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Abstract

A T-shape tree is a tree with exactly one of its vertices having
maximal degree 3. In this paper, we consider a class of tricyclic
graphs which is obtained from a T-shape tree by attaching three
identical odd cycles Cis to three vertices of degree 1 of the T-shape
tree, respectively, where k > 3 is odd. It is shown that such graphs
are determined by their adjacency spectrum.
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1 Introduction

All graphs considered here are finite and simple. For all notation not
given here, we refer the reader to [9]. Let G be a graph with vertex set
V(G) = {v1,v2,+* ,un}. The adjacency matrix A of G is the n x n matrix
with (i, j)-th entry equal to 1 if two vertices v; and v; are adjacent and equal
to 0 otherwise. Since A is a symmetric matrix, all of its eigenvalues are
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real. The multiset of eigenvalues of A is called the adjacency spectrum of G,
denoted by Spec(G), and the largest eigenvalue of G is called the spectral
radius of G, denoted by p(G). The characteristic polynomial det(Al — A)
of G is denoted by ¢(G;A). Two nonisomorphic graphs with the same
spectrum are called cospectral. A graph G is said to be determined by its
spectrum (or DS, for short) if it does not have a cospectral mate.

E.R. van Dam and W.H. Haemers [2] conjectured that almost all graphs
are DS. In the last two decades, many DS graphs have been found including
path and its complement [8], the complete graph and the regular complete
bipartite graph, cycle and and its complement (7], T-shape tree [14], lol-
lipop graphs and sandglass graphs [16,20], #-graphs, dumbbell graphs and
oco-graphs [3-6], the union of complete multipartite graph and some iso-
lated vertices [17], the centipede graph and the graphs with index at most

V2 + /5 [20,21]. One can find that, however, all well-known DS graphs up
to now either are small so that they can be proved to be DS by enumera-
tion or have very special properties, and the techniques(e.g., the eigenvalue
interlacing technique) involved to prove them to be DS depend heavily on
some special properties of the spectrum of these graphs, and can not be
applied to general graphs. Moreover, numerous examples of cospectral but
non-isomorphic graphs are reported. For example, C.G. Godsil and B.D.
Mckay [12,13] gave some constructions for pairs of cospectral graphs and
Schwenk showed that the proportion of trees on n vertices which are char-
acterized by their spectra converges to zero as n increase in [10]. To find
more DS graphs is still an interesting but difficult problem.

The degree of a vertex v is denoted by d(v). A graph G is said to be
(r,r+ 1)-almost regular if V(G) can be partitioned into two subsets V; and
V2 such that d(v;) = r for v; € V; and d(v;) = r + 1 for v; € V. For two
graphs G and G3, G, UG, denotes the disjoint union of G; and Gy. G —v
denotes the graph obtained by removing the vertex v of G and the edges
connected with v in G. Let C, and P, be respectively the cycle and the
path on n vertices. A T-shape tree is a tree, denoted by T(l;, I2,3) (where
ly 2 I3 > I3 > 1), which exactly has one vertex v of degree 3 such that
T(ll, lz,ls) -V = Hl U Hz U 1')[3.

Many trees (2,7,11,14,19) have been found they are determined by
their spectrum. However, few graphs with cycles are been investigated.
Including unicyclic graphs (e.g., cycles and lollipop graphs) and bicyclic
graphs (e.g., sandglass graphs, f-graphs and dumbbell graphs), if a graph
has more cycles as its subgraphs, then it is more difficult to be determined
by its spectrum. Especially, it is more difficult to calculate and compare
the characteristic polynomials of these graphs. The technique in [14] used
in calculating and comparing of the characteristic polynomials of graphs
is suitable in trees. But not necessarily fits for the graphs with cycles,
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especially, for tricyclic graphs. More concisely, we use another method to
calculate and compare the characteristic polynomials of a class of tricyclic
graphs shown as follow, which not only have the similar properties of the
cospectral graphs of T-shape tree and dumbbell graphs, but also have those
of almost regular graphs.

The class of tricyclic graphs is called I'-graphs, which obtained from a
T-shape tree by attaching three identical odd cycles Cys to three vertices
of degree 1 of the T-shape tree, respectively, where k > 3 is odd. A I'-
graph is denoted by T'k(ai, as, as), where a; is the vertex number of path
P,, (i = 1,2,3) appeared in T(a;,az,a3) — v, C* (i = 1,2,3) is equal to
the cycle Cx and v is the vertex of degree 3 of the subgraph T'(a1, a2,a3)
of I'-graph. The I'-graph is shown in Fig 1.

Fig 1. Graph I'x(a1,a2,a3), where C' = C? = C3 = Ci

In this paper, we mainly show that I’-graphs are determined by their
adjacency spectrum.

2 Preliminaries

Several useful results on the spectrum are shown as follows, which will
play an important role in the proof of main result.

Lemma 1 [2). Let G and H be two graphs such that ¢(G; A) = ¢(H; A).
Then

(i) n(G) = n(H) and m(G) = m(H);

(ii) G is bipartite if and only if H is bipartite;

(iii) G is k-regular if and only if H is k-regular;

(iv) G is k-regular with girth g if and only if H is k-regular with girth



g;
(v) G and H have the same number of closed walks of any fixed length.

Lemma 2 [3]. Let two graphs G and H be cospectral. Then both the
length and the number of shortest odd cycles in G and H are the same.

Lemma 3 [3]. Let G be a (7,7 + 1)-almost regular graph without cycle
Cj as its subgraph. If H is a graph such that Spec(H) = Spec(G), then

(i) H contains no cycle Cy as its subgraph;

(ii) H is a (r,r+1)-almost regular graph with the same degree sequence
as G.

Lemma 4 [9]. Let uv be an edge of a graph G and let C(uv) denote
the collection of cycles containing uv. Then the characteristic polynomial
of G satisfies

$(G; ) = (G —uv;A) — (G —u—v;A) =2 Y G —V(C)A)

CeC(uv)
An internal path of G is a walk vovy ---vx (k = 1) in G such that
the vertices v1, vz, ---, v are distinct (vg,vx do not need to distinct),

d(vo) > 2, d(vx) > 2 and d(v;) =2 for 0 < i < k.

Lemma 5 [9]. Let G be a connected graph that is not isomorphic to
one of {C,, Wy}, and G, be the graph obtained from G by subdividing
the edge uv of G, where W,, can be obtained by attaching two pendent
vertices to each of endpoints of path P,_4, respectively. If uv lies on an
internal path of G, then p(G,,) < p(G).

Lemma 6 [9]. Let H be a proper subgraph of a connected graph G,
then
M (H) < \(G).

Lemma 7 [9). For a graph G of n vertices with v € V(G), let H = G—v,
then

M(G) 2 M(H) 2 2(G) 2 Mao(H) 2 -+ 2 Aai(H) 2 Ma(G).

The following five kinds of graphs as shown in Fig 2 will be used in the
proof of the main result in section 3.

The lollipop graph, denoted by L4, is obtained by appending a cycle
Cp to a pendent vertex of a path Py, where p > 3,9 > 1.

The dumbbell graph, denoted by D, 4, is obtained by appending a
cycle C. to the pendent vertex of a lollipop graph L, 3, where a > 3,b >
l,e¢> 3.
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The 6-graph is a graph consisting of three paths, with their end vertices
in common. Obviously, a #-graph is a bicyclic graph which can be also
regarded as a graph consisting of two cycles, say C; and Cy, sharing a
common path. For convenience, we denote a #-graph by 6, ,, where z >
3,y >3.

The so-called U-graph is denoted by Ug(z,y), which is obtained by
appending an odd cycle Cj to the pendent vertices of the lollipop graphs
Lk and Ly y, respectively, where z > 1,y > 1.

The graph Dg, b, U Dipy r is the disjoint union of two dumbbells
Dy, b,.x and Di p, k, Where by > 3,52 > 1 and b3 > 1.

I‘I
b c,”
e avtvva @ et "
. . Cy
LP»q Da,b,c .;
Yy
Uk(x’ y)

Fig 2. Graphs: Ly g, Dapc,0z,y and Ur(z,y)

3 Main results

First, we characterize the structures of cospectral graphs of I'-graphs.

Lemma 8 [18]. If G = T(l1,l2,13), then p(G) = 2 if and only if
(ll, lz,l3) € {(5, 2, 1), (3, 3, 1), (2,2,2)}

For convenience, denote ¢(P,; A) by p,. = p-(A), by convection, let pp =
1,p_y=0and p_o = -1.

Lemma 9. For a I'-graph 'k (a1, a2, as), 2 € Spec(T'k(a1, az,as)) if and
only if (a1, a2,a3) € {(7,4,3),(5,5,3),(4,4,4)}, where a; > a2 > a3z 2>
1. Moreover, for these graphs, 2 is the fourth largest eigenvalue and has
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multiplicity 1.

Proof. For simplicity, denote I'x(ai,a2,a3) by G. Let u;v;(i=1,2,3) (see
Fig 1.) be the edge of G satisfying one end vertex u; of u;v; of degree 3
on cycle C* and the other not on C*. Then, using Lemma 4 for each edge
u;9;(i=1,2,3), we can get

(G;A) = ¢(CHNP(G — V(CY);A) — ¢(C% Npr—16(G — V(CH) U
V(C?) —vi;A) + ¢(C3 N)pE_16(G - V(CH UV (CH U
V(C?) = v1 —v2; M) —pi_16(G — V(C) U V(C? U V(C?)
—v; — Vg — v} A)

Obviously, G — V(CY) U V(C?) U V(C®) — vy — vy — v3 is a T-shape tree.
Since p(Ck) = 2 and p(Pk-1) < 2, then, by Lemma 8 and the characteristic
polynomial of G, it is easy to see that 2 € Spec(G) if and only if (a; —
2,a2 —2,a3 - 2) € {(5,2,1),(3,3,1),(2,2,2)}. That is, 2 € Spec(G) if and
only if (a’ll Gz, CL3) € {(7v 4: 3)’ (59 5) 3)1 (41 4: 4)}

Now we prove that 2 is the fourth largest eigenvalue of G and has
multiplicity 1. From Fig 1, we see that v is the vertex of G of degree 3 not
on cycles. By Lemma 7, we have

AL(G) 2 M(G —v) 2 M(G) 2 X2(G —v) 2 A3(G)
2 A3(G —v) 2 M(G) 2 M(G —v) 2 X5(G) (1)

and

A(G) SA(G —v) S A(C—v—w) S MG —v—uy —ug) <
/\1(G -V —U; — Uy — ’U,3) = /\1(3Pk..1 U-Pal—l U Pag—l U Paa_l)(z)

Since p(P,) < 2, then by (2), As(G) < 2. Since G — v is composed of
three lollipop graphs and the lollipop graph has a cycle as its subgraph, by
Lemma 6, we have A3(G — v) > 2. Thus, by (1), \(G) =2. O

Lemma 10.

(i) If a connected graph G is cospectral with a I-graph, then G may be
a I’-graph or a U-graph;

(ii) If a disconnected graph G is cospectral with a [-graph, then G may
be one of the following graphs: Ds, 5,.x U Di g ks 0kt U Dby Okt U Ok ks
Dipt Ubkk, Tk(ai,az,a3) UCy, Di, by k U Diypg,k UC:, Uk(z,y)UC;,
OriUDkp s UC,, 051U UC,, DipiUbrUC,, where 2>k, by > k
and ! > k otherwise the length of the shortest cycle is z, b; or { instead of
k.

Proof. If graph G is cospectral with a I'-graph, then by Lemma 1, they
have the same vertex number and edge number. And by Lemma 3, the
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cospectral graph without Cy4 as its subgraph has four vertices of degree 3
and other vertices of degree 2. From Lemma 2, it has three identical odd
cycles Cys as its subgraph. So the possible cospectral graph is a I'-graph
or a U-graph when G is connected. Thus, (i) holds.

Now, we prove (ii). If a disconnected graph G is cospectral with a
I-graph and G has cycles as its components, then, by Lemma 2, Lemma
3 and Lemma 9, the possible cospectral graphs are I'x(a1,a2,a3) U C;,
Dy, b,k U Die,pg kU Cz, Ur(2,y) U Cy, Ok,1 U Dig o,k UC, 8k, U B,k UC; and
Dy b1 Uk UC,. Moreover, z > k and b; > k by Lemma 2 and Lemma 3.

If a disconnected graph G is cospectral with a I-graph without cycles
as its components, then, by Lemma 2 and Lemma 3, the possible cospectral
graphs are Dy, b, & U D pg ks Ok,1 U Dk b ks Okt UBk & and Dy p 1 Uk i, where
I>kand by > k.0

Next, we show that no two I-graphs are cospectral. We compute the
characteristic polynomial of the I'-graph as follow. First, use Lemma 4
with edge e , where e is denoted in Fig 1. Then use Lemma 4 with edge
uiv; (1 = 1,2,3), repeatedly. So we get the characteristic polynomial of
T'k(ay,az2,a3) in terms of the characteristic polynomial of of paths.

#(Tr(a1,az,a3); A) =

(Pay+k—1 — Pay—1Pk—2 — 2Pay—1)[(Pas+k — PasPk—2 — 2Pas)

(Paz+k—1 — Pag—1Pk—2 — 2Pay—1) = (Pag+k—1 — Pas—1Pk—2 — 2Pas—1)
(Paz+k—2 — Pag—2Pk—2 = 2Pas~2)] — (Pay+k—2 — Pa,~2Pk—2 — 2Pa;-2)

(Pag+k—1 — Pag—1Pk—2 — 2Pag—1)(Paz+k-1 — Pag—1Pk—2 — 2Paz—1)
(3)

By Lemma 4, we have p, = Ap,._j; —pr—2. Solving this recurrence equation,

we find that for r > -2,
x2r+2 -1

Pr= e (4)
where z satisfies 22 — Az +1 = 0. If we substitute (4) in (3), then we obtain

(22— 1)°
x2—3k—s (:Ck — 1)

30(Tk(1,a2,03); A) — f(z) = P(a1,02,a3;7)  (5)
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where s = a; + ag + a3,

f(z) = —1+48z% — 24z* 4+ 32z% — 1628 + 3z* — 32%F + 2% — 182+
+36$4+k _ 24$6+k + 121.2+2k _ 12$4+2k _ 2$2+3k + 2x6+2s
_x8+23 + 12$4+k+23 _ 12x6+k+23 + 3x8+k+23 + 24x2+2k+2s
_36$4+2k+23 + 18x6+2k+28 _ 3x8+2k+28 + 16x3k+28
_3972+3k+2s | 94, 4+3k+20 _ g, 6+3k+2s |, B+3k+2s

(6)

and P(ay, as,a3; ) is shown in the appendix in section 4. For each part of
it, the terms are sorted in not decreasing order on their powers.

Lemma 11. No two nonisomorphic I'-graphs are cospectral.

Proof. We assume that I'x(a1, az,e3) and I'y (a}, a}, a}) are cospectral,
where a) > az > a3 and a] > aj > aj. Then they have the same vertex
number and edge number by Lemma 1. By Lemma 2, k = k'. Since
&(Tx(a1,az,a3); A) = ¢(T (a}, ah,a%); M), then by (5), we have

P(ay,02,a3; ) = P(a}, a3, a3; z) (7)

From P(a;,az,a3;z), the smallest powers of z in P(a;,az,as3;z) and
P(a},a},a3; ) are 4 + 2a3 and 4 + 2a5, respectively. By (7), a3 = a}. By
(17) from P(ai,az,as3;z) shown in the appendix in section 4, we define
function

‘d,b(y) = git2y _ 4.5+2 + 4x8+2y + 9p2t+k+2y _ 11g4t+k+2y
+16.’L'6+k+2y _ 4$8+k+2y _ 4x2+2k+2y + 11$4+2k+2y

_4x6+2k+2y + 2m2+3k+2y _ x4+3k+2y

Since a3 = a3, ¥(as) = ¥(a3). The smallest powers of z in P(a;, a2, as; z)—
¥(as) and P(a}, a3, aj; £)—(a3) are 4+2a2 and 4+2a), respectively. Thus,
az = ajy. Since a) + az + a3 = a} + aj + aj, then a; = a}. O

Lemma 12. Let ng(Lg,1) be the number of subgraph Ly, in graph G.
If G is cospectral with I'x(a),az, a3), then ng(Lk,1) = Ny (a1,02.03) (Lk,1)-

Proof. Obviously, nr,(a,,a3,05)(Lx,1) = 3. There are two types of
(k + 2)-closed walks in I'k(a1,a2,a3). The first type is the closed walks
around the cycle C; where one edge is used three times, whose number
precisely is 6k(k + 2). The second type, related with Ly, is the closed
walks around Cj that go one step up and down the edge uv, where wv is the
edge not contained in Cj such that d(u) = 3, v € V(Ci) and v ¢ V(Cy),
whose number precisely is 6(k + 2). Therefore, the total number n; of
(k + 2)-closed walks in (a1, az,a3) is

ny = 6k(k + 2) + 6(k +2).
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By Lemma 2, G and I'k(a1, az, a3) have the same number of Ci. So G has
the same number of the first type of closed walks with I'x(a1, az, as), which
is 6k(k+2). From Lemma 10-(ii), C), is not the cycle component of G if G is
disconnected and G has cycles as its components. Therefore, the number of
the subgraph Ly ; in G is at least 3. From Lemma 1, G and T'x(a;, a2,a3)
have the same number of closed walks of given length k + 2. Thus, the
number of the second type of closed walks of G is 6(k +2) and the number
of subgraph L ; in graph G is 3. So, ng(Lk,1) = nr(ay,a3,0s)(Lr,1)- O

We easily find that the number of subgraph L 1 in each graph shown
in Lemma 13 is more than 3. Thus, by Lemma 12, we have

Lemma 13. Let G be a cospectral graph to I'x(a;,az,as).

(i)If G is disconnected, then G 2 U(z,y).

(ii)If G is connected, then G could not be any graph from {6x; U
Dipky Ox,1U0k ik, DipiUbk i, Ur(z,y)UC:, Ok 1UDspUC:, OkiUbk iU
C., Dgp U8 UC,}, where z > k and I > k otherwise the length of the
shortest cycle is z or [ instead of k.

From Lemma 9, if a disconnected graph G cospectral with a I'-graph
and G has only one cycle as its component, then the I'-graph must be cho-
sen from {T'x(4,4,4),T(5,5,3),Tx(7,4,3)}. Therefore, we need to prove
the following two lemmas.

Lemma 14. There does not exist a graph I'x(a1, ag, a3) UC, cospectral
with any graph from {I'x(4,4,4),T«(5,5,3),T'x(7, 4, 3)}, where z > 3.

Proof. We distinguish the following three cases.

Case 1. Suppose that ['x(a1,a2,a3) U C; is cospectral with I'x(4,4,4).
Then a) +a2+a3+2z =12 and z # 3,4 by Lemma 1, Lemma 2 and Lemma
3. Thus, 5 < 2z < 10. If z = 5, then a; + a3 + az = 7. Since Cj is the
minimal odd cycle, then & = 3 by Lemma 2.

Case 1.1. When (a4, az,a3) = (5,1, 1), by direct calculation,
p(T3(5,1,1) U Cs) = 2.437 and p(T'3(4, 4,4)) =~ 2.269.

Case 1.2. (ay,a2,a3) € {(4,2,1),(3,3,1)}. Since I'3(4,4,4) can be
obtained by subdividing the edges on the internal path of I'3(4,2,1) or
I'3(3,3,1), repeatedly, then by Lemma 5, we have

p(T'3(4,4,4)) < p(T'3(4,2,1)) or p(I's(4,4,4)) < p(T'3(3,3,1)).

Thus, p(T's(4, 4,4)) < p(T's(4, 2, 1)UCs) and p(Ts(4,4,4)) < p(Ts(3,3,1)
U 05).

If5 < z < 10, with the same method as case 1.2, we have p(I'x(4,4,4)) <
p(Tx(ay,az2,a3) U C;). Thus, the suppose does not follow by the determi-
nation of cospectral graphs.

Case 2. Suppose that I'x(a1,a2,a3) U C; is cospectral with I'x(5,5, 3).
Thena;+as+az+2=13and 5< z < 11. If 2 =5, then a; +a2+a3 = 8.
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By Lemma 2, k = 3.

Case 2.1. When (a1, az,a3) = (6,1,1), by direct calculation,
p(T'3(6,1,1) U Cs) ~ 2.437 and p(T3(5,5, 3)) ~ 2.269.

Case 2.2. (a1,a2,a3) € {(5,2,1),(4,3,1),(3,3,2)}. Since I'3(5,5,3)
can be obtained by subdividing the edges on the internal path of I'3(a,, a2, a3)
repeatedly, then by Lemma 5, we have p(I's(5, 5, 3)) < p(T's(a1,a2,a3)). So
p(T'3(5,5,3)) < p(T'3(a1,az,a3) U Cs) and the suppose does not hold.

Case 3. Suppose that I'x(a1,a2,a3) U C; is cospectral with ['x(7,4,3).
Then a1 + a2 + a3+ z = 14 and 5 < 2 < 12. Using the same method as
case 1.2, we have p(I't(7,4,3)) < p(Tx(@1,a2,a3) U C;). So the suppose
does not follow. O

Lemma 15. There does not exist a graph Dy, 5, & U Dy b, ks UC, cospec-
tral with any graph from {I'x(4,4,4),T%(5,5,3),I'x(7,4,3)}, where z > 3.

Proof. We discuss the following three cases.

Case 1. Suppose that Dy, 4, xUDr b,k UC, is cospectral with I'x(4, 4, 4).
Then by +b2+b3+2 =12 and z # 3,4 by Lemma 1, Lemma 2 and Lemma.
3. Since b, > 5,b, > 1 and b3 > 1, then (by, bs,b3,2) = (5,1,1,5). Since
C}. is the minimal odd cycle, then k = 3 from Lemma 2. Thus, by direct
calculation, p(Ds,1,3UD3,1,3UCs) =~ 2.414 and p(T'3(4, 4,4)) ~ 2.269, which
is a contradiction with the suppose.

Case 2. Suppose that Dy, b, xUDk ps,kUC, is cospectral with ['x(5, 5, 3).
Then by + b2+ b3 +2 =13 and z # 3,4. By by > 5,b; > 1 and b3 > 1,
at least one of {b;,z} is 5. Since Cj is the minimal odd cycle, then k = 3
from Lemma 2. Thus, by direct calculation, we have
Table 1 as follow.

by I ba I bs | z I p(Dbnbz,3 UD3,b3,3 UCz)
5 |2 1 51 2414
5 1 2 151 2.359
5 1 1 | 6] 2414
6 |1 1 51 2414
Table 1.

But p(T'3(5,5,3)) ~ 2.269. Thus, from Table 1, the suppose does not
follow.

Case 3. Assume that Dy, 3,k UDk p,,xUC; is cospectral with I'x(7,4, 3).
Then by 4+ b2 +b3+2=14. By by > 5,bp > 1, b3 2 1, and z # 3,4, we
have either at least one of {b;,z} is 5§ or (b1, z) = (6,6). First, we discuss
the former. Since C) is the minimal odd cycle, then k = 3 from Lemma 2.
Therefore, by direct calculation, we have Table 2 as follow.
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P(Db, ,b,,3 U D3 by 3 U C;)
2.414
2.359
2.343
2.414
2.359
2.414
2.348
2.414
2.414

Table 2.

™

HHHNHMMHNS
Hr—dwl—lwr—lwwn—ag

=3O OOGTUGT Ot v | O
NN OO T YN

However, p(I'3(7,4,3)) = 2.272. So all radiuses shown in Table 2 are larg-
er than 2.272. Next, we discuss the case of (b;,2) = (6,6) in order to
show that no disconnected graph Dg b, x U Di b, x U Cs is cospectral with
T'x(7,4,3). When k = 3, p(Ds,1,3U D3,1,3UCs) =~ 2.414. When k is an odd
integer more than 3, by Lemma 9, I'x(7, 4, 3) has three eigenvalues more
than 2 and one eigenvalue 2. But by removing the vertices of degree 3 of
Deg 3k U Diy i U Cg, and by Lemma 6 and Lemma 7, Dg 1% U Dg,1,6 U Cs
exactly has two eigenvalues more than 2 and one eigenvalue 2. Therefore,
the assertion does not hold. O

Finally, we mainly show that I'-graph and the graph Dy, p, x U Dk by k
are not cospectral. Using Lemma 4, we first compute the characteristic
polynomial of the graph Dy, 5, x U Dk by k- Then we have

B(Dby bz k U Dicyog ki A) = [(Pby +by+k—1 — Pby +ba—1Pk—2 — 2Pby +by—1)
—Pb,—2(Pby+k—1 — Pby—1Pk—-2 — 2Pb—1)
—2(Pby+k~1 = Pby—1Pk—2 — 2Ppy—1)] -
[(Pbs+2k—1 — Pbg+k—1Pk—2 — 2Pby+k—1)
—Pr—2(Pbs+k—1 — Pby—1Pk—2 — 2Pbs—1)
_2(pbs+k—1 — Pbs—1Pk—-2 — 2pba—1)] (8)

If we substitute (4) in (8), then we obtain

(2~ 1)°

x2‘3’°'~’(xk — 1)3 ¢(Dbhbz,k U Dk,ba.k;A) - f($) = Q(bl’ b21 b3;m) (g)

where s = by + by + b3 and f(z) is (6). Q(by, bs, b3; ) is given in section 4.
For each part of it, the terms are sorted in not decreasing order on their
powers.
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Lemma 16. There is no I-graph cospectral with the graph Dy, 5, x U
Dy by k-

Proof. Suppose that G = T'x(a1, a3, a3) is cospectral with G’ = Dy, b, k
U Dk by, k, Where a; > as > az. Since G and G’ have the same vertex
number, we have

ar+az+az=>b1+b2+b3 (10)
By (5) and (9), we obtain
P(ay,a2,a3;7) = Q(b1, b, b3; x) (11)

Let f be the smallest power of z in P(a1, az,as; z)(also in Q(b1,b2, bs; x)
by (11)). By P(a1,a2,a3;%), f = 4 + 2a3. From Q(by, b2, b3;2), f = by or
4 + 2by or 4 + 2bs. Since the coefficient of zf in P(a,,az,a3;z) is 1, by
(11), then the coefficient of zf in Q(ay, a2, as; x) should be 1.

If by < min{4 + 2b,4 + 2b3}, then f = b;. But the coefficient of zf
in Q(ay,a2,a3;z) is at least 2, which is a contraction. We distinguish the
following two cases when b; > min{4 + 2bz,4 + 2b3}.

Case 1. by > b3. Thus, 44 2bs > 4+ 2b3, f =4+ 2b3 in Q(bl,bz,bs;x)
and 4 + 2a3 = 4 + 2b3(i.e., az = b3). Then a; + a2 = by + by by (10). Let

Pi(a1,az,a3;7) = P(ay,az,a3;z) — (21200 — 4284293 4 go8+2es
_4x3k+2a1 +2az + 4x2+3k+2a1+2a2 _ x4+3k+2a,+202)

Q1(b1,ba,b3;z) =  Q(by,be, b3; x) — (z123 — 48+ | 44 8+2bs

—4g3k2b142bs | 4o 243k+2b14+2by _ g+3E+2b1+2b2)
Obviously, Pi(a;,as2,a3;z) = Q1(b1,b2,b3;z). Denote by hy and hj the
smallest powers of Pj(a;,@as,as;z) and Qi(by, bo,b3;z), respectively. So,
hi = hi. By Pi(a1,a2,a3;z), by is the smallest power of A; = z4+201 4
zit2e2 4 972+k+203 Fyom Q;(by,bs,bs3;z), R} is the smallest power of
A,l — 2$b’ + $4+262 + 4.’122+k+2b3-

Case 1.1. 2+k+2a3 < 4+2a3. Then hy = 2+ k+2a3. Since the coef-
ficient of " in Pl(al,ag, as; z) is 2 and Py(a,, a2, a3;z) = Q1 (b1, b2, b3; ),
then the coefficient of z"1 in Q1(b1,b2,b3;z) is 2 and A} = b. Then
b1 < 2+ k4 2b3, which is a contradiction with b; = 2+k+2a3 = 24-k+2bs.

Case 1.2. 4+2a5 < 2+4+k+2a3. Then hy = 4+2a2. Since the coefficient
of z* in Py(ay, a2, as; z) is at least 1, by P(a1,az,as3;x) = Q1(b1, b2, bs; z),
then the coefficient of 1 in Q1(b1, bz,ba, x) should be at least 1.

Subcase 1.2.1. If the coefficient of =" in Py(a, az,a3;z) is 2, then
h1 = 4+42a; = 4+2az(i.e., a1 = a3). Since Pi(ay, az,a3;z) = Q1(b1, b, b3; z)
and the coeflicient of :1:"1 in Q1(by,b2,b3;z) is 2, then h] = by = 4 + 2a,.
Then by a; = a3 and a; + a3 = by + by, we have 4 + by = 0, which is
impossible.
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Subcase 1.2.2. The coefficient of z** in P;(a;,a2,a3;z) is 3. Since
the coefficients of 241222 and z2+%+2%3 in A, are 1 and 2, respectively, then
hy = 4 + 2a; = 2 + k + 2a3, which is a contraction because & is odd.

Subcase 1.2.3. If the coefficient of " in Pj(a1,a2,as;z) is 4, then
hi = 4 +2a; = 4+ 2a3 = 2+ k + 2a3 from A;, which is a contraction
because k is odd.

Subcase 1.2.4. If the coefficient of ™ in Pj(a1,az,as3;z) is 1, then
by A; and A}, 4 + 2a; = 4 + 2bs(i.e., a2 = bz). From (10), a; = b;.

Let

Py(ay,a2,as; z) = Pi(a1,02,a3;2) — fi(x)

where f1(z) is composed of (13) and (16) from P(a1, a2, as; ).
Let
Q2(b1, b2, b3; ) = Q1(b1, b2, b3; ) — g1(2)

where g;(z) is composed of (23) from Q(by, bz, b3; x) and

{m4+251+263 . 2x6+2b1+2bs + 4x2+k+2bl+253 _ 11m4+k+251+263
+4x6+k+251+2ba + 4x2k+261+263 _ 16x2+2k+2bl+2bg + 1114+2k+2bl+2ba
_2x6+2k+2b1+2b3 _ 4x3k+2bl+2b3 + 4z2+3k+2b1+2b3 _ z4+3k+2bl+253}

chosen from (20) in Q(b, be, b3; ).

Obviously, fi(z) = g1(z) and Px(a1,a2,a3;z) = Qa(by, b2, b3;x). De-
note by hy and hj the smallest powers of Py(a1, az, as; z) and Qa(b1, ba, b3; z),
respectively. So, hy = hj. By Py(a1,02,a3;z), ha is the smallest power of
Ay = gitler 4 g4+202+25 4 942+k+2as Fyom Qy(bs, by, bs; ), Y is the
smallest power of A} = 2zb1 — g8+2ba+2bs | 432+k+2bs By A, A2 and

i = bi(i = 1,2,3), obv1ously, the coefficient of z"2 must not be equal
to the coefficient of z 2 which is a contraction with Py(a;,a2,a3;2) =
QQ(bI’ b21 b31 )

Case 2. by < bz. If by = bz, then 4 + 2b; = 4 + 2b3 and the coefficient
of zf in Q(a;, az,as3; z) is at least 2, which is a contraction. Thus, we just
need to discuss the case of b, < b3. Since by < b3, by (11), P(ay, a2, a3; z)
and Q(b;,ba,b3; ), then 4 + 2a3 = 4 + 2bs(i.e., az = bp). Therefore, by
(10), a1 + a2 = by + bs.

Let

Ps(ay,a2,03; ) = P(a1,a2,a3; ) — f2(x)

where f3(z) is composed of (12) and (17) from P(ay, a2, a3; ).

Let
Qs(by, ba, b3; z) = Q(by, by, b3; ) — ga(z)
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where g(z) is composed of (23) from Q(by, b2, b3; ) and
{$4+2bx+263 _ 2z8+2bl+263 + 4z2+k+2b]+263 _ 11x4+k+251+263
+4x6+k+2b1+263 + 4z2k+2b1+263 _ 1632+2k+2b1+263 + 11x4+2k+2b1+263

_2x6+2k+2b|+263 _ 4z3k+2b]+2b3 + 41.2+3k+2b1+2b3 — x4+3k+2bl+2ba}

chosen from (20) in Q(dy, bs, b3; x).

Obviously, fz(x) = gz(:l.’) and Pa(a1, az,as; a:) =Q3 (bl, bo, b3; ). Let hg
and hj as the smallest powers of P3(a1,a2,as3;z) and Q3(b1, ba, b3; ), Te-
spectively. So, hs = hj. By Ps(a1,a2,as;z) and a; > ag, then hy = 4+2a2
and the coefficient of z"¢ is 1. Since Ps(ay, az2,a3;z) = Qa(b1, b, b3; z), then
the coefficient of z"3 in Q3 (@1,a2, a3; z) should be 1. From Q3(b;, bs, b3; z),
hj is the smallest power of 2z% +z4+2%s and the coefficient of ! is at least
2. Thus hj = 4+ 2b3 and 4+ 2a; = 4 + 2bz(i.e. ay = b3). Then a; = b; by
(10) and a3 = b,. Let

P4(a.1, az,as; x) = P3(a1, ag,as; :C) - (.1:4+262 — 4g8+2e2 + 4z8+22
_42.3k+2a;+2a3 + 4x2+3k+2a1+2a3 _ x4+3k+201 +2a3)

) 4+2b 6+2 8+2b
Qa(b1,b2,b3;2) =  Qa(by, b, b3; ) — (z208 — 47842 4 4o8+2bs
_ggHIAs | 24344y 4Dk 2by 420

Obviously, Py(a1, a2, a3; ) = Q4(b1, b2, b3; x). Let hy and k) be the small-
est powers of
Py(a1,az,a3; ) and Q4(by, ba, b3; z), respectively. So, hqy = hj.

By Py(a1,a2,a3; x), hy is the smallest power of Ay = z4+2e1 4 g4+2a2+42as
+ 2g2+k+202 From Qu(by, b2, ba; ), By is the smallest power of A} =
2z 4 gg2+k+2bs _ g8+2b2+2bs Since @) = by,ay = by and a3 = by, then
hy = min{a;,2 + k + 2a3,8 + 2a3 + 2a3}.

If 2+ k + 203 < min{4 + 2a,,4 + 2a2 + 2a3}, by Py(a1,az,a3;z), then
h4 = 2+ k + 2a; and the coefficient of of z"¢ in Py(ay,a9,a3;z) is 2. Since
Py(a1,a2,03; ) = Q4(b1, b2, bs; ), then the coefficient of Q4(b, b, bs; z) is
2. Since 2+ k +2a3 = 2+ k+ 2b3 and hy = hj, then h} = 2+ k + 2b;. But
the coefficient of 4 in Q4(b1,bo, bs; ) is at least 4, which is a contraction.

Otherwise, 2 + k + 2a; > min{4 + 2a;,4 + 2az + 2a3}.

Case 2.1. Suppose 4 + 2a; < 4 + 2a2 + 2a3, then hy = 4 + 2a;. Since
a1 <4420 <4+ 2a3 +2a3 < 8+ 2a3 + 2a3 and 4 + 2a; < 2+ k + 2a,,
by hy = min{a,2 + k + 2a2,8 + 2a; + 2a3}, then h = a; # 4+ 2a; = hy.

Case 2.2. Suppose 44+2a2+2a3 < 4+2a,, then hy = 44+2a,+2a3. From
Py(ay1,ay,a3;z), the coefficient of "¢ is 1. Thus, by Py(a;,as,a3;z) =
Qa(b1, ba, bs; ), the coefficient of z"s should be 1. Therefore, from A} and

2 = a1 = 8 + 2a3 + 2a3, we have hy # h}, which is a contraction. This
completes the proof. [
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Theorem 1. All I'-graphs are determined by their adjacent spectrum.
Proof. Let G be a I'-graph. Suppose G’ be a cospectral graph of G.
We discuss the following two cases.
Case 1. G’ is connected. Then G’ is not a I'-graph by Lemma 11 and
G' 2 Ui(z,y) from Lemma 13-(i).
Case 2. (' is disconnected. Then we have
(1) G' & {0k, U Doy Ok, U Okky Dipt Uk, Uklz,y) UCs, Oig U
Dirpx UCzy 051Uk UC,, DipyUbkixUC.} by Lemma 13.

(ii) G’ % I'k(a1,a2,a3) UC, from Lemma 14.

(iii) By Lemma 15, G’ 2 Dp, b, k Y Dby x U C..

(iv) From Lemma 16, G’ % Dy, b,k U Dy by k.

Therefore, we have searched all possible cospectral graphs of G, and the

assertion does not hold.
This ends the proof. [J

4 Appendix

P(a1,02,a3;2) =

x4+261+202 _ 2$6+2a1+202 + 4$2+k+2a;+202 - 11x4+k+2a1+243
+426+k+261+2az + 4x2k+2a1+2¢z - 16x2+2k+261+2a2
+11$4+2k+201 +2az _ 2$6+2k+2a1+2a3 _ 4$3k+2a1+202
+4$2+3k+261 +2a2 _ .’L‘4+3k+2al+203 + (12)
x4+2a1+2a3 _ 2m6+2a1+2a3 + 4x2+k+2a1+203 _ 11z4+k+201 +2a3
+4x6+k+2al +2a3 + 4x2k+2a.1 +2a3 __ 16x2+2k+201 +2a3
+11x4+2k+26;+263 _ 2$6+2k+2a1+2a3 _ 4x3k+201+2a3
+4p2+3k+2a142a3 _ g d4+3k+201+205 (13)

137



$4+203+243 _ 2x6+2az+2a3 + 4z2+k+2a3+203 — 11$4+k+2a3+2a3
+426+k+202+203 + 4$2k+202+203 __ 16x2+2k+2a2+2a3
+11x4+2k+2a2+2as _ 2I6+2k+202+203 _ 4$3k+202+203
+4x2+3k+202+2a3 _ x4+3k+202+203 + (14)

z4+20x _ 4zﬁ+2a; + 4x8+2a1 + 212+k+2a1 _ 11x4+k+2a1
+16x5+k+2ax _ 4x8+k+2a1 _ 4z2+2k+2al + 11$4+2k+2a1

_4$6+2k+2al +2x2+3k+2a, 4+3k+2a, + (15)

z4+2u2 - 4x6+202 4 4x8+2ag + 2x2+k+2ag — llw4+k+202
41608tk +282 _ g 8+k+2az _ 4,.2+2k+2a2 + 11z4+2k+2a2
_4z6+2k+202 + 2x2+3k+202 _ x4+3k+203 + (16)

a:4+203 _ 426+2a3 + 4z8+203 + 2z2+k+203 _ 11x4+k+2a3
+16$6+k+203 _ 4$8+k+2a3 _ 4$2+2k+2a3 + 111’4+2k+2as
_41:6+2k+203 + 2x2+3k+2¢13 _ x4+3k+203 (17)

Q(blv b2: b3; x) =

— 96+ +2b2+2b3 + 9p8+b1+2b2+2b3 19 4+k+b1+2b2+2b3
+18£L‘6+k+b1 +2b2+2bs _ GrSHhtbi+2ba+2b; _ 94z 2+2k-+b1+2b2+2bs
+48$4+2k+b1 +2b2+2b3 _ 3025+2k+bl+2b2+263 + 6m8+2k+b1+2b2+263
_16$3k+bl+262+2b3 + 4012+3k+bl+2b2+2ba - 36x4+3k+b1 +2b2+42b3
+14x6+3k+b1 +2b2+4+2b3 __ 2z8+3k+61+2b2+2bs+ (18)
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9 2+b1+2b _ 144014202 + 168+ +2b2 _ gy8+01+2b;

+4xk+b| +2b _ 26$2+k+b|+2b3 + 54x4+k+bl+2bg _ 40m6+k+61+2b3
+8:z:8+k+b‘ +2bz _ @.2k+b1+2b2 + 302 +2k+b1+262 _ 30x4+2k+b;+263
4+8g8+2k+b1+2bs | 4 3k+bi+2bs _ Gp2+3k+br+2b2 9pd+3k+b1+2ba
_21:2+2bl+2b2 + 9$4+2b1+262 _ 12x6+261+2b3 + 4xB+261+2bz
—4pkt+2b1+2b; + Qg 2+k+2b1+2by _ 43,4+k+2b1+2ba + 24x6+k+2b1+2bz
—4gBrht20142by | g 2k+2b14+2bs _ 9gy2+2k+2b1+2bs 4 gpd+2k+2b1+20s
_4z6+2k+261+2bz _ 4x3k+26‘+2b2 + 4x2+3k+261+263 _ x4+3k+2b1+2bz(19)

— 44b, +2bs 64-by +2b3 _ 8+b; +2b3 _ 2+4+k+by +2b3

2z + 6z 4z 8z

+30z4+k+b1+2b3 _ 3036+k+b1 +2bg + 8x8+k+b‘+2b3 _ 8m2k+bl +2b3
+4Ox2+2k+51+2bs _ 54x4+2k+b1 +2b3 + 26x6+2k+b1+2bs _ 4x8+2k+b1 +2b3
+8z3k+bx+253 _ 16m2+3k+b1+263 + 10x4+3k+bl+2‘>s _ 2z6+3k+bl+2b3
+$4+2b1+2b3 _ 2x6+2b1+2bs + 4x2+k+2b1+263 _ 11$4+k+261+263
+4x6+k+251+253 + 4x2k+25|+263 _ 16z2+2k+2bl+2bs + 11$4+2k+2b1+2b3
_2z6+2k+2bl+253 _ 4$3k+2b1+2b3 + 4x2+3k+261+263 _ x4+3k+2b1+2ba(20)

_x8+2ba+253 _ 6x6+k+2b2+2bs + 3x8+k+2bz+2bs _ 12x4+2k+2b2+2bs +
12$6+2k+2bz+2ba _ 3x8+2k+2b3+2bs - 81,2+3k+2b2+21>s + 12m4+3k+2b2+253
—GgBH3k+2ba by | B+3k+2by+2bs | (21)

225 — 2201 _ 1452t 4 3654t _ g0 8th 4 1628t

_ka-}-b; + 30:1:2+k+b‘ _ 48x4+k+bx + 24x6+k+b; + 6x2k+b’
—18x2+2k+b’ + 12x4+2k+b1 _ 2x3k+bl + 2$2+3k+b1 + 6$2+2bl

_12x4+2b1 + 8$6+2bl + 3xk+261 _ 12x2+k+261 + 12$4+k+2bl
—3g2k+2b1 4 G 2+2k+2by + 3k+25 + (22)

p4+2b2 _ 4.6+2b2 + 4 8+2b: + 2m2+k+252 — 11gitk+2b2 + 16$3+k+262

_ApStk+2b2 _ 4.242k+2b; 44-2k+2b2 __ 4,.642k+2b2
4z 4z + 11z 4z
402 H3k+2bs _ p4+3k4+2b (23)
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a2k g Sy g k2l g dtk42by | 95 Otk 2by
"S.I‘H" ey 2 4 ~,l:'?:.’,/-' | 20m . 24:,,2~§-2l\“+2’):t + 43m4+2k+2()3 _ 24m6+2k+2l)3 +
~"'l'“ p2h i 2hy 1 ’,.';I.'.Qv 2y 1 ]r) ,,2{ 3k 4-2by _ 91.‘4+3k+2b3 + 21,G+3k+2b3 (24)
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