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ABSTRACT. In this study, it has been researched that which Euclid-
ean regular polyhedrons are also taxicab regular and which are not.
The existence of non-Euclidean taxicab regular polyhedrons in the
taxicab 3-space has also been investigated.

1. Introduction

The taxicab 3—dimensional space R%. is almost the same as the Euclidean
analytical 3—dimensional space R3. The points, lines and planes are the
same and the angles are measured in the same way, but the distance function
is different. The taxicab metric is defined using the distance function as in
8, 9]

dr(A,B) = |by —ai1| + |b2 — ag| + |b3 — a3 .

Since taxicab plane and 3—dimensional space have distance function dif-
ferent from that in the Euclidean plane and 3—dimensional space, it is inter-
esting to study the topics of the taxicab analogues that include the distance
concept in the Euclidean plane and 3—dimensional space. Many such top-
ics have been studied in the taxicab plane and 3—dimensional space (see
1,2,3,4,5,6,7,9, 10, 11]). During the recent years, regular polygons have
been studied in the taxicab plane and 3—space [12, 13]. Therefore, it can
be interesting to study regular polyhedrons in the taxicab 3—dimensional
space.

In Euclidean geometry, a Platonic solid is a regular, convex polyhedron
with congruent faces of regular polygons and the same number of faces
meeting at each vertex. Five solids meet those criteria, and each is named
after its number of faces. Geometers have studied the mathematical beauty
and symmetry of the Platonic solids for thousands of years. They are named
for the ancient Greek philosopher Plato who theorized in his dialogue, the
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Timaeus, that the classical elements were made of these regular solids (see
(10)).

Polyhedron Number vertexes Number faces Number edges
Tetrahedron 4 4 6
Hexahedron 8 6 12
Octahedron 6 8 12
Dodecahedron 20 12 30
Icosahedron 12 20 30

For V = (v1,v2,v3) € R3, taxicab norm of 7 is shown as ”7”T as in
(6] and
—
V], = ol + toal + sl
Supxﬂse that [ is a line through the points P; and P,. If { has direction
vector V = (v;,vs,v3), then these equations can be written according to

(5]
(1] + [vz| + [vs)) de(Py, Po) = 4/} + v} + vddr(Py, Pr)

dg (A,B) = ”v” dr (A, B)
B [vr] + [ve] + [os] ~ "7

4/
(ForT+ [l ToaD)

From now on g(V) will be used in this study instead of

Let us introduce the following abbreviations for the following Proposition
1.
+z + y + z = || @], plane equation is shown as P; 4 4+ and
2 2 2 2 _ 2
(:z: + ."L":;'_"L) + (y + “‘"_3"2;) + (z + %L) = 3wl . lZ. 5phere equation
is shown as Sy 4 4.

Proposition 1. Let w = (z,y,2). The geometric locations of the w;
(i € N) vectors which satisfy the following equations ||w)) g = llwillg and

9
lwllp = lwillp constitute the | C:.
i=1

Assume |lw||g # ||wllp-

If 0<z,y,z<||lwljp then C1 =S___NPy 4 4;

If 0<z,2< ||w||; and —|lw|lp, <y<O0then Co=S_4, _NP;s_;
If 0<z<||w|p and = ||wl|lp < z,y <0 then C3 =S4 4 NP__ 4;
If0<y,z<||wllp and —|jw||, <2z <0then Cy =85, - _NP_, 4;
If 05z,y<|[wlly and —|Jw||lp <2<0then Cs=85__ , NPy 4+ _;
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If0<Lz < ||wllp and — |lwllp <y,2<0 then Cs = S— 4 + NPy~ —;
If —|lw|lp <z,y,2<0 then C7 =844+ NP- _ _;
IfO<y<|wlp and - ||lw||lp < z,2<0then Cg =85, -+ NP_ 4 .

Assume |wilg = [lw|lp.

Co = {(£llwll+,0,0),(0, % |lwly,0), (0,0, £ lwll7)}
(see [13]).
In this study, we answer the following question: Which Euclidean reg-
ular polyhedrons are also taxicab regular, and which are not? We also
investigate the existence and nonexistence of taxicab regular polyhedrons.

2. Euclidean Regular Polyhedrons in Taxicab 3-Space

Definition 1. Three-dimensional objects which are bounded with pieces of
the polygonal plane are called polyhedrons. A face is a planar surface that
forms part of the boundary of a polyhedron. An edge is a line segment join-
ing two vertices in a polyhedron. A vertez is a corner point of a polyhedron
or formed by the intersection of edges.

Definition 2. A polyhedron is regular if all faces are congruent regular
polygons and same number of faces is assembled around each verter.

The points, lines and planes are the same in Euclidean and taxicab
geometry and the angles are measured in the same way as in [9]. However,
since the distance function is different, in order for an Euclidean regular
polyhedron to be taxicab regular, all taxicab length of edges must be the
same. Thus, we investigate taxicab length of edges of polyhedrons.

Corollary 1. Let A;, A;, A3,...,An be vertices and k be the number of
gges of an Euclidean regular polyhedron. Fork € {6,12,30} and1 <i < k,

Vi = (v1,v2,v3) are _d’i‘rection vectors of edges. A1 AxA3...A, 1is also tazicab
—
regular if only if g(Vi) = g(V;) while (1 < 14,5 < k).

Corollary 2. Let W be a vector set of the edges of Fuclidean regular poly-
hedron and w € W. An Euclidean regular polyhedron is also tazicab regular

9 9
if only if W C |J C; where |JC; is the same as Proposition 1.

There exist an Euclidean and taxicab regular tetrahedrons.

Example 1. For A4;(0,0,1), A2(0,1,0), A3(1,0,0), As(F, 3, Ft) ver-
tex points, A1 Az A3 Ay Euclidean regular tetrahedron is also tazicab regular.

Theorem 1. If 3 different symmetry planes with at least one of which s
on a different face of the Buclidean regular tetrahedron are member of

{zFy=kzF2z=ky,yFz=ks,z=ky,y=ks,z=ke}
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set (for 1 < i < 6, k; € R), Euclidean regular tetrahedron is also tazicab
regular.

Proof. Since a reflection according tozFy =0, 2F2=0,yFz =0, z =0,
y =0, z = 0 planes is a taxicab isometry and every Euclidean translation of
R? is an isometry of R3. [9], a reflection according to z Fy = ky,  Fz = ks,
YFz = k3, x = k4, y = ks, 2 = ke planes is taxicab isometry. Let 4; A5 A3A4
be an Euclidean regular tetrahedron and let two symmetry planes belong
to A Az A4 triangle, one symmetry plane belong to triangle A, A;A, (see
Fig. 1).

Figure 1

Let symmetry planes Ey, Es belong to triangle Ay A3 A4 and E3 symmetry
plane belong to triangle A A3 A,.

dr (A2rA4) = dr (As, Aé) »

Since E; is a symmetry plane; dr (A, As) = dr (Ay, As). (2.1)
Since Es; is a symmetry plane; j: &if:ﬁ:) i ;; gjf:g;g’ (2.2)

)
. . . dr (A1, Ag) = dp (A, 43),
Since E3 is a symmetry plane; A Ag) = [l e (2.3)

So it is clear from the 2.1, 2.2 and 2.3 equalities that;

dr (A1, A2) = dr(As, Az) =dr (A3, Ay) = dr (A1, Ag)
= dr (A1, A3) =dr (A2, Ay)

Thus, A;A2A3A, is a taxicab regular tetrahedron at the same time. If we
use the other symmetry planes, we can find the same result. O

Example 2. For A;(1,1,1), A2(-1,1,1), As(-1,-1,1), A4(1,-1,1),
As(1,1,-1), As (-1,1,-1), A7 (-1,-1,-1), Ag (1, -1, —1) vertez points,
A Ao A3 Ay As Ag A7 Ag in an Euclidean regular herahedron is also tazicab
regular.
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Corollary 3. If Fuclidean regular hezahedron’s faces are parallel to x = k1,
y = ko, z = k3 planes (for k; € R), it is also tazicab regular.

Proof. Euclidean regular hexahedron’s faces are square. In the z = ki,
y = ko, 2z = k3 planes, every Euclidean square is taxicab square [12, 13]. So
taxicab lengths of sides are the same. Thus, Euclidean regular hexahedron
is also taxicab regular. a

Corollary 4. Let V € {(1 0,0),(0,1,0),(0,0,1)}. If there exists a rota-

tion whose rotation azis is V between three edges at the same vertex of an
Euclidean regular hexahedron, it is also tazicab regular.

Proof. 1t is clear that three edges at the same vertex are enough to create
a taxicab regular hexahedron because the other edges are parallel to these
three edges. Since the angles between three edges at the same vertex are 7,
the rotation angle is §. Thus, the rotation is a taxicab isometry [9]. Then
hexahedron is also taxicab regular.

There exists an Euclidean and taxicab regular octahedron.

Example 3. For A;(0,0,1), A2(0,1,0), A3(1,0,0), A4(0,-1,0),
As(-1,0,0), Ag(0,0,—1) vertez points, AjAyA3A;AsA¢ Euclidean regu-
lar octahedron is also tazicab regular.

All octahedrons are made up of two pyramids whose bases are the same.
Let Ay A3 A3 AyAsAg be an Euclidean regular octahedron. It is made up of
A1 As A3 A4 As and AgAy Az Ay As pyramids and their bases are A3 A5 AgAs.
For the next theorem, let us call the base of the pyramid as the base of the
octahedron.

Theorem 2. Let the base of octahedron be on a plane P;. Let two consec-
utive symmetry planes of octahedron base be P, and P; one of which is on
the vertexes of base and the other one is on the middle of the base edges.
If Py, P, and P3 are members of

{zFy=knzFz=k,yFz=k3,t=kq,y=ks,z = ke}

set (for 1 <i <6, k; € R), an Euclidean regular octahedron is also tazicab
regular.

Proof. Suppose A, and A, are vertex points of an Euclidean regular octahe-
dron A; Ay A3 A4 A5 Ag then Ay A3 Ay As square is the base of the octahedron
(see Fig. 2,3). Let A;A3A4As square be on z = 0 plane which is a member
of

{$¥y=k1,$:Fz=k2ay:Fz=k3,x=k4,y=k5,z=k6}
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set.

Figure 2 Figure 3 Figure 4 Figure S

Since reflections with respect to z = 0 plane is a taxicab isometry,

| A1 Azl = || A2Asllp , A1 As]lp = || Az dg]l 7,
| A1 A4l = || As sl | A1 5]l 1 = || As As | 1

Besides, the angle of two consecutive symmetry planes of Ay A3A44 A5 square

is 45°. Let these planes be z +y = 0 and = = 0. Since reflections about
T+ y = 0 plane is a taxicab isometry,

|A1As]lr = [|A1 42|l 1, [| A1 A4l = [|A1 45|, | A2 A6l = [|A3As]lp
|AsAsll = | AsAsllr | A2As ]l = | Az Asll 1

(2.4)

(2.5)
Since reflections with respect to z = 0 plane is a taxicab isometry,

| A1 Azl = | A1 A5l , | AsAsllp = || Az As]l 1
|A2As|| - = [|A2As|l 7, | AsAs | p = || AsAs|l 1

It is clear from the 2.4, 2.5 and 2.6 equalities that

lA1Azllz = [|A1Asllz = [|A1Aslly = | A1 45|l = [|A2 46l
= [|AsAellyr = [[Asdsllr = [ A5 A6l

Thus, A;AsA3A4A5As Euclidean regular octahedron is also taxicab regu-
lar. 0

(2.6)

Theorem 3. There do not exist any Euclidean and tazicab reqular dodec-
ahedrons.

Proof. As it is known that an Euclidean regular dodecahedron is created
by twelve regular pentagons (see Fig. 6).

Figura 6 Figure 7
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According to Theorem 4 [13], there do not exist any Euclidean and taxicab
regular pentagons. Furthermore, all the edges of Euclidean regular penta-
gon’s taxicab lengths are not the same. Thus, there are not any Euclidean
and taxicab regular dodecahedrons. a

Theorem 4. There do not exist any Buclidean and tazicab regular icosa-
hedrons.

Proof. As we know, there are five Euclidean regular triangles at the every
vertex of icosahedron and these five triangles can create a Euclidean regular
pentagon (see Fig. 7). According to Theorem 4 [13], there do not exist any
Euclidean and taxicab regular pentagons in R3. Thus, all the edges of
Euclidean regular pentagon’s taxicab lengths cannot be the same. As a

result, there do not exist any Euclidean and taxicab regular icosahedrons.
O

3. Taxicab Regular Polyhedrons in Taxicab 3-Space

Theorem 5. There do not exist any tazricab regular tetrahedrons, octahe-
drons and icosahedrons which are not Euclidean.

Proof. There does not exist taxicab regular triangle which is not Euclid-
ean by Theorem 6 [13]. As we know, faces of tetrahedrons, octahedrons
and icosahedrons are made up of triangles. Thus, there do not exist none
taxicab regular tetrahedrons, octahedrons and icosahedrons which are not
Euclidean. a

Theorem 6. There exist tazicab regular hexahedrons which are not Euclid-
ean.

Proof. A hexahedron can be identified by three orthogonal sides whose
taxicab lengths are the same and the sides intersect at the same vertex but
their Euclidean length are not the same. Since every Euclidean translation
is a taxicab isometry [9], the other sides can be created by translating these
three orthogonal sides. Draw taxicab sphere ABCDEF centered at the
origin with radius 1 (see Fig. 8).

KIRY Y
N

Figure8
For P € JAE] line segment, it is clear that dr(O,P) = dr(0,D) = 1
and [OP] L [OD] (see Fig. 9). Let m(£LPOE) = a. If N € JAC] is chosen

figure 10
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to be m (LAON) = a, m ({PON) = 90° and dr (O, P) = dr(O, N).

Since [OD] line segment is orthogonal to the CAE plane, [ON] L [OD].
Besides d7 (0O, P), d7(O, N) < dr(0, D) = 1. Thus, [ON], [OP) and [OD]
are orthogonal to each other, their taxicab lengths are the same but their
Euclidean lengths are not the same. Besides every Euclidean translation is
a taxicab isometry. As a result, by translating [ON], [OP] and [OD] we
can create ODNy NP3 PP, P, non-Euclidean taxicab regular hexagon (see
Fig. 10,11). O

Example 4. Let A, (0,0,0),A42(2,0,0), A3(2,-1,1), A4(0,-1,1), A5(0, 1, 1),
Ag(2,1,1), A7 (2,0,2), Ag(0,0,2) be vertez points of A1 Ay A3 Ay As Ag A7 As
hezagon. Since all the tazicab lengths of edges of hexagon are the same
and all the faces are also taricab squares, it is a taricab regular hexagon.
However, all the edges of hexagon’s Euclidean lengths are not the same.
dE; (Al,Az) =2 and dg (Al,As) = \/5 80 dE (Al,Ag) ;é dg (Al,As) . As
a result, Ay A A3A4As AgA7As is not an Euclidean regular.
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