New error-correcting pooling designs with
singular linear space

Xuemei Liu *, Qingfeng Sun

College of Science, Civil Aviation University of China, Tianjin,300300,
P.R.China

Abstract As a generalization of attenuated space, the concept of singu-
lar linear spaces was firstly introduced in [1]. In this paper, we construct a
family of error-correcting pooling designs with the incidence matrix of two
types of subspaces of singular linear space over finite fields, and exhibit
their disjunct properties. Moreover, we show that the new construction
gives better ratio of efficiency than the former ones under conditions. At
last, the paper gives the brief introduction about the relationship between
the columns (rows) of the matrix and the related parameters.
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1. Introduction

A group testing algorithm is non-adaptive if all tests could be speci-
fied without knowing the outcomes of other tests. The basic problem of
non-adaptive group testing is to identify the defective parts as the subset
of objects being tested. Given a set of s items with some defections, the
group testing problem is asking to identify all defections with the minimum
number of tests, each of which is on a subset of items, called a pool, and
the test-outcome is negative when the pool does not contain any defection
and positive when the pool contains a defection at least.

A mathematical model of the non-adaptive group testing design is a
d-disjunct matrix, which is also called a pooling design. Designing a good
error-tolerant pooling design is the central problem in the area of non-
adaptive group testing.

A pooling design is usually represented by a binary matrix with columns
indexed with items and rows indexed with pools. An entry at cell (i, §) is 1
if and only if the i-th pool is contained by the j-th item, and 0, otherwise.
In practice, test-outcomes may contain errors, to make pooling design error
tolerant, one introduced the concept of d*-disjunct matrix (see Macula {2]).
A binary matrix M is said to be d*-disjunct if given any d + 1 columns of
M with one designated, there are z+ 1 rows with a 1 in the designated col-
umn and 0 in each of the other d columns. The concept of fully d*-disjunct
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matrix was given in the paper [3]. A d*-disjunct matrix is fully d*-disjunct
if it is not z¥-disjunct whenever £ > d or y > z. A d*-disjunct matrix
can be employed to discern d defections, detect z errors and correct 15
errors(see [4]).

A group test is applicable to an arbitrary subset of clones. A pool-
ing design is a specification of all tests such that they can be performed
simultaneously, with the goal being to identify all positive clones with a
small number of tests(see [5,6,7]). A pooling design can reduce the cost
greatly and has many applications in molecular biology, such as DNA li-
brary screening, gene detection, nonunique probe selection, etc(see [8]).
There are also several constructions of d*-disjunct matrices in the litera-
ture. (Balding and Torney [12]; Erdds et al.[11]; Li et al.[9].)

XueMei Liu ,You Gao constructed a family of error-correcting pool-
ing designs with the incidence matrix of two types of subspaces of singular
linear space over finite fields (see [13]), as a generalization of Liu’s matrix,
in this paper, we use the general subspaces of type (m1, k) to substitute
special subspaces of type (r,0), and exhibit its disjunct properties. More-
over, we show that the new construction gives better ratio of efficiency
than the others under conditions. At last, we illustrate the relationship be-
tween the columns (rows) of the matrix and the related parameters, simply.

2.The singular linear space

In order to understand the following contents better, in this section, we
will introduce the concepts of the singular linear space and some counting
formulas.

Let F, be a finite field with g elements, where q is a prime power,
and lF.(,""'l) be the (n + !)-dimensional row vector space over F,. The set of
(n+1) x (n +1) nonsingular matrices T over F, of the form

( Ty The )

0 T /°
where T, and Ts2 are nonsingular n x n and ! x | matrices, respectively,
forms a group under matrix multiplication, called the singular general lin-
ear group of degree n+! over F, and denoted by GL,41,(F,). If{ = O(resp.
n =0), GLpn(Fy) = GLn(F,) (resp. GL1o(Fq) = GLi(F,)) is the general
linear group of degree n (resp. !)(See Wan {18]).

Let A be an m-dimensional subspace of IF‘,S"“) , denote also by A an
m X (n + l) matrix of rank m whose rows span the subspace A and call

the matrix A a matrix representation of the subspace A. Clearly, IF.(,"“)
admits an action of GLn41,n(Fy) defined as follows

F&* D x GLngin(Fy) — FSHD
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((Z1y++ Ty Tngdy e -2 Znpt), T) = (T1y 0y Ty Tng 1y - s Tngt)T

The vector space Ff,""") together with the above group action is called the
(n + l)-dimensional singular linear space over Fy. For 1 < i < n+1, let
e; be the row vector in IF.(,""") whose i-th coordinate is 1 and all other
coordinates are 0. Let E be the l-dimensional subspace of ]Fg"“) generated
by €nt1,€n+t2,---»€nst. An m-dimensional subspace A of IF((,"“) is called
a subspace of type (m, k) if dim(ANE) = k.

Let M(m, k;n +1,n) denote the set of all the subspaces of type (m, k)
of FS*) | and let

N(m,k;n+l,n) =| M(m,k;n+1,n) | .

By Wang et al. [14], M(m, k;n + !, n) forms an orbit under the action of
GLn41,n(Fq).

We begin with some useful propositions.
Proposition 2.1.(Wan [15] Corollaryl.9) Let 0 < k < m < n. Then the
number N’(k,m,n) of m-dimensional vector subspaces containing a given

k-dimensional vector subspace of IF((,") is equal to [ ::; —_ ,1‘:;

q
Proposition 2.2 (Wang et al. [16] Lemma 2.1). M(m,k;n + ,n) is
non-empty if and only if 0 < kK <! and 0 < m — k < n. Moreover, if
M(m, k;n + l,n) is non-empty, then it forms an orbit of subspaces under
GLnt1n(Fq) and

N(m,k;n+z,n)=q"""°""’°’[ t k] [i] :
q q

For a fixed subspace A of type (m, k) in }F‘(,"“) , let M(my,ky;m,k;
n+1,n) denote the set of all the subspaces of type (m1, k1) contained in A
, and let N(my, ky;m, k;n + I, n) =| M(my, k;m, kyn+1,n) |

By the transitivity of GL,41,n(IFy) on the set of subspaces of the same
type, N(mly kl;m:
k;n+1,n) is independent of the particular choice of the subspace A of type
(m, k). '

Proposition 2.3.(Wang et al. [16] Lemma 2.2) M(my,k1;m,k;n + 1, n)
is non-empty if and only if 0 < k; <k <land0<my -k <m-k<n.

Moreover, if M(mi, k1;m, k;n + I, n) is non-empty, then

N = gtmimk(k—k) | M=k | K
N(mlskl;mak$n+l’n)—q [ml—kl]q[kl]q.
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For a fixed subspace A of type (my, k1) in FS*tY | let M!(my, ky; m,
k;n 4 1,n) denote the set of all the subspaces of type (m, k) containing A,
and let N'(my, ky;m, k;n+L,n) =] M'(my, ki;mk;n+1n) .

By the transitivity of GL,11,»(Fq) on the set of subspaces of the same
type, N'(my, k1;m, k;n+1,7n) is independent of the particular choice of the
subspace A of type (my, ki1).

Proposition 2.4.(Wang et al. [16] Lemma 2.3) M'(mq, ky;m, k;n + 1, n)
is non-empty if and only if 0 < k) <k<land 0<m; —k; <m -k <n.
Moreover, if M’(my, k1;m, k;n + [, n) is non-empty, then

Nl(ml’kl;ma k;n+l,n)

= qU-Rm—k=mytky) [ 7 (M1 = k1) ] [’ —k

(m—k)—(ml —kl) q k—kl q

Proposition 2.5.(see [13]) Given integers 0 < k <l and 0 < m—k < n, the
sequence N(m, k;n + {,n) is unimodal and gets its peak at m = ["2—&]

3.Constructing Pooling designs
In this section, the paper provides the construction of inclusion matrix

associated with subspaces of ]F((,"H) , and show its disjunct properties.

Definition 3.1 Givenintegers 0 < k; <k <L, k>2,and0<m; -k <
m—k < n. Let M(my,ki;m,k;n + l,n) be the binary matrix whose
rows(resp.columns) are indexed by M(my, k1;n +1,n) (resp.M(m, k;n +
l,n)). We also order elements of these sets lexicographically. M(my, k1;m, k;
n+41,n) has a 1 in row ¢ and column j if and only if the i-th subspace of
M(my, k1;n+1,n) is a subspace of the j-th subspace of M(m, k;n +1,n).

By Proposition 2.2, 2.3 and 2.4, we know that M (m,, ky;m, k;n+1,n)
is a N(my,ky;n + I,n) x N(m,k;n + I,n) matrix, whose constant col-
umn(resp.row) weight is N(my, k1;m, k;n + [, n)(resp.N'(my, k;;m, k;n +
l,n)).

Theorem 3.2 Let0<k; <k-1<i-1,k> 2,0<m—k; <m-k-1<
n—2, and a = N(my,ky;;m,k;n+1,n), b= N(my, ky;m — 1, k;n + 1, n),
¢ = N(my,kiym -1k~ 1Lin+1,n), e = Nimy,k;;m — 2,k;n + [,n),
f=N(m,kiym—2,k—1;n+1,n),g=N(my, ki;;m—2,k—2;n+1,n),
p=max{b—e,b—f,b—g,c—e,c—fic—g}. f1 <d < [E&"“{f—c};lj +1,
then M(my,ki1;m,k;n + I,n) is d*-disjunct, where 2 = a — max{b,c} —
(d —1)u — 1. Moreover, if 1 < d < min{l_“'—"‘axp{ﬁ}-_-lj +1,q + 1}, then
M(my,ky;m, k;n+ 1, n) is full d*-disjunct.
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Proof Let P, P, P,--- P, be d+ 1 distinct columns of M(m;, k1; m, k;
n+1,n). To obtain the maximum numbers of subspaces of type(m;, k1) in

d d
PAU P =UENP).

We may assume that dim(PNP;) = m—1and dim(PNP,NP;) =m—2
for any two distinct i and j, where 1 < 4,j < d, we have that (PN F;) is an
(m—1)-dimensional subspace in P, in the same, (PN P;NF;) is an (m —2)-
dimensional subspace in (P N P;). Since P is a subspace of type (m, k), by
Proposition 2.3, P N P; is a subspace of type (m — 1,k) or(m — 1,k — 1).
Thus, there are two cases to be considered for (P N P; N P;).

Case 1 : Let PN P; be a subspace of type (m — 1,k) in ]F,(,"“), by Propo-
sition 2.2, 0 < k <land 0 < m—k — 1 < n. Suppose that (PN P;N P;)
is a subspace of type (m — 2,z), by Proposition 2.3, z = kor k-1, ie.,
(PN P;N P;) is a subspace of type (m — 2, k) or type (m — 2,k —1).

Case 2 : Let PN P; be a subspace of type (m — 1,k — 1) in IF,(,M"), by
Proposition 2.2, we have 0 < k-1 <!, 0 < m — k < n. Suppose that
(PN P;NP;) is a subspace of type (m —2,y), by Proposition 2.3, y = k—1
or k—2,ie., (PN P;NP;)is a subspace of type (m — 2,k — 1) or type
(m—-2,k-2).

In both cases (P N P; N P;) is a subspace of type (m — 2,k), type
(m—2,k—1) or type (m—2,k—2), Note that a = N(m,, ky;m, k;n+1,n),
b = N(my,ki;m — L,k;n + I,n), ¢ = N(my,ki;m — 1,k — 1;n + U, n),
€= N(mlykl;m_zak;n'!"l,n)a f = N(mlykl;m_ 2)k_ 1;n+lan)» g=
N(my, ky;m—2,k—=2;n+1,n), u = max{b—e, b~ f,b—g,c—e,c— f,c—g}.
Therefore the subspaces of type (my, k1) of P not covered by P, P, -+, Pa
is at least

a — d x max{b, c} + (d — 1) x min{e, f, g},

i.e.,, a —max{b,c} — (d —1)u. Hence z = a —max{b,c} — (d— 1) — 1. Since
220,wehave 1 <d < [“_:'&"“(2-.‘:'}:’_1]_,_1.

Now we show that the maximal dimensions of P[\(UL, P;) can be
deserved by an explicit construction. For P N P;, by Proposition 2.3,
N(my, ki;m — 2,k;n + 1,n) > 1, N(mi,kyym -2,k —Lin+1,n) 21
and N(my,k;;m — 2,k — 2;n+1,n) > 1. Hence there exists a (m — 2)-
dimensional subspace contained in PN F;, denoted by @, such that the num-
ber of m,-dimensional subspaces contained in Q is equal to min{e, f, g}. By
Proposition 2.1, the number of (m — 1)-dimensional subspaces containing
Q and contained in P is equal to g + 1, moreover, each of these subspaces
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is a subspace of type (m — 1,k) or type (m — 1,k —1). Since 1 < d <
min{ [‘-':L“%(E}_—IJ +1,g+1}, we can choose d distinct (m—1)-dimensional
subspaces containing @ and contained in P, denoted by Q;(1 < ¢ < d). By
Proposition 2.4, if assume that N(m —1,z;m,k;n+1!,n) # 0, where z = k
or k—1, then N'(m—1,z;m, k;n+1,n) > 2. For each Q;, we can choose a
subspace of type (m — 1,z) denoted by P;,where z = k or k — 1, such that
PN P; = Q;. Hence each pair of P; and P; satisfy P; N P; = Q, therefore
the maximal dimensions of Pﬂ(Uf=1 P;) can be achieved.

Now we have showed that M (m,, ki; m, k;n+1,n) is d*>-disjunct. More-
over, by the assumption of z, we have that M(m,,k;;m,k;n + I,n) is
d*-disjunct but not d*+!-disjunct. On the other hand , we assume that
M(my, ki;mk;n+1n)is (d+ l)z'-disjunct. By the maximality of z, we
infer that 2’ < a—max{b,c}—(d+1-1)p—1 < a—max{b,c}—(d—1)u—1=
z. Hence M(m,,ki;m,k;n + l,n) is not (d + 1)*-disjunct. Therefore,
M(my, ki1;m, k;n + 1 n) is fully d*-disjunct.

Hence, this completes the proof. O

4.Comparision of test efficiency

We know that the smaller the value of ¢ is, the better the design is, and
the larger the value of s, the more perfectible the pooling design is. Now
we take % as a measure of the design is, where ¢ denotes the number of
tests, i.e., the number of rows of inclusion matrix, s denotes the number of
detected items, i.e., the number of columns of the inclusion matrix.

In this paper, we can know the test efficiency f, ie.,

t _ [M(mykiindln)| _ N(my,kiintln
s mk;nt+l,n)] T N(imkn+in

= glmi—kn)(i=k1)=(m—k)1-k) iy xyan @ =D [T, @'-1)
T o (@ =D TTs g (aF-1)

Macula(1996) constructed a specifical inclusion matrix. Let V = {1,2,--- ,v}
be the base set, each of the rows(resp.column) is labeled by a r (resp.u)
subset of V, where r < u < v, the(¢,j) = 1 if and only if the label of
column j contain the label of row i. Similarly, let v = n + 1, » = m,, and
u = m, then the test efficiency is -:;t, thus

B me(mi+l)
51 (n+l—-my)---(n+l—-m+1)

D’yachkov et al.(2005) constructed with subspaces of Fy, where ¢ is a
prime power, and the row(resp.column) of it is denoted by an r(resp.u)-
dimensional subspace of Fy, where r < u < v, the (4,5) = 1 if and only
if the i-th label is contained in the j-th label. For comparing with £, let
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v=n+!l,r=m,, and v = m, and assume that the test efficiency is g

then .

t2 - H::m;-l-l(q‘ - 1)

52 H?:;;;Tmﬂ(qi -1)
Zhang et al.(2008) also constructed a d*-disjunct matrix of two types of
subspaces of the dual space of the symplectic space ]Fg" , where ¢ is also a
prime power. In the same way, each of the rows(resp. columns) are labeled
by subspaces of type (r,0) (resp.(,0)), which are contained in Py and
containing Py, where mg < r < © < v and P, is a given subspace of type
(mo,0), and the (¢,j) = 1 if and only if the column j contains the row i.
Let n+1 be even, v — mg = n+ 1, r — mg = m; and u — mp = m, and the
test efficiency is %g- , then we have

ta _ [T, 41(g = 1)
o (g% -1)

Theorem 4.1 Let0<k; <k—-1<I-1,k>2,0<m -k <m-k-1<
n—2,and § = (I—k—k;—1)(k—k1)+(n+1- m— 1)(m—k)—(n+l—my—
1)(mi—k),ifn+l—m; <mand § >0, then <—g,1fn+l—m1 >m

nj:l mEtl m—-m
)T, then = T

and 4 > 0, and ¢ > (nti=mil _+y___

my+1

Proof Ifn+l—m1$ma.nd020,then

< ) et P CAES V) § LA CARS )
4 = (mi—k1)(—ky)—(m—=k)(I—k) “-t;m_l ky+1 i=ky .
:Jf 1 H.‘:J-(‘...ﬂ;“(q -1) n:=:‘lk+1 (gi-1)

(n+l=my)---(ntl-m+1)
m(m=1)---(my+1)

m—k i k i
< gm=k)(—ky)—(m—k)(—k) _Tlizm) kg 41 (@ =D Ilizky (1)
7 ﬂ?;.ff(‘,:}gﬂ(f'-l) H:;flk+x(q‘-1)

X

m—k ik i
< gmi=k) =k —(m—k)(i—k) __Tlizm 41 9 Tlinsy @
q CI Cory=y T BT o 2 1
i=n—(m-k)+1 9 Micilia g

q("'l""‘l)(1—’¢1)—(m-k)('—k)
gim1—k1)2 = (m=k)2+(n—1H(m—k)=(my =k {)}+k{~ k2 + (= 1)(k—k1)

-Qq'l -

Ifn+l—-m; >mand @ >0, then

4 1 (n+l—my)---(n+l—-m+1)
T<gX D FD)
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1 X (niﬂl;;nlil )m—m;

nil—mFl m-—-m
= (_'“]_qa)__l_ [m]

Example4.1.1 Let n=1=10, k =4, k; =2ag= 13, m = 8, my =4,
and § =20 >0, n+1—m; =16 > 8 =m, then & < iz
o

Theorem 4.2 Let 0 < ky < k-1 < !1l-1,k > 2, 0<m1—k1
m-—k—-1<n-2and 0 =ki(l—m)+k(m-1),if0>0, then-{—<—y.

Proof Let0<k <k<lLk2>22,1<mj—kj<m- k+1<n,then

we have . ; . .
i = qlma—k)(=k)=(m—k)(—k) _ lizmi oy @D iy, (@ -1)

T = A-(mi—F1) : T—F ;
:% Ht’:n-—(lm—llc)-i.l(q'—l) n,':l.‘k.'.](qi_l)

+1- i
n?=n+;n—’m+1 (¢'—1)
|| NN LR )
n—k

m i k
< qtmi—k)(=k1)—(m—k)(i=k) __Dizm; 119 iy @
q n=(mi=ky) 17—k i-1
imne(mek+1 T izl ey @

X

€

nt+l—m
x nﬂ_nil—‘mil g’
i=mq+1 -
g{m1—k1){—k1)=(m—k)(I~k)
—k2+ kT +2mk—2m k) —Im+Imy+(n—1)(k—k])

q
_ 1
=
Therefore,the proof of Theorem 4.2 is completed. O

Example 4.2.1 Letn-l—lO m=11, k=6, m; =5, ky =q=3, and
#=21>0, thenwehave+<—n-

Theorem 4.3 Assume that n+[beeven,let 0 < k; <k-1<1-1,
k>2,0<m—-ki<m-k-1l<n-— 2and0—1(m -m2)+ k¥ —k%—
m1k1+mk—n(k—k1)— 5(m —m,),if § >0, then & <-'g

3

Proof Since0<k; <k-1<1-1,k22,0<m—k; <m—-k—-1<n-2,

we have

£ = gimi—k) (k)= (m—k)(—-k) Tl iy 41 (@ =D Ty, 7 1)

1 -F1) T—% "
n?:vff(lm—}e)-i-l(q“l) [icilesa(ei=1)
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2—#—"‘1 ¢*-1)

% Hi-i“ ‘—m+1(
:';mlq-l qt-1

m—k i1k
< (my—ky)(I—k1)—(m~k)(I—k) Iy —ky41 9 I'I.-=k, 9
q n—-{my-ky) -1 77—k i-1
ieno(m-t)+1 9 T licizes1 9

n”f—'—'"x g%

% = nfl —m+1
i=my+1 -
_ q(ml—}cﬂ(l—kl)—(m-k)(!—k)
- q}(mi_m§)+zk(m-k)_zk,(m,—k,)+(z+g)(m,-m)+u-n)(k—k1)

— 1
=
This completes the proof. O

Example4.3.1 Letn=1=6,m=9,m; =5 k=5,k =3,¢g=2,and
6 = 20 > 0, then we have -g_— < 5.
3

5.The discussion on design parameters

From Proposition 2.5, we know the change tendency of the sequence
N(m, k;n+1,n) with m. The change tendency of the sequence N(m,k;n+
[,n) with k is given by the following Theorem 5.1.

Theorem 5.1 Given integers 0 < k1 <k-1<{-1,k22,0<m -k <
m—k—1<n-—2, then we have

(i) when k < [ﬂlz"—'gj, the sequence N(m, k;n + [, n) increases with k,
if n,l, m are fixed.

(i) when k > [®=2+17, the sequence N(m, k;n +l,n) decreases with k,
if n,l, m are fixed.

Proof By Proposition 2.2, if n, I, m is fixed, then we have

el
N(m,k;n+1,n) _ 7 -k q kq
N(m,k+1;n+1,n) gm—k=1)(t—k-1) n !
m-k—1| |k+1
q q
m4i—2k—1 grmHkAl 1 gt 1]
=q TTgmE—1 ¢k -1

If k < |=2=3|, then
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N(m,k+1;n+1,n) P R
qn—m+k+1 qk+1

N(mv k;n + l$ n) _ m+i—2k=-1 qn—m+k+l -1 qk+1 -1

< qm+l—2k-l . —— .
qm k-1 ql—k—l
_ 1
= gm-(n+2k+3)
<1
If k > [2=2+1], then
N(m,k;n + l,n)  mal—2k-1 qn—m+k+1 -1 qk+1 -1
N(m,k+1;n+1,n) gmk—1 g¢-k-1
S gmH=2k=1 gnmtk gk
q qm—k ql—k
— qn—m+2k—l
>1

Therefore, we complete the proof of Theorem 5.1. O
From Proposition 2.5, we have the following conclusion.
Theorem 5.2 Given integers 0 < k) <k—-1<1-1,k>2,0<m; —k; <
m —k —1 < n — 2, the sequence N(my, ki;n + [,n) is unimodal and gets
its peak at m; = |2tbtkL |,
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