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1 Introduction

As a promotion of the channel assignment problem, an L(1, 1, 1)-labeling of
a graph G is an assignment of nonnegative integers to V(G) such that the
difference between labels of adjacent vertices is at least 1, and the difference
between labels of vertices that are distance two and three apart is at least
1. The span of an L(1, 1, 1)-labeling of a graph G is the difference between
the maximum é,nd minimum integers used by it. The L(1,1,1)-labeling-
number of G is the minimum span over all L(1,1, 1)-labelings of G, denoted
by A1,1,1(G).

This problem is first known as the L(j, k)-labeling problem of a graph
G. In 1992, Griggs and Yeh introduced this labeling with j =2 and k =1
in {12]. This notion has been studied many times and gives many challeng-
ing problems. The reader is referred to the surveys [5,11,33]. In particular,
in [32], Whittlesty, Georges and Mauro studied the L(2,1)-labeling of the
subdivision graph of G, which is the graph obtained from G by replacing
each edge by a path with order 3. This labeling is called (2,1)-total la-
beling of G, which was introduced by Havet and Yu in 2002 [13,14] and
generalized to the (d, 1)-total labeling of a graph G. If d = 1, then the
(1,1)-total labeling is the traditional total coloring. The total coloring has
been intensively studied in [2-4,16,30,31).

About 10 years ago, a new trend originated in the topic of graph col-
orings. Many mathematicians considered colorings (proper, general, total
or from lists) such that vertices (all or adjacent) are distinguished either
by sets or multisets or sums. Karoriski,Luczak and Thomason in (22] con-
sidered general colorings of edges, and they conjectured that three colors
are enough to distinguish adjacent vertices by sums. This conjecture is

almost proved—Kalkowski showed that five colors are enough [21]. A sim-
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ilar conjecture by Przybylo and Wozniak states that two colors are enough
by general total coloring [27].

Recently, some other authors in [9] considered a proper coloring of edges
distinguishing adjacent vertices by sums. As usually, we are interested in
the smallest number of colors in a neighbor-distinguishing coloring of G.
Suppose that ¢: E — {1,2,-..,k} is a proper edge coloring of G. For a
vertex v, let f(v) denote the total sum of colors of the edges incident to v.
If the function f distinguishes adjacent vertices of G, we say the coloring
¢ is a neighbor-distinguishing coloring. The smallest such k is called the
neighbor-distinguishing index by Sum, and denoted by ndis~(G). Evident-
ly, when searching for the neighbor-distinguishing index it is sufficient to
restrict our attention to connected graphs. Observe also, that G = K,
does not have any neighbor-distinguishing coloring. So, we shall consider
only connected graphs with at least three vertices. This invariant has been
introduced by Zhang et al. [34]. It is easy to see that ndi(Cs) = 5 and in
[34] it is conjectured that ndis~(G) < A(G) + 2 for any connected graph
G # C5 on n > 3 vertices.

Conjecture 1.1 [34] For any connected graph G # Cs on n > 3 vertices,
ndixy~(G) < A(G) +2.

The conjecture has been confirmed by Balister et al. [1] for bipartite
graphs and for graphs G with A(G) = 3. Edwards et al. [8] have shown
even that ndix~(G) < A(G) + 1 if G is bipartite, planar, and of maximum
degree A(G) > 12.

Suppose that ¢: VUE — {1,2,--- ,k} is a proper total coloring of G.
For a vertex v, let f(v) denote the total sum of colors of the edges incident
to v and the color of v. If the function f distinguishes adjacent vertices
of G, we say the coloring ¢ is a total-neighbor-distinguishing coloring. The
smallest such k is called the total-neighbor-distinguishing index by Sum,
and denoted by tndis-(G).
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(28] considered the total-neighbor-distinguishing coloring, and conjec-
tured that A 43 colors suffice to distinguish adjacent vertices in any simple
graph. In [28] they shown that this holds for complete graphs, cycles, bi-
partite graphs, cubic graphs and graphs with maximum degree at most

three.

Conjecture 1.2 [28] For every graph G = (V, E), the total-neighbor-disti-
nguishing indez by sums tndix>(G) satisfies the inequality tndis~(G) < A+
3.

Zhang, Chen, Li, Yao, Lu and Wang in [35] investigated a proper total
coloring of G, but to every vertex v they assigned a set S(v) of colors of the
edges incident to v and the color of v. By x, or by x:t they denoted the
smallest number k of colors so that there exists a proper total coloring with
k colors that distinguishes adjacent vertices by sets (i.e., S(u) is different
from S(v) for every pair of adjacent vertices u, v). We propose to denote
this index by tndis(G)-total-neighbor-distinguishing index. They consid-
ered the cases of cliques, paths, cycles, fans,wheels, stars, complete graphs,
complete bipartite graphs and trees.They showed (giving exact bounds for
tndig) that A + 3 colors are enough in these cases and formulated Conjec-
ture 1.3 as follows. Next, Chen in (7] proved this conjecture for bipartite
graphs and for graphs with maximum degree at most three. Hulgan in [15]

gave a really short proofs of his results.

Conjecture 1.3 [35] For every graph G = (V, E), the total-neighbor-disti-
nguishing-index by sets tndis(G) satisfies the inequality tndis(G) < A +3.

It is easy to observe, that if two vertices are distinguished by sums then
they are also distinguished by sets, but not necessarily conversely. Thus
tndis(G) < tndis-(G).

Like the classical edge coloring of a graph G, it is natural to inves-

tigate the edge version of L(j, k)-labeling. An L(j, k)-edge-labeling of a
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graph G is an assignment of nonnegative integers to the edge sets E(G)
such that the difference between labels of adjacent edges is at least j, and
the difference between labels of edges that are distance two apart is at
least k. The minimum span of an L(j, k)-labeling of G is denoted by
2k (G) A1 (B)=21(G)).

The edge version of distance two labeling was first investigated by
Georges and Mauro [10]. Several classes of graphs were studied by Georges
and Mauro. Among the results, the authors determined the L(2,1)-edge-
labeling numbers of A-regular trees for A > 2 and n-dimensional cubes
for small n. References [6,10,25] are the papers that we can find on the
L(j, k)-edge-labeling problem.

For r > 1, the edge-multiplicity-paths-replacement G(rP;) of a graph
G is a graph obtained by replacing each edge uv with r vertex-disjoint
paths Pj: uzilxi2 ...zi% %y, where i = 1,2,---r. Note that the vertices
of G are called as the nodes of G(rPg). It is easily seen that G(rPp_;)
is the subdivision graph of G(rP;), and for rA > 2, the maximum degree
of G(rPy) is A where A is the maximum degree of G. We can consider
G(rPy) with r = 1 as the edge-path-replacement of a graph G.

In (20,23, 24], the authors worked on L(d,1)-labeling-number of the
edge-path-replacement G(P;) of a graph G. In this paper, we will study
L(1,1,1)-labeling-number and L(1,1)-edge-labeling-number of the edge-
path-replacements. From this, we will consider the total-neighbor-distingu-
ishing coloring and the neighbor-distinguishing coloring of the edge-multip-
licity-paths-replacements, give a reference for the conjectures: tndiy~(G) <
A + 3, ndix~(G) £ A +2 and tndis(G) < A + 3 for the edge-multiplicity-
paths-replacements G(rP;) with k > 3 and r > 1.
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2 L(1,1,1)-labeling of G(rP;) with r > 1 and
k>3

For rA = 2, observe, that G(rPx) is Po(Pi)(= Pi-1)n—k+2)s Cn(Pe)(=
Ck-1)n), or Pa(2P;)(= Cak—2). Then we have the following theorem.

Theorem 2.1 Ay1,1(Pa(Px)) =3 and 3 < A1,1,1(Cn(Pr)) < 4; for k 2 3,
3 < M11(P2(2F)) < 4.

We next consider the case 7A > 3 and k > 3. Note that A;;,(G) >
A + 1 except that G is the star.

Theorem 2.2 Suppose that G is a connected graph with degree A. Let
k>9. Then \111(G(P))=rA+1 forrA >3.

Proof. It is easy to see that Ay 1,1 (G(rPx)) > rA+1, since there G(rPy) %
k1ra. Thus it suffices to give an L(1,1,1)-labeling of G(rP:) with span
rA+1for k>9.

We first give L(1,1,1)-labelings of G(rP,) with span rA + 1 for k =
9,10,11 as follows. Label all the nodes of G(rPy) by rA + 1, and label all
the adjacent vertices of each node in [1,7A]. And label the replacement-
path Py as follows: (rA + 1)p0abcOg(rA + 1), where p,q € [1,7A], p # a,b,
g # b,c, and a,b,c are different to each other and can be in [1,4]; label
the replacement-path Pyo as follows: (rA + 1)pOabedOg(rA + 1), where
p,q € (1,7A), p # a,b, g # ¢,d, and a,b, ¢, d are different to each other and
can be in [1,4]; label the replacement-path P, as follows: (rA+1)pOab(rA+
1)cdOgq(rA + 1), where p,q € [1,7A], p # a,b, ¢ # ¢,d, and a,b,c,d are
different to each other and can be in [1,4]; and label the replacement-path
Py as follows: (rA + 1)pOab(rA + 1)pedOg(rA + 1), where p,q € [1,74],
p#a,becd, q#cd, and a,b,c,d can be in [1,4].

Note that the L(1,1,1)-labeling of G(rP;) with span 7A +1 for k > 13
can be obtained by repeating the labels of P4 in the replacement-path P
for k = 9,10,11,12. Then A1) 1(G(rFP)) =rA+1for k > 9. [
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Theorem 2.3 Suppose that G is a connected graph with degree A. let
7<k<8 ThenrA+1< M 11(G(rP)) <rA+2 forrA > 3.

Proof. It is easy to see that Ay1,1(G(rP:)) > A + 1. Thus it suffices
to give an L(1,1,1)-labeling of G(rP,) with span rA + 2. Label all the
nodes of G(rP;) by rA + 2, and label all the adjacent vertices of each
node in [2,7A + 1]. And label the replacement-path P; as follows: (rA +
2)p0alg(rA + 2), where p,q € [2,7A + 1], p,q # a, and @ can be in [1,4];
and, label the replacement-path Pg as follows: (rA + 2)pOablg(rA + 2),
where p,q € (2,7A+1], p,q # a,b, and a, b are different and can be in {1,5].
Then A1 11(G(rPe)) <tA+2for 7< k<8 |

Theorem 2.4 Suppose that G is a connected graph with degree A > 2.
Then A\,11(G(rPs)) =rA+1 forr > 1.

Proof. It suffices to given L(1,1,1)-labeling of G(rPs)with span rA + 1.
Observe, that an L(1,1,1)-labeling of G(rPs) can be derived by the (1,1)-
total-labeling of G(rP;) as follows. Label all the nodes of G(rP3) by 0, and
all the inserted vertices of G(rP3) by 1. Secondly, we label all the edges of
G(rPs) in [2, x'(G(r P3))+1], where x'(x) is the edge chromatic number(the
chromatic number) of the graph. Note that G(rP3) is bipartite. Then we
have x = 2 and ' = rA by Kénig’s Theorem. Then we obtain a (1,1)-
total-labeling of G(rP3) with span rA + 1. Thus \(G(rPs)) = rA + 1.
|

We next consider the replacement of regular graph for k = 6.

A factor of a graph G is a spanning subgraph of G. A k-factor of G
is a factor of G that is k-regular. Thus a 2-factor of G is a factor of G
that is a disjoint union of cycles of G. A graph G is k-factorable if G is an

edge-disjoint union of k-factors of G.

Theorem 2.5 [26] Every regular graph with positive even degree has a 2-

factor.
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Theorem 2.6 Suppose that G is a regular graph with degree A. Let rA >
2. ThenrA +1 < A 1,1(G(rPs)) < 1A + 2 for even rA And rA +1 <
M1,1(G(rFg)) <rA + 3 for odd rA.

Proof. Similarly to the proof of Theorem 2.2, it suffices to give an L(1,1,1)-
labeling of G(rPs) with span rA + 2 for even rA.

For even rA, by theorem 2.5, G(rP;) can be decomposed into _r2A 2-
factors. For k = 6, label all the nodes of G(rP,) by rA + 2, and, label the
replacement-paths of each 2-factor from one node to the other as follows:
(rA +2)i01(: + 1)(rA + 2), where ¢ is even in [27A + 1. ThenrA +1 <
A1,1,1{G(rPs)) <A + 2 for even TA.

For odd rA, we structure a graph H by connecting each pair ver-
tices z and z’ in G(rP,),G(rP;)', where G(rP;)' is the copy graph of
G(rP,), and z' corresponding to z. It is easy to see that H is a reg-
ular graph with positive even degree 7A + 1. Furthermore, by above,
rA+1 < A)11(G(rFs)) <A + 3 for odd rA. |

Theorem 2.7 Suppose that G is a connected graph with degree A. Let
rA > 2. Then A +1 £ A)11(G(rPs)) < 1A + 2 for even rA And

TA+1 < A11(G(rPs)) <7TA + 3 for odd rA.

Proof. Note that we can obtain a regular graph with the maximum degree
rA such that G(rP,) is its subgraph. If there exist two vertices « and v
whose degrees are less than rA, then we add the edge uv. Lastly, we obtain
a new graph G in which there exists at least one vertex whose degree is
less than 7A.

If there exists only one vertex = in G, whose degree is a(< rA), then
we structure a graph H by adding all the edges between any two copies
of zin G1,Gl, -+ ,G727°*1 where G}, .-+ , G727+ s the copy graph of
G1. So we obtain a regular graph with degree rA such that G(rP,) is its
subgraph.
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By Theorem 2.6, the proof is over. [ |

Similar to the proof of Theorem 2.6, we next consider the replacement

of regular graph for k = 4.

Theorem 2.8 Suppose that G is a regular graph with degree A. Let rA >
3. Then

rA £ M1,1(G(TPy)) < 5—23 +5 for even rA, and rA < A 1,1(G(rFy)) <
gr%—“)- +5 for odd rA.

Proof. Similarly to the proof of Theorem 3.2, it suffices to give an L(1,,1,1)-

labeling of G(rP;) with span 222 4 5 for even 7A.

3
For even rA, by theorem 2.5, G(rP2) can be decomposed into 12é 2-

factors. For k = 4, label each replacement-path of each 2-factor as follows:
iG+1)(E+2)E+3) -, i+ 1) E+2) G+ 3)(E+ )i +1)(E+2)(E+3) -+ or
i(i4+1) (i42) (543) (i-+4)i(i+1) (+2) (i+3) (6+4)i(i+1)(i+2) (i+3) - - - , where
iisin [1, %2 + 5] and exactly divisible by 5. Then rA < Ay,1,1{(G(rPy)) <
% + 5 for even rA.

For odd rA, similar to the proof of Theorem 2.6, rA < Ay,1,1(G(rPy)) <
22+l 45 for odd rA. N

Theorem 2.9 Suppose that G is a connected graph with degree A. Let
rA > 3. Then

rA < M 1,1(G(rPy)) < 5’—’23 + 5 for even TA, and rA < M\ 11(G(rFy)) <
5r8+1) 15 for odd rA.

Proof. Similar to the proof of Theorem 2.7, by Theorem 2.8, the proof is

over. [ ]

Theorem 2.10 Suppose that G is a connected graph with degree A 2 2.
Letr > 1 and rA 2 3, A\11(G(rP3)) < rx' + x — 1, where x and X’
are the chromatic number and the edge chromatic number of the graph G,
respectively. Furthermore, A\111(G(rP3)) < (r+1)A+7r - 1.
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Proof. Let c be a vertex colouring of G with the x integers in [0, x — 1).
Let ¢’ be an edge colouring of G with the x’ integers in [0, X’ — 1]. Then
label all the nodes of G(rPs)) by ¢. For each i € {1, 2, ---, r}, label the
inserted vertices z}, as x+ic/(uv) —1. Thus we obtain an L(1, 1, 1)-labeling
of the edge-multiplicity-paths-replacement G(rP3) with span rx’ + x — 1.
So A,1,1(G(rPs)) <rx'+x—1.

If G is neither a complete graph K, or an odd cycle, then x < A by
Brook’s theorem. And x’ < A+1 by Vizing’s theorem. Hence A1,1,1(G(r Ps))
SrlA+1)+A-1=(r+1)A+r—-1.

Suppose now that G is a complete graph K,, on n vertices. Note that
X < A+1. Ifniseven then x’' < A. So Ay 1,1(Kn(rPs)) < r(A+1)+A-1.
If nis odd then x' < A+1. Let ¢’ be an edge colouring of G with n colours.
And let M;, 1 € j < n, be the matchings corresponding to the colour
classes. Note that each vertex is in every M; but one, and M; contains all
the vertices but one v;. For 1 < ¢ < r, suppose that 2% is the inserted
vertex corresponding to the edges in M;. For 1 < j<nand1<i<r,
label the vertex v; with n — j, and the inserted vertex :c; with n + 147 — 2.
Then we obtain an L(1,1,1)-labeling of K,(rPs) in [0,7n + n — 2]. So
M1(Ka(rP)) < (r+1)A+7—1,since A=n—1. |

3 L(1,1)-edge-labeling of G(rP;) with r > 1
and £ > 3

For rA = 2, note that G(’I‘Pk) is Pn(Pk)(g P(k-l)n—k+2), Cn(Pk)(E C(k—l)n)y
or P>(2P;)(2 Cok—2). Then we have the following theorem.

Theorem 3.1 X)(Pn(Py)) = 2 and 2 < M\ (Cn(P)) < 3, 20 (P2(2F)) <
3 for k > 3.

We next consider the case 7A > 3 and k > 3. Note that \;(G) > A
except that G is the star.
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Theorem 3.2 Suppose that G is a connected graph with degree A. Then
M(GP))=7A fork>7 and rA > 3.

Proof. It is easy to see that A} (G(rPx)) = rA, since there G(rP:) % ki,ra.
Thus it suffices to give an L(1,1)-edge-labeling of G(rP;) with span rA
for k > 7. We first give L(1,1)-edge-labelings of G(rPy) with span rA for
k =7,8,9 as follows. Label all the edges incident to each node of G(rPy) in
[1,rA], and label their the adjacent edges by 0. For k = 7, the replacement-
path P; is labeled as follows: pOabOq, where p, g € [1,7A), a,b are different
and can be in [1,3}; For k = 8, the replacement-path P is labeled as follows:
pOabcOq, where p, g € [1,7A), and, a = ¢, c=p and b € [1,3] for p # g,
otherwise b = p = q and a, b are the different two in [1, 3]; For k = 8, the
replacement-path P is labeled as follows: pOabedOq, where p,q € [1,74)],
and, a = ¢, ¢ = p and b, ¢ are the different two in [1, 4] for p # ¢, otherwise
b= p =q and a, b, ¢ are the different two in [1, 4].

Note that the L(1,1)-edge-labeling of G(rP,) with span rA for k > 10
can be obtained by repeating the labels of P, in the replacement-path P
for k = 7,8,9. Then A\ (G(rPy)) = 7A for k> 7. |

Theorem 3.3 Suppose that G is a connected graph with degree A. Let
5<k<6andrA>3. ThenrA< /\'I(G(rPk)) <rA+1.

Proof. It is easy to see that A;(G(rPx)) > rA, since there exists a star
kira in G(rPy). So, it suffices to give an L(1,1)-edge-labeling of G(rPx)
with span rA 4 1 for A > 3. Label all the edges incident to each node
of G(rPy) in [2,rA+1]. For k = 5, the replacement-path Ps is labeled as
follows: p01q, where p, g € [2,7A + 1]; For k = 6, the replacement-path Ps
is labeled as follows: pOalq, where p,q € (2,7A + 1] and a can be in {2,4].
Then rA < A (G(rP:)) < rA +1 for rA > 3. |

Similar to the proof of Theorem 2.6, we next consider the replacement

of regular graph for k = 3,4.
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Theorem 3.4 Suppose that G is a regular graph with degree A. Let rA >
3. Then

M(G(rP;)) = rA for even rA, and rA < M(GEPR)) < rA +1 for odd
rA.

rA < A|(G(rPs)) < 2rA+3 for even rA, and rA < X, (G(rP3)) < 2rA+5
for odd rA.

Proof. For even rA, by theorem 2.5, G(rP,) can be decomposed into
32‘5- 2-factors. For k = 4, label each replacement-path of each 2-factor as
follows: 0(i + 1), where 7 is odd in [1,rA]. For k = 3, label each 2-factor
as follows: (¢ +1)( +2)---, i(E+ D)E+2)(i +3)i(i + )i +2)--- or
i+ 1)+ 2)(E +3)i(e + 1)(E + 2)(¢ + 3)i(i + 1)(i + 2) - - -, where i is in
(1,422 + 3] and exactly divisible by 4.

Then A\ (G(rPy)) = rA and 7A < A, (G(rPs)) < 2rA + 3 for even rA.

For odd rA, similar to the proof of Theorem 2.6, we have rA <
MGEP)) < rA+1 and rA < M(G(rPs)) < 2rA + 5 for odd TA.
[

Theorem 3.5 Suppose that G is a connected graph with degree A. Let
rA > 3. Then

M(G(rPy)) = rA for even TA, and rA < M(G(rPy)) < rA+1 for odd
rA.

rA < M (G(rPs)) < 2rA+3 for even A, andrA < Xy(G(rPs)) < 2rA+5
for odd rA.

Proof. Similar to the proof of Theorem 2.7, by Theorem 3.4, proof is over.

4 tndiy(G(rFP)) withr>1 and k > 3

Note that the incident graph of G(rPk) is G(rPa-1), furthermore, for
k > 3, the total-neighbor-distinguishing coloring of G(r P;) can be derived
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from by the L(1,1, 1)-labelings of G(r Pax—) in the proofs of Theorem 2.2,
Theorem 2.3, Theorem 2.4 and Theorem 2.1. So we have:

Theorem 4.1 Suppose k > 3. tndis>(Pn(P:)) =4 forn > 2, and 4 <
tndis~(Cn(FPx)) £ 5 forn > 3.

Theorem 4.2 Suppose that G is a connected graph with degree A. Let
rA > 3. Then tndix(G(rPy)) = rA + 2 for k 2 5, tndiyg(G(rPy)) <
rA + 3, and, tndis>(G(rPs3)) = 1A + 2.

5 ndiy(G(rP;)) withr>1and k>3

For k > 3, the neighbor-distinguishing coloring of G(rP,) can be derived
from by the L(1, 1)-edge-labelings of G(rP;). in the proofs of Theorem 3.2
and Theorem 3.3.

Theorem 5.1 Suppose k > 3. ndis>(Pa(P:)) = 3 forn > 2, and 3 <
‘ndiz(Cn(Pk)) <4 forn>3.

Theorem 5.2 Suppose that G is a connected graph with degree A. Let
rA > 3. Then ndis>(G(rPy)) = rA + 1 for even rA, ndis>(G(rFy)) =
TA+2 for odd rA, ndix-(G(rFP)) =rA+1 fork > 5.

By the methods as follows, we obtain:

Theorem 5.3 Suppose that G is a connected graph with degree A > 2. Let
andrA > 3. Thenndis-(G(rP3)) = rA for for evenrA, and ndis~(G(rP3))
<rA+1 for odd rA.

Proof. Note that G is a subgraph of a A-regular graph H. For even rA,
by theorem 2.5, H(rP) can be decomposed into '—ZA- 2-factors. For k = 3,
label the replacement of each 2-factor as follows: 1A, i(A — i}, where ¢ is in
[2,rA). Then it is easy to see that the labeling is a neighbor-distinguishing
coloring of H(rP3). Then ndix~(H(rP;)) = rA for even TA.
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For odd rA, similar to the proof of Theorem 2.6, we have ndis-(H(rP3))
< 1A 41 for odd rA.

The neighbor-distinguishing coloring as above cannot work on G(rP;).
If there exists a path P, whose length is larger than 3 in G(rP;), then We
modify the neighbor-distinguishing coloring of H(rP;) as follows. Suppose
the label of the path P, is abab. For a,b # 1,2, modify the label of the path
P, as follows: al12alb for s—1=0 (mod 3) and s > 7;al2bfors—1=1
(mod 3) and s > 5; g12ab12b for s — 1 = 2 (mod 3) and s > 9. We next
consider the case that one in {a,b} is 1 or 2, the other is larger than 2.

Without loss of generality, suppose a = 1. modify the label of the path
P, as follows: 12b for s —1 = 0 (mod 3) and s > 7; 132b for s— 1 = 1 (mod
3) and s > 5; 12b1231b for s — 1 = 2 (mod 3) and s > 9.

Similarly, without loss of generality, suppose a = 2. modify the lahel
of the path P, as follows: 21b for s — 1 = 0 (mod 3) and s > 7; 231b for
s—1=1 (mod 3) and s > 5; 2162132b for s — 1 =2 (mod 3) and s > 9.

It is easy to see that the labeling is a neighbor-distinguishing coloring
of G(rP;). Thus, for 3 < k < 4, ndis>(G(rP3)) < rA for for even rA, and
ndis~(G(rPs3)) < rA + 1 for odd rA. [ |

6 Note

By Theorem 4.1 and 4.2, and tndis(G(rP:)) < tndis~(G(rPy)), we close
by noticing that Conjecture 1.2 and 1.3 are true for the graphs G(rP;) with
k>3andr >1.

By Theorem 5.1, Theorem 5.2 and Theorem 5.3, we close by noticing
that Conjecture 1.1 is true for the graphs G(rP;) with k > 3 and r > 1.
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