Covering finite groups by subset products

E-mail: ¹chenhv@utar.edu.my, ²aymc@pc.jaring.my

Abstract

Let G be a finite group and let S be a nonempty subset of G. For any positive integer k, let S^k be the subset product given by the set $\{s_1 \ldots s_k \mid s_1, \ldots, s_k \in S\}$. If there exists a positive integer n such that $S^n = G$, then S is said to be exhaustive. Let e(S) denote the smallest positive integer n, if it exists, such that $S^n = G$. We call e(S) the exhaustion number of the set S. If $S^n \neq G$ for any positive integer n, then S is said to be non-exhaustive. In this paper, we obtain some properties of exhaustive and non-exhaustive subsets of finite groups.

AMS 2010 Subject Classifications: 20D60, 05E15

Key Words: finite group, subset product, exhaustive subset, exhaustion number.

1 Introduction

Let G be a finite group and let S be a non-empty subset of G. For any positive integer k, let S^k be the subset product given by the set $\{s_1 \dots s_k \mid$

 $s_1, \ldots, s_k \in S$. If there exists a positive integer n such that $S^n = G$, then we say that S is exhaustive. Let e(S) denote the smallest positive integer n, if it exists, such that $S^n = G$. We call e(S) the exhaustion number of the set S. If $S^n \neq G$ for any positive integer n, then S is said to be non-exhaustive and we write $e(S) = \infty$. Clearly, $e(H) = \infty$ for any proper subgroup H of G.

For a finite group G of order at least 3, we define the critical exhaustion number ce(G) of G to be the smallest positive integer s such that any subset S of G with $|S| \geq s$ is exhaustive. Clearly, $s \leq |G| - 1$. Note that the critical exhaustion number of a finite group is somewhat the multiplicative analogue of its critical number. Recall that the critical number cr(G) of G is the smallest s such that the subset sums set $\sum(S) = \{\sum_{x \in A} x \mid A \subseteq S, A \neq \emptyset\}$ coincides with G for each subset $S \subset G \setminus \{0\}$ of cardinality $|S| \geq s$. The critical numbers for all finite abelian groups have been completely determined (see [2], [3], [4], [5], [6], [8], [9]). For non-abelian groups, some results have been obtained, for example in [7], [10] and [11], but the problem of obtaining the critical numbers is still not completely solved.

Exhaustion numbers of certain subsets of abelian groups have been studied in [1]. In this paper we further investigate properties of exhaustive and non-exhaustive subsets of finite groups. In Section 2, we obtain a characterization of non-exhaustive subsets of finite groups and use this to obtain an upper bound for the size of a non-exhaustive subset. In Section 3, we obtain some lower bounds for the size of exhaustive subsets. We also obtain, for a finite group G of order at least six, an upper bound less than |G|-1 for its critical exhaustion number.

2 Non-exhaustive sets

We first obtain a characterization of non-exhaustive subsets of finite groups.

Theorem 2.1 Let G be a finite group and let S be a non-empty proper subset of G. Then $e(S) = \infty$ if and only if S^n is a proper subgroup of G for some positive integer n.

Proof. Assume that $e(S) = \infty$. It is known that every proper subgroup of a group is non-exhaustive. Thus n = 1 if S is a subgroup of G. Suppose now that S is not a subgroup of G. Note that $|S^i| \leq |S^{i+1}|$ for any integer $i \geq 1$. Let d be the smallest order among the orders of all the elements in S. Then $1 \in S^d$ and hence, $S^d \subseteq S^{2d} \subseteq S^{3d} \subseteq \ldots$ Since G is a finite group, there must exist an integer m such that $S^{kd} = S^{md}$ for all $k \geq m$. Thus S^{md} is a subgroup of G and since $e(S) = \infty$, S^{md} must be proper.

Conversely, if S^n is a proper subgroup of G for some integer n, then $S^m \neq G$ for any integer m and hence, $e(S) = \infty$.

An immediate consequence of Theorem 2.1 is the following:

Corollary 2.2 Let G be a finite group and let S be a non-exhaustive subset of G. Then $|S| \leq n$ where n is the largest among the orders of all proper subgroups of G.

Proof. By Theorem 2.1, there exists a positive integer k such that S^k is a proper subgroup of G. Hence, $|S| \leq |S^k| \leq n$ where n is the largest among the orders of all proper subgroups of G.

3 Exhaustive sets

An exhaustive subset of a group G is clearly a generating set of G. The converse of this is not necessarily true. For example, take G to be the cyclic group of order n with generator x. The generating set $S = \{x\}$ of G is non-exhaustive. We note, however, that the set $T = S \cup \{1\}$ is exhaustive with $T^{n-1} = G$. In general, it is not difficult to see that if S is a minimal generating set of a finite group G and S is not exhaustive, then the union $S \cup \{1\}$ is an exhaustive set. Thus, if G is a finite group with $|G| \geq 3$, then G has a proper exhaustive subset T and every element in G can be written as a product of a fixed number of elements belonging to T.

We first show that subsets which contain exhaustive subsets are also exhaustive.

Lemma 3.1 Let G be a finite group and let S, T be subsets of G with $S \subseteq T$. If e(S) = n, then $e(T) \le n$.

Proof. Note that $S^k \subseteq T^k$ for any positive integer k. If e(S) = n, then $T^n = G$ and hence $e(T) \le n$.

By using Lemma 3.1, we obtain the possible cardinalities of an exhaustive subset of a finite group as follows.

Proposition 3.2 Let G be a finite group and let d(G) be the minimum cardinality of a generating set of G. The minimum cardinality of an exhaustive subset S of G is d(G) or d(G) + 1. Moreover, given any integer k where $d(G) + 1 \le k \le |G|$, there exists an exhaustive subset T of G with |T| = k.

Proof. Since any exhaustive set is a generating set, the lower bound $|S| \ge d(G)$ holds if G has a generating set of minimum cardinality which is exhaustive. If none of the generating sets of minimum cardinality is exhaustive and D is such a set, then $D \cup \{1\}$ is exhaustive and hence, $|S| \ge d(G) + 1$ holds. Since any set which contains an exhaustive subset is also exhaustive (by Lemma 3.1), the last assertion follows easily.

Remark. We note that the minimum cardinality d(G) as given in Proposition 3.2 is attained for example when G is the symmetric group $S_3 = \langle x, y | x^3 = y^2 = 1$, $yx = x^2y \rangle$ and S is the minimal generating set $\{x, y\}$. If we take G to be the Klein 4-group $C_2 \times C_2 \cong \langle x, y | x^2 = y^2 = 1, xy = yx \rangle$, then the minimum cardinality of an exhaustive subset S of G is S (S (S (S)).

Now let G be a finite group (not necessarily abelian) with $|G| \geq 6$. If S is a subset of G with $|S| \geq \left \lfloor \frac{|G|}{2} \right \rfloor + 1$, then S can clearly be written as a union of two subsets S_1, S_2 of G with $|S_1|, |S_2| \geq 2$. Moreover, if $e(S_1), e(S_2) < \infty$, then $e(S) < \infty$ and $e(S) \leq \min(e(S_1), e(S_2))$ (by Lemma 3.1). In fact, we show in the following that there exists a positive integer n < |G| - 1 such that any subset S of G with |S| > n is exhaustive.

Proposition 3.3 Let G be a finite group with

$$|G| = \left\{ \begin{array}{ll} 2n, & \text{if } |G| \text{ is even} \\ 2n+1, & \text{if } |G| \text{ is odd} \end{array} \right. \quad (n \geq 3).$$

Let S be a subset of G such that |S| > n where $n = \frac{|G|}{2}$ if |G| is even and $n = \frac{|G|-1}{2}$ if |G| is odd. Then $e(S) < \infty$.

Proof. Note that any proper subgroup of G has order $\leq n$. Thus, since $|S| \geq n+1$ and $|S^i| \geq |S|$ for any integer $i \geq 1$, so S^i cannot be a proper subgroup of G for any $i \geq 1$. It follows by Theorem 2.1 that $e(S) < \infty$.

For a finite group G, by Proposition 3.3, we readily have

Corollary 3.4 Let G be a finite group with

$$|G|=\left\{\begin{array}{ll} 2n, & \mbox{if } |G| \mbox{ is even} \\ 2n+1, & \mbox{if } |G| \mbox{ is odd} \end{array}\right. \quad (n\geq 3).$$

Then $ce(G) \leq \frac{|G|}{2} + 1$ if |G| is even and $ce(G) \leq \frac{|G| + 1}{2}$ if |G| is odd.

In the case of finite abelian groups, we obtain the following:

Proposition 3.5 Let $G = C_{p_1^{\alpha_1}} \times \cdots \times C_{p_k^{\alpha_k}}$ where p_1, \ldots, p_k are prime numbers, not necessarily distinct, and $\alpha_1, \ldots, \alpha_k$ are positive integers. Let D be a minimal generating set of G. The minimum cardinality of an exhaustive subset S of G is either k or k+1. In particular, if $S = D \cup \{1\}$, then $e(S) = p_1^{\alpha_1} + \cdots + p_k^{\alpha_k} - k$.

Proof. The first assertion follows from Proposition 3.2 and the fact that d(G) = k. For the second assertion, let x_i be a generator of $C_{p_i^{\alpha_i}}$, $i = 1, \ldots, k$. We may then take $D = \{x_1, \ldots, x_k\}$. Let $S = D \cup \{1\}$. Then for any $r \in \{1, 2, \ldots\}$,

$$S^r = \{1\} \cup \{x_1^{r_1} \dots x_k^{r_k} \mid 1 \le r_1 + \dots + r_k \le r, r_i \text{ is a non-negative integer } (i = 1, \dots, k)\}.$$

Clearly, every element in G can be written in the form $x_1^{r_1} \dots x_k^{r_k}$ where $0 \le r_i \le p_i^{\alpha_i} - 1$ $(i = 1, \dots, k)$. Thus $S^m = G$ but $S^{m-1} \ne G$ where $m = (p_1^{\alpha_1} - 1) + \dots + (p_k^{\alpha_k} - 1) = p_1^{\alpha_1} + \dots + p_k^{\alpha_k} - k$. This completes the proof.

We have shown in Proposition 3.2 that there are no gaps in the size of an exhaustive subset of a finite group. That is, given a finite group G and any integer k where $d(G)+1 \le k \le |G|$, there exists an exhaustive subset S of G with |S|=k. We now ask whether there is any gap in the exhaustion numbers of exhaustive subsets of G. That is, if a and b are, respectively, the smallest and the largest exhaustion numbers of exhaustive subsets of G, is every integer k, a < k < b, also the exhaustion number of some subset S of G? We answer this in the negative with an example.

Example: Consider the dihedral group $D_{12} = \langle x, y \mid x^6 = y^2 = 1, yx = x^5y \rangle$. The following table lists examples of subsets S of D_{12} with e(S) = 2, 3, 4, 6.

Table 1: Subsets $S \subseteq D_{12}$ where $e(S) \in \{2, 3, 4, 6\}$

e(S)	S
2	$\{1,x,y,xy,x^2y,x^3y\}$
3	$\{1,x,y,xy\}$
4	$\{1,x,xy\}$
6	$\{1,y,xy\}$

By hand calculations, we note however that there is no subset S of D_{12} with e(S) = 5.

References

[1] A. Y. M. Chin, Exhaustion numbers of subsets of abelian groups. Ars Comb. **68** (2003), 65–76.

- [2] G. T. Diderrich and H. B. Mann, Combinatorial problems in finite Abelian groups, Survey of combinatorial theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971), pp. 95-100. North-Holland, Amsterdam, 1973.
- [3] G. T. Diderrich, An addition theorem for abelian groups of order pq,
 J. Number Theory 7 (1995), 35-48.
- [4] J.A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994) 140–146.
- [5] W. Gao, Y. O. Hamidoune, A. Lladó, O. Serra, Covering a finite abelian group by subset sums, Combinatorica 23 (2003), 599-611.
- [6] W. Gao, Y. O. Hamidoune, On additive bases, Acta Arith. 88 (1999), 233-237.
- [7] W. Gao, A combinatorial problem on finite groups, Acta Math Sinica 38 (1995), 395–399.
- [8] J. R. Griggs, Spanning subsets sums for finite abelian groups, Discrete Math. 220 (2001), 89-99.
- [9] M. Freeze, W. Gao, A. Geroldinger, The critical number of finite abelian groups. J. Number Theory 129 (2009), 2766-2777.
- [10] Q. H. Wang and J. J. Zhuang, On the critical number of finite groups of order pq, Int. J. Number Theory 8 (2012), 1271-1279.
- [11] Q. Wang and Y. Qu, On the critical number of finite groups (II), arXiv:1212.0595.