Covering finite groups by subset products
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Abstract

Let G be a finite group and let S be a nonempty subset of G. For any
positive integer k, let S* be the subset product given by the set {s; ...s |
81, ..., 8k € S}. If there exists a positive integer n such that S™ = G, then
S is said to be exhaustive. Let e(S) denote the smallest positive integer
n, if it exists, such that S™ = G. We call e(S) the exhaustion number
of the set S. If S™ # G for any positive integer n, then S is said to be
non-exhaustive. In this paper, we obtain some properties of exhaustive and
non-exhaustive subsets of finite groups.
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1 Introduction

Let G be a finite group and let S be a non-empty subset of G. For any
positive integer k, let S* be the subset product given by the set {s1...sx |
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81,..., Sk € S}. If there exists a positive integer n such that S* = G, then
we say that S is exhaustive. Let e(S) denote the smallest positive integer
n, if it exists, such that S® = G. We call e(S) the exhaustion number
of the set S. If S™ # G for any positive integer n, then S is said to be
non-exhaustive and we write e(S) = oo. Clearly, e(H) = oo for any proper
subgroup H of G.

For a finite group G of order at least 3, we define the critical exhaustion
number ce(G) of G to be the smallest positive integer s such that any subset
S of G with |S| > s is exhaustive. Clearly, s < |G| — 1. Note that the
critical exhaustion number of a finite group is somewhat the multiplicative
analogue of its critical number. Recall that the critical number cr(G) of G is
the smallest s such that the subset sums set 3 (S) = {3 4| AC S, A #
@} coincides with G for each subset S C G\ {0} of cardinality |S| > s.
The critical numbers for all finite abelian groups have been completely
determined (see (2], {3], (4], [5], (6], (8], [9])- For non-abelian groups, some
results have been obtained, for example in [7], [10] and [11], but the problem
of obtaining the critical numbers is still not completely solved.

Exhaustion numbers of certain subsets of abelian groups have been stud-
ied in [1]. In this paper we further investigate properties of exhaustive and
non-exhaustive subsets of finite groups. In Section 2, we obtain a charac-
terization of non-exhaustive subsets of finite groups and use this to obtain
an upper bound for the size of a non-exhaustive subset. In Section 3, we
obtain some lower bounds for the size of exhaustive subsets. We also ob-
tain, for a finite group G of order at least six, an upper bound less than

|G| — 1 for its critical exhaustion number.

2 Non-exhaustive sets
We first obtain a characterization of non-exhaustive subsets of finite groups.

Theorem 2.1 Let G be a finite group and let S be a non-empty proper
subset of G. Then e(S) = oo if and only if S™ is a proper subgroup of G

for some positive integer n.



Proof. Assume that e(S) = co. It is known that every proper subgroup
of a group is non-exhaustive. Thus n = 1if S is a subgroup of G. Suppose
now that S is not a subgroup of G. Note that | S| < |S**!| for any integer
i > 1. Let d be the smallest order among the orders of all the elements
in §. Then 1 € S% and hence, §¢ C S2¢ C §3d C .... Since G is a finite
group, there must exist an integer m such that S*¢ = S™¢ for all k > m.
Thus S™ is a subgroup of G and since e(S) = oo, S™¢ must be proper.
Conversely, if S is a proper subgroup of G for some integer n, then

S™ # G for any integer m and hence, e(S) = oo.

An immediate consequence of Theorem 2.1 is the following:

Corollary 2.2 Let G be a finite group and let S be a non-ezhaustive subset
of G. Then |S| < n where n is the largest among the orders of all proper
subgroups of G.

Proof. By Theorem 2.1, there exists a positive integer k such that S* is a
proper subgroup of G. Hence, |S| < |S*| < n where n is the largest among
the orders of all proper subgroups of G.

3 Exhaustive sets

An exhaustive subset of a group G is clearly a generating set of G. The
converse of this is not necessarily true. For example, take G to be the
cyclic group of order n with generator z. The generating set S = {z} of G
is non-exhaustive. We note, however, that the set T = SU{1} is exhaustive
with T7~! = G. In general, it is not difficult to see that if S is a minimal
generating set of a finite group G and S is not exhaustive, then the union
SU {1} is an exhaustive set. Thus, if G is a finite group with |G| > 3, then
G has a proper exhaustive subset T and every element in G can be written
as a product of a fixed number of elements belonging to T'.

We first show that subsets which contain exhaustive subsets are also

exhaustive.



Lemma 3.1 Let G be a finite group and let S,T be subsets of G with
SCT. Ife(S) =n, then e(T) < n.

Proof. Note that S¥ C T* for any positive integer k. If e(S) = n, then
T™ = G and hence ¢(T) < n.

By using Lemma 3.1, we obtain the possible cardinalities of an exhaus-

tive subset of a finite group as follows.

Proposition 3.2 Let G be a finite group and let d(G) be the minimum
cardinality of a generating set of G. The minimum cardinality of an ez-
haustive subset S of G is d(G) or d(G) + 1. Moreover, given any integer
k where d(G) + 1 < k < |G, there exists an exhaustive subset T of G with
|T| = k.

Proof. Since any exhaustive set is a generating set, the lower bound
|S| > d(G) holds if G has a generating set of minimum cardinality which
is exhaustive. If none of the generating sets of minimum cardinality is
exhaustive and D is such a set, then D U {1} is exhaustive and hence,
|S| > d(G)+ 1 holds. Since any set which contains an exhaustive subset is
also exhaustive (by Lemma 3.1), the last assertion follows easily.

Remark. We note that the minimum cardinality d(G) as given in Proposi-
tion 3.2 is attained for example when G is the symmetric group Sz = (z,y |
z3 = y?2 =1, yz = 2%) and S is the minimal generating set {z, y}. If we
take G to be the Klein 4-group CoxCs & (z,y | 2% = y? = 1,7y = yz), then
the minimum cardinality of an exhaustive subset S of G is 3 (= d(G) +1).

Now let G be a finite group (not necessarily abelian) with |G| > 6. If
S is a subset of G with |S| > [Jg-l] + 1, then S can clearly be written
as a union of two subsets S;,S; of G with |Sy|,|S2] = 2. Moreover, if
e(S1), e(S2) < 00, then e(S) < oo and e(S) < min(e(S1), e(S2)) (by Lemma
3.1). In fact, we show in the following that there exists a positive integer
n < |G| — 1 such that any subset S of G with |S| > n is exhaustive.



Proposition 3.3 Let G be a finite group with

_ 2n, if |G| is even
Gl = { an+1, if|Glisodd (23

G|

Let S be a subset of G such that |S| > n where n = 5 if |G| is even and
- 'G'T‘l if |G| is odd. Then e(S) < co.
Proof. Note that any proper subgroup of G has order < n. Thus, since
|S] > n+1 and |S?| > | S| for any integer i > 1, so S* cannot be a proper
subgroup of G for any i > 1. It follows by Theorem 2.1 that e(S) < oo.

For a finite group G, by Proposition 3.3, we readily have

Corollary 3.4 Let G be a finite group with

_J 2n, if |G| is even
Gl = { on+1, if|G|isodd (=3

|GI+

Then ce(G) < |§| + 1 if |G| is even and ce(G) < if |G| is odd.

In the case of finite abelian groups, we obtain the following:

Proposition 3.5 Let G = Cp;n X -0 X Cp‘:k where py, ..., pr are prime
numbers, not necessarily distinct, and a1, ..., oy are positive integers. Let
D be a minimal generating set of G. The minimum cardinality of an ez-
haustive subset S of G is either k or k + 1. In particular, if S = DU {1},
then e(S) =pi* + - +pp* — k.

Proof. The first assertion follows from Proposition 3.2 and the fact that
d(G) = k. For the second assertion, let z; be a generator of Cp?.-, i =
1, ..., k. We may then take D = {zi, ..., zx}. Let S = DU {1}. Then
for any r € {1, 2, ...},

S = {1yu{z...2* |1 <r1+--- 4+ 7 < 1,75 is a non-negative
integer (i=1, ..., k)}.



Clearly, every element in G can be written in the form z]'...zJ* where
0<m<p"—1(G=1...,k). Thus S™ = G but S™ ! # G where
m=(p' —1)+---+ (pp* — 1) =p* + - - + pp* — k. This completes the
proof.

We have shown in Proposition 3.2 that there are no gaps in the size of
an exhaustive subset of a finite group. That is, given a finite group G and
any integer k where d(G)+1 < k < |G|, there exists an exhaustive subset S
of G with |S| = k. We now ask whether there is any gap in the exhaustion
numbers of exhaustive subsets of G. That is, if a and b are, respectively,
the smallest and the largest exhaustion numbers of exhaustive subsets of
G, is every integer k, a < k < b, also the exhaustion number of some subset

S of G? We answer this in the negative with an example.

Example: Consider the dihedral group Dy = (z,y | 28 = 4% = 1,yz =
z5y). The following table lists examples of subsets S of D;; with e(S) =
2,3,4,6. '

Table 1: Subsets S C D;2 where e(S) € {2,3,4, 6}

e(S) S
2 | {1,z,y,zy, %, z°y}
3 {1,z,y,zy}
4 {1,z,zy}
6 {1, y,zy}

By hand calculations, we note however that there is no subset S of D,
with e(S) = 5.
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