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Abstract

A map is unicursal if all its vertices are even-valent except two odd-
valent vertices. This paper investigates the enumeration of rooted nonsep-
arable unicursal planar maps and provides two functional equations satis-
fied by its generating functions with the number of nonrcoted vertices, the
number of inner faces (or the number of edges) and the valencies of the two
odd vertices of maps as parameters.
Keywords: Nonseparable unicursal map; Enumerating function; Func-
tional equation
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1. Introduction

Throughout this paper we consider the rooted maps on the plane. Defini-
tions of terms not given here may be found in [14].

The enumeration of rooted planar maps was initiated by W.T. Tutte
in the early of 1960’s for attacking the Four Color Problem. His series of
census papers [21—23} laid the foundation for the theory. Since then, the
theory has been developed by many scholars such as Arqués 1}, Brown (6],
Mullin et al. [19], Bender et al. 2,13}, Liskovets et al. [9-11], Bousquet-
}\/Iélou et al. [4,5], Walsh et al. [24], Mednykh et al. [20], Gao {7,8] and Liu
12-14|.

A sum-free formula for the number of rooted unicursal planar maps with
a given number of edges first appeared in &10]. In that paper, Liskovets and
Walsh had also found a sum-free formula for the number of unicursal maps
rooted in a vertex of odd valency and a formula for the number of rooted
unicursal maps as a function of the odd vertex valencies. Several years
later the enumeration of rooted unicursal planar maps with the valencies
of the two odd vertices and the number of edges or the number of inner
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faces, the number of nonrooted vertices and the valencies of the two odd
vertices of maps as parameters was investigated by Long and Cai 415,16].
Two summation-free formulae were obtained. In 2013, Long and Cai [17]
treated the enumeration of 4-regular unicursal planar maps with the num-
ber of nonrooted vertices and the valencies of the two odd vertices as three
parameters and obtained two sum-free formulae. In 2014, Long and Cai [18]
investigated the enumeration of loopless unicursal planar maps with the va-
lencies of the two odd vertices and the number of edges as three parameters
and obtained several explicit expressions of its enumerating functions.

In this paper, we will try to enumerate nonseparable unicursal planar
maps rooted in a vertex of odd valency with parameters: the number of
nonrooted vertices, the number of inner faces (or the number of edges) and
(tjhe vacllencies of the two odd vertices. Two enumerating equations will be

erived.

‘We now define some basic concepts and terms. A map is a 2-cell imbed-
ding of a connected graph on a surface, which in this article is assumed to
be a sphere. Rooting a map means distinguishing an edge-vertex incidence
pair (e, v) as the root (a loop is considered to be incident twice to the same
vertex), the edge e as the root-edge and the vertex v as the root-vertex. The
root-face, also called the outer face, is the face incident to the root-edge
and on its right as seen by an observer facing away from the root-vertex.
A planar map with a rooting is said to be a rooted planar map.

A map is called eulerian if all the valencies of its vertices are even and a
map or graph is generally called unicursal if it possesses an eulerian walk,
not necessarily a circuit. It is well known that a map (or connected graph) is
unicursal if and only if it contains no more than two vertices of odd valency.
For the sake of brevity we abuse the term and call a map unicursal if it has
exactly two vertices of odd valency. An endpoint is a vertex of valency 1; a
unicursal map evidently can have at most two such vertices.

For a rooted planar map M, a vertex v of M is said to be a separating
vertex if there are submaps M; and M; of M such that M = M, | M,
with M) (Y M3 = {v} where ¢(M;) > 0 and e(M3) > 0 (¢(M;) denotes the
number of edges of M;,: = 1,2). A nonseparable unicursal planar map is a
unicursal planar map in which there is no separating vertex. Clearly, there
is no loop in a nonseparable unicursal planar map.

For any map M € M, let M — e,.(M) and M e e.(M) be the maps
obtained by deleting e, (M), the root-edge, from M and contracting e,.(M)
into a vertex as the new root-vertex, respectively.

Given two maps M; and M3 with roots r; = r(M;) and ry = r(My),
respectively, we define M = M; + M; to be the map obtained by identifying
the root-vertices and the root-faces of M; and M; and rooting M at r;. The
operation for getting M from M; and M, is called 1lv-addition. Further,
for two sets of maps %, and %, the set of maps

%1®%2={M1-;-M2|MiG%,i=1,2}.

is said to be lv-production of %; and %,.

Let % and % denote rooted nonseparable eulerian planar maps and
rooted nonseparable unicursal planar maps, respectively. Define their enu-
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merating functions as

fu(zy,z) =Y a?mOyn@)sin),
Uew

Z x2m(M)+lyn(M)zs(M)u2t(M)+l ,

Me#

f@‘(xv Y, z,u) =

where 2m(U),n(U) and s(U) are respectively the root-vertex valency, the
numbers of nonrooted vertices and inner faces of U, 2m(M)+1,n(M), s(M)
and 2¢t(M) + 1 are the root-vertex valency, the numbers of nonrooted ver-
tices, inner faces and the valency of the nonrcoted odd-valent vertex of M,
respectively.

2. Some Lemmas

In this section, some useful lemmas will be obtained.

Let O; and O; be two maps. Assume that o; and oz are the root-vertices
of O, and O;, respectively. Write

02 = (r2, Jara, ~7227'2, B \72_17'2) = (51, Sz)

and .
o1 = (r1, Jir1, Jer, -+ I i) = (S),

where 51,52 and S are in linear order. Then the map O; + -O; defined
to be O, U O, provided that O; N O = {0},0 = 01 = 02 and that the
root-vertex o of Oy + O3 as

o= (Slr S) SZ)
is called the inner 1v-addition of O; and O;. Define
O14034---+-O=kx-0

when O] =0y =:-- = 0O = O. If k =0, then k x -O is defined to be the
empty map with no vertices.
Further, for two sets of maps, @; and Qp, let

Q1 X -Qy={01+:02|0; € 21,0, € Q2}
be called the inner 1v-product of Q; and Q3. Define

QL X -Qy XX Q,=Q%"

when Q) = Qz = -++ = Qn.

Let % and % be the sets of all rooted nonseparable eulerian planar
maps and nonseparable unicursal planar maps rooted in a vertex of odd
valency, respectively. Now, we find that % can be partitioned into two
parts, i.e., o

% = %l + %21 (1)
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where % = {M | M € %, the nonrooted end of er(M) is an odd-valent
vertex}.
Further, we have

@:= @:l +@:23 (2)

in which ”Zl = {Lo}, Lo denotes the link map. In what follows we will
define an operation.

For two maps M) = (X}, J1) and My = (&>, J2) with the roots r, and
T3, respectively, the composition of M; and Mj into M = (X, J) is called
the root addition of M; and M, and written as

M= Ml+ |r M2a (3)
if X = &) + (X2 — Kr3) and J is induced from J; and J2 with

-1 -1
v = (11, Jor2, 0, Jg T2, ATy, Jp 1)

and
vgr = (01, J10r1, -+, I 01, Jabra, -+ -, Ty 16r))

as the root-vertex and the nonrooted end of the root-edge of M while r = r,
is the root of M. It is easily checked that the operation of root addition
does not satisfy the commutative law. Moreover, it can be shown that the
operation satisfies the associative law. This allows us to write

k k
Dol Mi=Mi+1: Y |- M

i=1 =2
k-1
= Z |r M+ lr M. (4)

=1

For M e % — ”271'1, let » = (M) be the root with the two ends of the
root-edge being

v = (r, P), (5)
where
P=<Jr,J%, -, T r>
and
vgr = (67, Q), (6)
where

Q =< Jor,J%r, - , T Yor>.

If for an integer 7 > 1, there exist two integers m > 1 and n > 1 such

that )
(T T’r = J"or, )
then P and Q) are said to be f-splittable because

P=<P1,P2>, Q=<Q2,Q1 >,
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where

Pl=<\77'1"',\7j_lr>’ P2=<s7j'rv°"u7_lr>)
Q2 =< Jbr,--- , T Y6r>, Qi=<J"r,.--,J tor>.

Here, {P1,@1} and {P,Q2} are called f-split pairs. Of course, j #
1 because there always exists an integer ! such that (J8)'Jr = dr and
(T8 Tr = Jr. However, j = val(vr) — 1 may occur, where val(vy) is
the valency of root-vertex of M.

If for every j > 1, there do not exist m > 1 and n > 1 such that (7)
holds, then P and Q are called f-unsplittable.

If P and @ are f-split into
P=<P1,P2,"',Pk>, Q=<Qk""’Q21Q1>

such that every f-split pair {P;,Q;} (: = 1,--- ,k) is f-unsplittable, then
the number k is called the root-index of M. Let M; be the maximal submap
of

k
M- U {P.‘HQJ}

j=1,g#i
involved with {P;,Q;} for i = 1,2,--- , k. Now, we can present our results.
Lemma 2.1. For M € 0?;;2, we have

M= Z |1‘ Mi) (8)

such that k is the root-iggiex of M, there is an even number of M; € % — L,
and the others are in %2 among all M; (i = 1,2,--- ,k), where L, is the
loop map.

Proof. From what are just discussed, we see that M has form (8). By
considering the definition of %32, P; and Q; of M; have the same parity and
the number of P; with odd lengths is even. Because the root-edge of M is
a link, so is that of M; and hence those with odd length of P; is a member
of % — Ly, where L, is the loop map and those with even length of P, is
an element of %4;. The lemma follows. a

According to (8), we see the fact that

k
Moa=Z-M,-oa,-, (9)

i=1

where a and a; are respectively the root-edges of M and M; (i = 1,2,--- , k),
and the summation with a dot is the inner 1v-addition. Meanwhile, we have
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to pay attention to the fact that the root-vertices of M ea and M; e a; are
of the forms

(Q, P) and (Qs, P) (10)
fori=1,2,--. ,k, respectively, and that the following relations
k
p=3pi=0(mod 2);
i=1
k
qg= Zqi =0 (mod 2);
i=1
pi = q; (mod 2) (11)

are satisfied, where p,q,p; and g; are respectively the lengths of P,Q, P;
and Q; (1 =1,2,--- ,k).

Lemma 2.2. Let ?7(’12)(q, p)={Mea | MeEe "?Zz, the root-vertex of
M e a is the vertex (Q, P)}. Then we have

k
02{12)((1,1’) =Z Z H'%(Qi,l’i): (12)

k>1(gp)ei=1
where ¢,p and (¢,p) = (q1,* ,qk,P1,"* - , Px) are as described in (11),
Q= {(g,p) | (¢,p) satisfied by (11)},
% (qi,pi) ={M | M € % with the rooted vertex (Q;, P;)}

and the operator ] with a dot represents the inner 1v-product.

Proof. Let the set on the right side of (12) be denoted by & for conve-
nience.

For any M € ”7;{12)(q, p), we can construct a map M’ obtained by
splitting the root vertex into o; and oz with an edge o’ = Kr/, where

o1 = (r', P) and 0y = (67, Q)

from M such that M = M’ ea’, M’ € %5. From lemma 3.1, M’ has the
form shown in (8) and hence M is of the form (9) satisfying (10) and (11).

By the definition of 02;2 and the nonseparability of M’, any map in the
terms on the right side of (9) is allowed to be in % which includes the loop

map L,. From the relations (10) and (11), M € . Thus ?Zl?) (¢,p) C %.

Conversely for any M € %, since M has the form as shown in (9) in the
replacement of M e a and M; ea; by M and M; respectively with (10) and
(11), we may construct maps M’ and M/ from M and M; by splitting the
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root-vertex o = (@, P) into o] = (r/, P) and a2 (67", Q) w1th anedgea’ =
Kr', and the root-vertex o; = (Q,, P;) into oy = (v}, P;) and o}y = (o7}, Q:)
w1th an edge Kr{ fori = 1,2,-- , k, respectively. From the eulerianity and

nonseparability of M; with the relations (10) and (11), Me %(12) Since

M =M'ed, we have M € %(12)(q,p) Hence % C 42/(12)(q,p) O
Similarly, we have

Lemma 2.3. For M € ?Z, we have
k
M=) M (13)
i=1

such that k is the root-index of M, there is only one map M; (1 < j < k)
with exactly two odd vertices, one of them being not incident with e, ()
and the other being nonrooted end (or rooted end) of e,(M; ) there is

an odd (or even ) number of M; € % and the others are in %12 among
M (i=12--,k

Proof. From what are discussed before, we see that M has form (13).
By considering the definition of %5, there is only one map M; (1 < j <k)
with exactly two odd vertices, one of them being not incident with e,(M;)
and the other being the nonrooted end (or rooted end) of e.(M;), P; and
Q; of M; (i # j) have the same parity and the number of P; with odd
lengths is odd (or even). Because the root-edge of M is a link, so is that of
M; and hence those with odd length of P; (i # j) is an element of % — L;
and those with even length of P; (¢ # j) is a member of %12 The lemma
follows. a

By (13) we also see the fact that

k
M'G=Z'M£°ai, (14)
i=1
where a and a; are the root-edges of M and M;,i = 1,2, .. , k, respectively,

and the summation with a dot is the inner 1v-addition. Meanwhile, we have
to pay attention to the fact that the root-vertices of M ea and M; e a; are
respectively of the forms

(@, P) and (Qi, F;) (15)

for i=1,2,.-- ,k and that the following relations

k
p=Y_pi=0 (mod 2);
i=1

K
g= Zq,- =1 (mod 2);

i=1
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(pj + q;) =1 (mod 2);

pi = gi (mod 2) (i # j) (16)
are satisfied, where p, g, p; and g; are the lengths of P,Q, P; and Q; (i =
1,2,..-, k), respectively.

Lemma 2.4. Let a’i(—?)(q, p)={Mea | Mc %, with the root-vertex
(Q, P)}. Then we have

k
Un@p) =Y Y ] #p) (17)

k>1(g,p)eQ i=1
where ¢,p and (¢,p) = (q1,** , gk, P1,**+ , Pk) are as described in (16),
Q= {(g,p) | (g, p) satisfied by (16)};

M(gi,p;) ={M | M € U with the rooted vertez (Q;, P;)}U
{M | M € % with the rooted vertex (Q;, P;) (i # j)}

and the operator [] with a dot is the inner 1v-product.
Proof. Let the set on the right side of (17) be denoted by M for conve-
nience. ~

For any M € %3)(q,p), We can construct a map M’ obtained by split-
ting the rooted vertex into 0, and o, with an edge a' = Kr’', where

01 = (r', P) and 0y = (7', Q)

from M such that M = M’ e a’, M’ € %. From lemma 2.3, M’ has the
form shown in (13) and therefore M is of the form (14) satisfying (15) and

(16). By the definition of U, and the nonseparability of M’, any map in
the terms on the right side of (14) is allowed to be in % which includes the

loop map L; except for one map in %. From the relations (15) and (16),
M € #. Thus, %32 (q,p) C A.

Conversely for any M € #, since M has the form as shown in (142 in
the replacement of M e a and M; e a; by M and M; respectively with (15)
and (16), we may construct maps M’ and M/ from M and M; by splitting
the rooted vertex o = (Q, P) into o} = (', P) and 05 = (6r',Q) with an
edge o’ = Kr’', and the rooted vertex o; = (Q;, P;) into o}, = (r{, P;) and
oy = (dr},Q;) with an edge Kr} for i = 1,2,--- ,k, respectively. From

—~—

M; € % and the eulerianity and nonseparability of M;(i # j) l/ith the
relations (15-16), M € %(3). Since M = M’ e a’, we have M € %(3)(q,p).
Therefore A C %2)(q, p)- O
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3. Main results

Theorem 2.1. The enumerating function f = fz{x,y, 2, u) satisfies the
following equation:

5 _Tvulv (1 + fo) — 221 + )]
u?(1+ fo)? — 22(1 + fg)?
z2y(zh — f)[(1 + fo)(1 = fo + 2ho) — z2(1 + ho)?] (18)
[T+ Jo)? — 3L+ ho) P |
where fo = f%(m,y,z )f(; = f‘?/(u>yvz):h0 = h?l(yvz) = f‘w(l,y,z) and
h= hé;(yyzﬁu) = f:w 1,9,2,u).
Proof. First, the contribution of "Zl is

+

f U = Ty, (19)
because there is only one map, the link map in %,.
Then, by Lemma. 2.2, the contribution of %, is
= z Z2(M)+1yn(M) 58 (M)g, 2(M)+1

Me%,

f&
m(M)—1
= zyu Z Z m2m(M)—2ryn(M)za(M)u2r
Me@a?) r=1
L5

—on Y Y (y) Ates,

k>11=0
where
m(M)
Ay = Z Z Z2(M)=(2i= 1) n(M) 55(M), 2i-1
Me% i=1
m(M)—1
D,y = Z E xzm(M)—Ziyn(M)zs(M)u%.
Mex i=1
Since
gufu?m M) — 2mM] oy zu(fE = fo)
AI:J\;/ u? — 2 y et = u2—z2 '
Aue Z z2u2m(M) _ u2x2m(M) yn(M)zs(M) _ $2f6« _ u2f0
2 w2 — 72 ul—z2

Mew
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where f§ = fo(u,y, z); so we have

Iz, = -xyuz (A2 + A1) + (A2 — Ar)*]
k>1
ayu (1 - AgAz + (A1)
T (1-822—(Ay)?
_ zyulz?f5 (1 + £3) — w2 fo(l + fo))
T w14 fo)? - 22(1+ f3)?

(20)

Finally, by Lemma 2.4, the contribution of ”2; is

qu};= Z x2m(M)+lyn(M)za(M)u2t(M)+l

Me%;

=2y Z Z x2m(M)—2ryn(M)zg(M)uzt(M)+1

k-2
{[z lgj k— 2041 A k=20~ 2}
k( )A’ A
2041

k>2 =0

[ m(M)
X Z Z xzm(M)—2i+1yn(M)zs(M)u2t(M)+1

_ME@_ =]
-

Zlij 2l A 7k—21-1
+ ( )A, Al
Ic>1 =0

m(M)-1
N Z z 2 (M)=2 n(M) ja(M),,2(M)+1

_MG@- i=0

where

m(M)

— Z Z zZm(M)—(zi—l)yn(M)zs(M),
Me% i=1

m(M)-1

Z Z :L,2m(M) -2 n(M)zs(M)

MeZ i=1
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Since
py= 3 2AI) naan poiany _ 2o — o)
1 ey 1-77 1-22 °
2m(M 2h _
bym 3 T iy L Fo—fo

—x2 1—-22 '
Me% 1-2

where ho = fo(1,y, z), we get
1 h— -
fz =5y {”” / Z [k(Af + A1 = k(A — AYFY]

zh-af Z k(A + '1)"—1+k(A'2—A’1)"“]}

zy(zh — nmAa— 5) + (A% + (1 - AYY)
(1-22)[(1 - Ag)? - AP
_z 2y(zh — F)[(1 + fo)(1 — fo + 2ho) — z2(1 + ho)?)
[(1+ fo)? — 22(1 + ho)2]? ’

(21)

where h = f(1,y, z,u).
Now, by (19 — 21), we obtain

f=fo, iz, + Iz
zyulg? f3(1 + £3) — v fo(l + fo))
L+ Fof — 2T+ )7
22y(zh — f)[(1 + fo)(1 — fo + 2ho) — 2%(1 + ho)z]
(1 + fo)? — z2(1 + ho)?)?

which is the statement of the theorem. o
Let u =1 and £ = y in (18). Then we have

Theorem 2.2. The enumerating function g = g5(z,y) = fz{z,v,9,1)

satisfies the following equation:

=zyu +

+

_:z:y[(l + go) - :1:2(1 + Ho)]
© (14 g0)? —22(1 + Ho)?
z?y(zH — g)[(1 + 9o)(1 — go + 2Ho) — z%(1 + Ho)?] (22)
[(1 + 90)? — 2(1 + Ho)?)? ’

where go = fo (2,¥,9), Ho = ha (y,¥) = f2(L,y,y) and H = hg{y,y,1) =
fd‘i’(lv Y9 1)
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From the equation (18), one may see that enumerating function of
rooted nonseparable unicursal planar maps f has a close relationship with
that of rooted nonseparable Eulerian planar maps fo. And the enumerating
function fo satisfies a cubic equation which has no easy way to solve up to
now [14]. This implies that further work can also be done on how to find
an explicit solution of the equation.
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