < m+ 2n — 3 for m # 1(mod(n — 1)).

Proof Let G be a graph with |G| = m + 2n — 3. If G contains no T}, and
there is a vertex v € V(G) such that |N[v]| < n — 1, we have |G — N[v]| >
m+n—2 > R(T,,K1,m). Hence G — N{v] contains a K . Therefore,
G contains a B = v + Ki,,. Thus, for any vertex v, |[N[v]| > n, which
shows that §(G) > n — 1. So G contains every tree with m vertices. This
completes the lemma. |

Theorem 4.1. If m > n, then

(1) R(T}., B,,) = m + 2n — 3 for m = 2(mod(n — 1));

(2) R(T},Bp,) =m + 2n — 4 for m = 0(mod(n — 1));

(3) R(T.,B,,) =m+2n — 4 for m =n ~ 2(mod(n — 1)).

Proof (1) For each m with m = 2(mod(n — 1)), let m = k(n — 1) + 2 and
G = (k 4+ 2)Kn_1, so G with m + 2n — 4 vertices has no T, and G has no
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Bp,, which implies R(T},, B,,) > m + 2n — 4. According to Lemma 4.1, we
have R(T},, Br) = m + 2n — 3 for m = 2(mod(n — 1)).

(2) We now prove the upper bound by induction on m where m =
0(mod(n—1)). Suppose the result holds for m—(n-1), i.e. R(T;, Bm—n+1) <
m+n—3. For m, let G be a graph with order m +2n —4. Identical to that
of Lemma 4.1, we have §(G) > n — 2. By the definition of T, G contains a
tree Ty,—; formed from T, by removal of a vertex v of degree one in T}, and
its incident edge vw, and such that (T,,_;,w) is a complete pair. We let the
. vertex set of T,y be W = {v,v2, -+ ,un_1} and the remaining vertices
be H = {vn, -+ ,Um42n—4a}. If the image of w under any T;,.;-preserving
permutation of W is adjacent to any vertex of H, T, C G. Hence there
is no such adjacency, and each such image, having degree not smaller than
n — 2 in G, has degree n — 2 in G[W). Since (T,,—;,w) is a complete pair,
G = K,-1 UG[H]. In addition, |[H| = m+n—3 2> R(T},, Bm—n+1) implies
that H contains a book Bp,_n41. Hence G = K,,_; UGJ|H]| has a book
B,..

Noting that G = (k—1)K,-1 U3K,_2 with m+2n -5 vertices contains
no T and G contains no By, and hence R(T),, Bp) =m + 2n — 4.

(3) Let m = k(n—1)+n—2. The proof of upper bound is identical to the
proof in (2). Noting that G = (k—1)K,_1U4K,,_o with m+2n—5 vertices
contains no T, for m > n and G contains no By, we have R(T,, B;) >
3m — 2 and hence R(T},, B,,) =m+2n —4. |

Theorem 4.2. If m > n%2 —Tn + 11 and m # 1(mod(n — 1)) , then

m+2n—-4< R(T,,Bn) <m+2n-3.

Proof. If m > n?2 —7n+11,thenm+2n -5 > (n—-2)2— (n —2). If
m+2n—-5=(n—2)2—t where0 <t <n-2, then we havem+2n—-5=
(n—22-t=@t-1)(n-2)+(n-2-t)(n—-1). fm+2n—-5=(n—2)%+t
wheret =ra+sand 0 < s < a,then wehave m+2n -5 = (n—2)2+t =
(r+a—s)(n—2)+s(n—1). In both cases, we can find some integers p,q > 0
such that m+2n—5 = p(n—2) +q(n—1). Wecanlet G = pK,_2UqKn1.
So G with m + 2n — 5 vertices has no T, and G contains no B, since
Vuv € E(G),|Ng(u) N Nz(v)| < m. The proof is completed. |
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