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Abstract. Let ox(G) denote the minimum degree sum of k
independent vertices of a graph G. A spanning tree with at most
3 leaves is called a spanning 3-ended tree. In this paper, we
prove that for any k-connected claw-free graph G with |G| = n, if
0k+3(G) 2 n — k, then G contains a spanning 3-ended tree.
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1 Introduction

In this paper, only finite and simple graphs are considered, and we refer
to [1] for notation and terminology not defined here. If a graph G has
no K 3 induced subgraph, then G is claw-free. Ny(S) = {v:v € V(H)
and uwv € E(G) for some vertex u € V(S)}, and dy(S) = |[Nu(S)|. Let
N() = {u:uv € E(G)} and N[v] = N(v) U {v}. We use 0x(G) to denote
the minimum degree sum of all the independent sets with order k in G. If
any two distinct vertices in a graph G can be the end vertices of a hamilton
path of G, then G is a Hamilton-connected.

Pla, b] (or aPb) denotes a path with end vertices a, b along the positive

orientation of P. For a path Pla,b], z,y € V(P), let Py denote the
subpath with endvertices z, y along the positive orientation of P, and yP~x
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denote the subpath with endvertices y, z along the negative orientation of
P. Let w(G) denote the number of components of a graph G.

A spanning tree with at most m leaves is called a spanning m-ended
tree. Broersma and Tuinstra[2] gave the following sufficient conditions to
contain a spanning m-ended tree for a graph G.

Theorem 1.1 ([2]) Let m > 2 and G be a connected graph of order
n 2 2. If 05(G) > n—m+ 1, then G contains a spanning m-ended tree.

Kyaw(6,7] gave the following sufficient conditions for a connected K 4-
free graph to contain a spanning 3-ended tree and a spanning m-ended tree,
respectively.

Theorem 1.2 ([6]) IfG isa connected K, 4-free graph and 04(G) > |G| -1,
then G contains a spanning 3-ended tree.

Theorem 1.3 ([7]) Let G be a connected K, 4-free graph. Then
(i) G contains a hamiltonian path if 03(G) > |G|.

(ii) G contains a spanning m-ended tree if 0,,41(G) > |G| — % for an
integer m > 3.

Kano et al.[5] gave the following sufficient conditions for a connected
claw-free graph to contain spanning m-ended trees.

Theorem 1.4 ([5]) If G is a connected claw-free graph of order n and
Om+1(G) 2 n—m (m > 2), then G contains spanning m-ended trees. And
the bound is sharp.

Recently, Chen, Chen, and Hu{3] gave the following sufficient conditions
for k-connected K 4-free graphs to contain spanning 3-ended trees.

Theorem 1.5 ([3]) If G is a k-connected K 4-free graph of order n with
k > 2 and 0443(G) > n+2k —2, then G contains a spanning 3-ended tree.

Inspired by Theorems 1.4 and 1.5, in this paper we explore sufficient
conditions for k-connected claw-free graphs to contain spanning 3-ended
trees.

Theorem 1.6 If G is a k-connected claw-free graph of order n and
0x+3(G) =2 n — k, then G contains a spanning 3-ended tree.

By Theorem 1.4, if G is a claw-free graph and o4 > n — 3, then G contains
a spanning 3-ended tree and the bound is sharp. By Theorem 1.6, if G is a
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connected graph and o4 > n—1, then G contains a spanning 3-ended tree.
It follows that the bound in Theorem 1.6 is not best possible, and here we
propose the following conjecture.

Conjecture IfG is a k-connected claw-free graph of order n and oy43(G) >
n — k — 2, then G contains spanning 3-ended trees.

2 Preliminaries

In the proof of Theorem 1.6, we mainly use the definition and properties
of insertable vertices defined in [4].

Suppose that G is a connected non-hamiltonian graph and C is a longest
cycle in G with counter-clockwise direction as positive orientation. Assume
that H is a component of G — C and No(H) = {v1,ve, - , v} such that
v1,Vg,+ -+ ,¥; are labeled in order along the positive direction of C. Let
Qi =C(vi,vip1], 1 €i<t—1, and Q¢ = C(vg,v1]. A vertex v in Q; is an
insertible vertex if v has consecutive neighbors u and u* in C — Q;.

In [4], Chen and Schelp gave the following two lemmas. We will use
them in the proofs of Theorem 1.6.

Lemma 2.1 ([4]) For each Q;, there is a non-insertible vertex in Q; —
{vier}-

For each Q;, let w; be the first non-insertible vertex in Q; — {vi4+1}.
Then the following lemma holds.

Lemma 2.2 ([4]) Let 1 < i < j < t. Then for z; € Clv},w;] and
z; € C[v},w;), the following properties hold:

(1) There does not exist a path P[z;,z;] in G such that P[z;,z;] N
V(C) = {=z:, z;}.

(2) For every v € Clz},z7), if vz; € E(G), then v~z; ¢ E(G). Simi-
larly, for every u € Clz},z7], if uz; € E(G), then u™x; ¢ E(G).

(3) For every v € Clz;, zj], if vzi,vz; € E(G), then v~ vt ¢ E(G).

Suppose for some i € [1,t], N(w;) N V(G — C — H) # @ and wj] is the
second non-insertible vertex in Q; — {vi+1}. Then Chen, Chen and Hu(3]
gave the following result.

Lemma 2.3 ([3]) Let 1 <i<j<t, z: € Clwf,w] and z; € Clv},wj].
Then
(1) there does not exist a path Pz, z;] in G such that Plz;, z;] N
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V(C) = {zi,z;}.

(2) for every v € C'[:z;",xj_], if vz; € E(G), then v~ z; ¢ E(G). Simi-
larly, for every u € Clz},x7], if uz; € E(G), then u™z; ¢ E(G).

(3) for every v € Clz;,z4), if vz;,vz; € E(G), then v=v* ¢ E(G).

3 Proof of Theorem 1.6

Let G be a graph satisfying the conditions of Theorem 1.6. Suppose to
the contrary, any spanning tree in G contains more than 3 leaves. Let
P = Pla,b] be a longest path in G such that P satisfies the following two
conditions:

(T1) w(G — P) is minimum,;

(T2) subject to (T1), |Pa,v]| is minimum, where v is the first vertex
of P with N(v) n V(G — P) # 0.

Let G’ denote a graph with V(G’) = V(G)U{w}, E(G’) = E(G)U{vov :
v € V(G)}. Then the cycle C = vPla,blvg is a maximum cycle of G'.
We define the counter-clockwise orientation as the positive direction of C.
Let Np(H) = {v1,v2,-+, %}, Qi = C(vi,viy1] for 0 < ¢ < ¢t —1 and
Q: = C(v,vp). By Lemma 2.1, let w; denote the first non-insertible vertex
inQi—{vis1}for0<i <tand W = {wo, w1, ,w;}. By Lemma 2.2(1),
W is an independent set.

Obviously, C can be divided into disjoint intervals T = Clc,d] with
c,dt ¢ N(W) and Clct,d] C N(W). We call the intervals W-segments.
If ¢ = d, then Clc*,d] = 0, ie., if |T| = 1, then dw(T) = 0. By the
definition of W-segment, for any W-segment T, there exists { € {0,t] such
that T C Clwi, wy,,] (subscripts expressed modulo ¢ + 1).

Claim 1. a = wp and b ¢ N(w;) fori e [0,t—1].

Proof. Suppose that a is an insertable vertex such that there exists a vertex
v € C — Qo with av,avt € E(G). If v # b, then we can get a path
P’ = Plat,v]aP[v*,b]. If v = b, then we can get a path P’ = Pfa*,bja.
In any case, |[V(P')| = |V(P)| and |Pla*t,v]] < |Pla, 1], a contradiction
with (T2). Thus a = wo.

Suppose w;b € E(G), for some i € [0,¢ — 1]. Obviously, vo = bt and
vow; € E(G). It follows that w; is an insertable vertex, a contradiction.
Thus b ¢ N(w;) for i € [0,t —1]. O

Claim 2. dw/(v;) =0, for any vertex v; and any integer i € [1,1].
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Proof. Suppose i =1,w; € Nw(n) and y € Ny(v1), j € [0,¢]. Since
Glv1,wj, vy (v]),y] # K13 and yvy ,yvl ywiy ¢ E(G), wjv] ,w,'ufL €
E(G). Since v, 15, w;vy € E(G) and wj is a non-insertible vertex, w; =
Then by wjv] € E(G), we can get a cycle C = voyC~[v1, wo]Clvf ,vo]
longer than C, a contradiction. Thus dw (v1) =

Suppose i € [2,t],w; € Nw(v;) and y € NH(v,-), j € [0,¢]. By the proof
of preceding case i = 1, w; € C(v;—1, ), i.e., w; = w;_1, and w,-_lv;" €
E(G). Obviously, all the vertices in C(v;_;,w;_1) can be inserted into
C(vi,vi~1). Let v; Pyv;_, denote the path with V(P;) = C(vi_1,w;—1) U
Clvi,vi—1) obtained by the inserting process, and v;_; Pyv; denote a path
connecting v;_, and v; with internal vertices in H. Then we can get a cy-
cle ¢’ = C~ v, wi_l]v;" Pyv;_1 Pyv; longer than C, a contradiction. Thus
dw(vi) =0 for i € [2,1], and then by the case i = 1, the claim holds. [

Claim 3. For any vertex u € T, dw(u) <1 and dw(T) = |T'| — 1, where
T C Clw;, wj,,) for any integer j € [0,t — 1.

Proof. Suppose |T'| =1 and T = {u}. Then dw(u) =0 and dw(T) = |T| -
1 =0.Suppose |T| > 2,and T = {z,z1,%2,"* ,Zn}, Where z,z1,%2, -+ ,Zn
are labeled in order along the positive direction of C. Then z ¢ N(W),
{z1,z2, - ,zn} € N(W). Assume that there exists a vertex z; € T such
that dw(z;) = 2, for some i € [1,h]. Suppose {w,,,w,,} C Nw(z:)
and 0 € j; < jp £ t. Then by Lemma 2.2(3), z7z} ¢ E(G). Since
Gle, wy, 27 ,z¥] # K, KL w;,z; € E(G) or w,,x'*‘ € E(G) Similarly,
w;,z; € E(G) or wj,z] € E(G). Since j; < js, z; wj,,zfwj, € E(G)
by Lemma 2(2). Since z;w;,,z;w;, € E(G) and wj,, w;, are non-insertible
vertices, z; = vj41, wj = wWj, Wj, = Wj41, & contradiction to Claim 2.
Thus Claim 3 holds. ()

Claim 4. IfT C C[w;, wq ), then dw(u) < 1 for any vertex u € T — {vo}.

Proof. Suppose b & T. Then by the proof of Claim 3, for any vertex v € T,
dw(u) < 1. Suppose b € T and b € N(W). Then by Claim 1, Nw(d) =
{w:}. By Lemma 2.2(2), Nw (v) C {w:} and then dw (v) < 1 for any vertex
vE€T —{vw}.IfbeT and b ¢ N(W), then T = {b,vo} and dw(b) =0. O

t
Claim 5. ) dp(w;) <|P|—-2t-1.

1=0
Proof. By Claim 2, dp(W) is maximal if and only if v € N(W), for

any vertex u € V(P) — {v1,vs,---,v} UW. By Claim 3 and Claim 4,
t
Sdp(w;) < |P|-2t—-1. 0

‘.:0
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Claim 6. Ifz,2; € V(G—P) and 2125 ¢ E(G), then Np(2;)NNp(z2) = 0.

Proof. Suppose v; € Np(2z1) N Np(22),i € [1,t]. Since v] z1,v] 22,2122 ¢
E(G), Glvi,v;,21,20] = K} 3, & contradiction. Thus Np(z;) N Np(22) =
0. a

Claim 7. For any component H of G — P, |Np(H)| = k.

Proof. By Lemma. 2.2(1), for 0 < i # j < t, Ng_p(w;) N Ng_p(w;) = 0,
and then Z de_p(w;) < n — |P| —| H|. Since G is k-connected, t > k. If
t>k+2, then {wo,wl, -+ we} 1s an mdependent set with order at least
k + 3. By Claim 5, E d(w;) = Z dp(w;) + 2 de-p(w;) < (|P| -2t -

)+ (n—-|P| - |H|) =n-—2t— 1 - |H|, a contradxctlon to 0x4+3(G) 2
n — k. Suppose t = k+ 1 and u € V(H). Then {u,wo,wy,--- ,w,} is an
independent set with order k+3. Since N (u) C {vi,v2," - ,vt}U(H {u}),

d(u) <t+|H|—1=k+|H|. By Claim 5, Zd(w,)+d(u) de w;) +

Z dg-p(wi)+d(u) < (|P|-2(k+1)-1)+(n—|P|-|H|)+k+|H| = n—k-3,
=0
a contradiction to ox4+3(G) 2 n — k. Thus t = k. a

By Claim 6 and Claim 7, we can get the following result.

Claim 8. Suppose 21,23 € V(G — P) and 2129 ¢ E(G). Then dp(z1) +
dp(z3) < k.

Claim 9. For any component H of G — P, H is hamiltonian-connected.
Proof. Suppose that H is not hamiltonian-connected. Then by Ore’s the-
orem in (8], there exist two nonadjacent vertices z; and zp such that

du(z1) + dH(zz) < |H|. By Claim 8, dp(21) + dp(2z2) < k. Notice that
{21, 22, wo, wy, - - - : wg } is an independent set thh order k+3 and by Claim

5, we have that Z d{w;) + d(z1) + d(22) = Z dp(w;) + Z de-p(w;) +

dp(21)+dp(22)+dn(zl)+dn(22) < (|P|-2k— 1)-l-(n—IPI—IJ’JI)+’°+IHI
n —k — 1, a contradiction to ox4+3(G) > n — k. O

Claim 10. For any two distinct vertices v;,v; € Np(H), |[Ng(v;) U
Ny (v)l 2 2,4,5 € [L,8).
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Proof. Suppose there exist two distinct vertices v;,v; € Np(H) and a ver-
tex u € V(H) such that Ny(v;) U Ny(v;) = {u}. Then Np(H) U {u} —
{vi,v;} is a vertex cut of order k£ — 1 of G, a contradiction to the connect-
edness of G. a

Suppose w(G — P) = 1, then by Claims 9-10, G contains a spanning
3-ended tree. Thus we assume that w(G — P) > 2 and H' is a component
inG-P-H.

Claim 11. N(w;)NV(H') # 0 for some 1 <i < k.

Proof. By Claim 1, N(wp) N V(H') = @. Suppose N(w;) N V(H') =0 for
any i € [1,k|. Let 2, € V(H), 22 € V(H’). Then {z1, 20, wo, w1, + ,wx} is

an independent set of order k + 3. By Claim 8, dp(z;) + dp(z2) < k. By
k k
Lemma 2.2(1), 3" dg_p(w;) < n—|P|—|H|—|H'|. Then }_ d(w;)+d(z;)+
i=0

i=0
d(z2) = 35 dp(wi) + 3 do—p(ws) +dp(a1) +dp(22) + i (21) + s (22) <

i=0 i=0
(|Pl-2k-1)+(n—|P|—|H|-|H'|)+k+|H| -1+ |H'|-1=n—-3—k,
a contradiction to ox4+3(G) > n — k. a

By Claim 11, we assume N(w;) N V(H’) # 0 for some ¢ € [1,k]. By
Lemma 2.2(1), N(w;) NV (H') =@ for any j € [0, k] — {3}

Claim 12. There exists a second non-insertible vertex w} in Q; — {vi41}
and w, ¢ N(H').

Proof. Suppose Q; — {vi+1} contains only one non-insertible vertex w;. Let
vi+1P1v; denote the path with V/(P,) = V(C) — {w;} obtained by inserting
all the vertices in Q; — {w;, vi4+1} into C[viyy,v;]. Suppose H = {u}. Then
v;,vi41 € N(u), and we can get a path C' = v;1 Pivjuviy;. Let P’ =
C’ — {vo}, then w(G — P’ — H) < w(G — P — H), a contradiction to (T1).
Suppose |H| > 2. By Claims 9-10, assume v;Hv;4; is a hamilton path of
H U {vi4+1,v:}. Then we can get a cycle C' = v;11 Pyv; Hviy longer than
C, a contradiction. O

By Claim 12 and Lemma 2.3(1), W’ = {wo, -+ , wi—1, W}, Wit1,- - , Wk}
is an independent set. By the preceding proof and Lemma 2.3, W' has the
same properties as W. Then by Claim 5, Y. dp(w) < |P|—-2k—1.

wew’

Now, we complete the proof of Theorem 1.6. Let z, € V(H),22 €
V(H'). Then W' U {21,2;} is an independent set of order k£ + 3 in G.
By Lemma 2.3(1), Y. dg-p(w) < n ~|P| —| H| —| H'|. By Claim 8,

weW’
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dp(21) + dp(z2) < k. Obviously, dy(z1) < |H| — 1,dp/(22) < [H'| - 1.
Thus Z d(w) +d(z1) +d(22) = E dp(w + E dc plw)+dp(z1) +
dp(z2) 5 dH(Zl) +dpi(z2) < (1P| - % - 1)+ (n— IPI ~|H| -|H'))+ k+
(|H| = 1)+ (|H’| — 1) = n — 3 — k, a contradiction to ox43(G) 2 n — k. It
follows that Theorem 1.6 holds. O
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