Explicit Constructions of Cyclic Packing and
Their Related OOCs *

Bichang Huang!?, Yirong Zheng!s
1. Center for Discrete Mathematics, Puzhou University,
Puzhou 850002, China.
2. Department of Mathematics, Baise University,
Baise 588000, China.
3. School of Applied Mathematics, Xiamen University of Technology,
Xiamen 3861024, China.

Abstract: Since its desirable features, variable-weight optical orthogonal
codes (VWOOCs) have found wide ranges of applications in various optical
networks and systems. In recent years, optimal 2-CP(W, 1, Q; n)s are used
to construct optimal VWQOCs. So far, some works have been done on
optimal 2-CP(W, 1, Q;n)s with wmax < 6, where wpax =max{w : w € W}.
As far as the authors are aware of, little is known for explicit constructions
of optimal 2-CP(W, 1, Q; n)s with wnax = 7 and |W| = 3. In this paper,
two explicit constructions of 2-CP({3,4, 7}, 1, Q; n)s are given, and two new
infinite classes of optimal VWOQCs are obtained.

Keywords: Variable-weight optical orthogonal codes, constant-weight
optical orthogonal codes, quadratic residues, cyclic packing, combinatorial

design.

*This research was supported in part by the National Natural Science Foundation of
China (61170308,11301440), the Guangxi Science Foundation (2013GXNSFAA019022),

and the Foundation of Education Department of Guangxi Province (2013YB246).
temail: h.bichang@126.com; yrzheng@xmut.edu.cn

ARS COMBINATORIA 131(2017), pp. 205-225



1 INTRODUCTION

To meet the requirements of multiple quality-of-service (QoS) in the CDMA
network, Yang [27] introduced the variable-weight optical orthogonal codes
(variable-weight OOCs) in 1996. Due to its desirable features, recently
variable-weight OOCs have found wide ranges of applications in various
optical networks and systems, such as soft limiting in the number of possible
subscribers, efficiency in bursty traffic, dynamic bandwidth assignment,
and allowing many simultaneous users to access the same optical channel
asynchronously [13], [23],[28]. For these reasons, there has been a recent
upsurge of interest in constructing optimal OOCs [9, 11, 12, 21, 19, 24, 26]
etc..

To facilitate readers, throughout this paper, we will use the symbols
and definitions of OOCs and cyclic Packing based on [5] and [25].

Suppose that W = {w;,ws, - ,w,} is an ordering of a set of r inte-
gers greater than 1, and A, = {)\&1),)\,(.2), e, )\f,")} is an r-tuple (auto-
correlation sequence) of positive integers. Moreover, suppose that \; is a
positive integer (cross-correlation parameter), and Q = {q1,q2, *** ,gr} is
an r-tuple (weight distribution sequence) of positive rational numbers whose
sum is 1. Then an (n, W, Aq, Ac, Q) optical orthogonal code (OOC) (briefly,
(n, W, Ag, A, Q)-O0C) is a set C of subsets (called codeword-sets) of Z,
with sizes (weights) from W satisfying the following three properties:

1) Weight distribution property: The number of codewords with weight
w; is exactly ;|C|, 1 <4 <7, and 37, :|C| = |C|, where 3", ¢: = 1;

2) The auto-correlation property: |C N (C +t)| < AL for any C =
{Z1,Z2, - ,Zw, } € C with weight w; and ¢t € Z, \ 0;

3) The cross-correlation property: |C' N (C +t)| < A for any C' =
{z1,22,-- -, 2w, } €C,C={y1,92,"* , Yu,;} €EC With C' # C and t € Z,,.

Generally, when |W| =1 OOC is called constant, otherwise, is variable.
It A0 = A2 = ... = A = A, = ), then the notation (n, W, }, Q)-OOC
denotes (n, W, Ag, Ac, @)-O0C. Q is normalized if it is written in the form
Q = {%., %, %) with ged(ay, a2, ,a;) = 1. And an (n,W,1,Q)-
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0OC is said balanced if Q@ = {%,2,-..,1}.

Let s be the size of an (n, W, 1,Q)-O0C. Then an upper bound on s is

given by the following lemma.

Lemma 1 ([5]). IfC is an (n, W, 1,Q)-00C of size s with W = {w1, w2, ,
w,} and normalized weight distribution sequence @ = {%,%, -, ¥}

then we have

n-—1
< i
ssb lZ§=1 a;wi(w; — 1)J

An (n,W,1,Q)-0O0C is optimal if the size of C reaches the upper bound.

A 2-CP(W,1,Q;n) is a key tool for constructing an (n, W, 1, Q)-0O0C,
and was introduced in [25] as a generalization of cyclic packing CP(w,1;n)
[29] or cyclic 2-(n,w,1) packing [14].

Suppose that G is an Abelian group, and B={B;:B; CG,1<j< t}.
Define AB; = {z—y:z,y € Bj,c #y}, 1 <j <t and AB =J;_, AB;,
where ABj, 1 £ j <t and AB are multisets.

Assume that B= {B; : B; C Z,,1 < j <t},|Bj| € W = {wy, w2, -+ ,wr},
1<j <t A2CP(W,1;n) is a family B of subsets of Z,, with sizes from
W (called base blocks), such that difference list AB covers each element of
Zn \ {0} at most once. Let Q = {q1,42, ‘- ,¢r} be an r-tuple of positive
rational numbers whose sum is 1, that is, > _;_, ¢i = 1. A 2-CP(W,1,Q;n)
is a 2-CP(W, 1;n) with the property that the number of blocks size w; is
g:|Bl, where ¢; € Q,1 <i<r.

A 2-CP(W, 1; gv) is g-regular (called also Relative difference families{5])
if AB = |J;_, AB; covers each element of Zg, \vZ, exactly once, and each
element of vZg, is not covered.

The following results reflect the equivalence between a 2-CP(W, 1,Q;n)
and an (n, W,1,Q)-00C.

Lemma 2 ([25]). An optimal 2-CP(W, 1,Q;n) is equivalent to an optimal
(n,W,1,Q)-00C.

Lemma 3 ([25]). Letw = Y ;_, a;wi(wi—1), wherew; € W. If1< g < w,
then a g-regular 2-CP(W, 1, Q; gv) is optimal
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Most existing works focus on 2-(n,w,1) packing, see [1, 3, 4, 6, 7, 8,
10, 14, 15, 16, 20, 29] for examples. For 2-CP(W,1;n) with |W| = 2
and Wmax < 6, where wmax = max{w : w € W}, some works have
been obtained, see {25, 30, 31] for examples. When |W| = 3, there are
only few results. For examples, [5, 18] presented explicit results with
W e {{3,4,5},{3,4,6},{3,5,6},{4,5,6}}. In [17], basing on the existence
of (g, W, 1)-DF (or perfect (g, W,1)-DF ), the authors deduced many opti-
mal 2-CP(W, 1; n) with arbitrarily large base blocks and |W| > 3, but they
are not explicit constructions. Moreover, constructing a (g, K, 1)-DFs (or
perfect (g, W,1)-DF's ) with wyax = 7 is still a hard work. So far, as we are
aware of, there is no explicit result of 2-CP(W,1,Q;n) with [W| = 3 and
Wmax = 7.

In this paper, by further investigating elementary conclusions of the
quadratic residues and the construction method in [5], two explicit construc-
tions of optimal 2-CP({3,4,7},1,Q;n)s are given, and the corresponding
optimal VWOOCs are obtained. The following are the results.

Theorem 1. For any prime p = 3 (mod 4) and p > 7, there exists an
optimal 2—CP({3,4,7},1,{3,3,3},30p), and an optimal (30p, {3,4,7},1,
{1, 3,i))-00c.

3:3'3
Theorem 2. For any prime p = 3 (mod 4) and p > 7, there exists an
optimal 2—CP({3,4,7},1,{2,1,1},33p), and an optimal (33p, {3,4,7},1,
{%1 %) %})'OOC

This paper is organized as follows. In Section 2, some results on the
quadratic residues in Z, are given. In Section 3, we present explicit con-
structions of the optimal 2-CP({3,4,7},1, {%—, %,% ; 30p)s, and the corre-
sponding optimal VWOOCs are obtained. In Section 4, we obtain optimal
2-CP({3,4,7},1,{%, 1, 1};33p)s and the optimal (33p, {3,4, 7}, 1, {2,1,1)-
00Cs.
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2 Preliminaries

In this section, some notations and results on the quadratic residues in Z,
will be given.

Suppose that p is a prime, and € is a primitive element of Z,. Then
we denote C3 = {6% : 0 < i < B'} and C} = 0C? as the quadratic
residues and the quadratic nonresidues of Z,, respectively. Assume that
A = {(a1,71),(a2,2),- .., (ak,jx)} is & k-subset of Z, x Z,,. Let K be a
non-empty subset of Z* and each element of it is greater than 1. Suppose
that F = {A | A = {(a1,51), (a2,32),-- - (@, Jk)} C Zp X Zm, k € K}.

Define

(1) z- A= {(za1,51), (zaz, 32), . - ., (zOk, Jk)}, T € Zp;

(2)B-A={b-A|be B}, BC Z,.

Define the difference lists:

Li = {a1 — a, : {(a1,71),(as,4s)} C A € F, i = ji — js (mod m),1 <
l,s<kkeK},i=0,---,m—1.

By the Construction I in (5], assume that p = 3 (mod 4), p { m, and
ILiNCEl =1,0<i<m=1,k =0,1, and A={C?- A : A € F}.
Then AA satisfies the following properties: It does cover every element in
Zp % Zm \ ({0} x Z,,) exactly once, and each element of {0} x Z,, is not
covered. So A forms an m-regular 2-CP(W, 1, Q; mp).

Next, to construct and prove our results easily, some elementary conclu-
sions of the quadratic residues will be listed as follows. Interested readers

can refer to [22].

Lemma 4. Suppose that p=3 (mod 4) is a prime. We have:

(1)2 € C2,3eC3,5¢ CZ,7€ CZ, if and only ifp = 71,191, 239, 359, 431,
599 (mod 840);

(2) 2€ C¢,3€C¢5¢€CETeCE if and only if p = 311,479, 551,671,
719, 839 (mod 840);

(3)2 € C},3€C},5¢€CE,7eCE, if and only if p = 43,67,163, 403, 547,
667 (mod 840),
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(4) 2 € C%,3 € C2,5 € C2,7 € C, if and only if p = 187,283,307,
523,643, 787 (mod 840);

(5) 2 € C¢,3 € C2,5 € C},7 € CZ, if and only if p = 23,263,407,
527,743,767 (mod 840);

(6) 2 € C3,3 € C3,5 € C%,7 € C}, if and only if p = 47,143,167,
383,503,647 (mod 840);

(7) 2 € C2,3 € C%,5 € C3,7 € C3, if and only if p = 211,331,379,
499,571,739 (mod 840);

(8) 2 € C%,3 € C%,5 € C3,7 € C?, if and only if p = 19,139,451,
619,691,811 (mod 840);

(9) 2 € C%,3 € C},5 € C3,7 € C3, if and only if p = 79,151,319,
631,751,799 (mod 840);

(10) 2 € C%,3 € C},5 € C¢,7 € C, if and only if p = 31,199,271,
391,439,559 (mod 840);

(11) 2 € C%,3 € C3,5 € C,7 € C?, if and only if p = 107,323, 347,
443,683,827 (mod 840);

(12) 2 € C%,3 € C¢,5 € C%,7 € C%, if and only if p = 83,227,467,
563,587,803 (mod 840);

(13) 2 € C%,3 € C¢,5 € C¢,7 € CZ, if and only if p = 11,179, 491,
611,659,779 (mod 840);

(14) 2 € C%,3 € C%,5 € C¢,7 € C}, if and only if p = 59,131, 251,
299,419,731 (mod 840);

(15) 2 € C¢,3 € C%,5 € C%,7 € C3, if and only if p = 127,247,463,
487,583,823 (mod 840);

(16) 2 € C¢,3 € C%,5 € C},7 € C, if and only if p = 103,223, 367,
607,703, 727 (mod 840).

Proof. Let B} = {p:y € C2},i =0,1;y € {2,3, 5,7}. By [22], it is
not difficult to see that

p € BY <= p=+1 (mod 8),p € B} < p =3 (mod 8);

p€ BY < p= =1 (mod 12),p € B} <= p= 45 (mod 12);

p € B} <> p=+£1 (mod 5),p € B} < p==£2 (mod 5);
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p € BY <= p = £5,£11,£13 (mod 28),p € B} < p = £1,%3,19
(mod 28).

Let S(i,5,k,s) = {p: p =3 (mod4),p € BiNnBjNBfN B3 0 <
i,J,k,s <1} # ¢. We have

2€C3€Ci5€C,7€Cl<=>peS(i,jks), 01,5,k s <1

This completes the proof. (]

3 Proof of Theorem 1

In this section, we will prove Theorem 1. For each prime p = 3 (mod 4),
and p > 7, it is clear that gcd(30,p) = 1, and hence Z3o, is isomorphic to
Zp X Z3g.

3.1 The case: p = 71,191,239,359,431,599, 311,479, 551,
671,719,839 (mod 840)

Lemma 5. Suppose that p = 71,191, 239, 359, 431, 599, 311, 479, 551,671,
719,839 (mod 840) is a prime, £ = min{z : z € C?}. Then A={C¢- A, ;:
3=1,2,3} forms a 2-CP ({3,4,7},1,{}, 4, 3},30p), where

Ars = {(0,0),5,0), (1,7), (€, 19), (3,21), (2, 25), (4,20)},

A2 = {(0,0),(-3,14),(-1,17),(-2,20)},

A, 3 ={(-1,0),(0,15),(—2,28)}.

Proof We compute the difference lists L;, 0 < i < 29 from A3, A2
and A; 3. It is not difficult to see that Ly = —Lag_,, 16 < 5 < 29. So we
only need to compute the difference lists L; for 0 < i < 15.

Lo={5,-5}, Ly =L,={1,-4}, Lo ={3-§,1}, L3=-Ly=—-Liz=
{-1,2}, Ly = —Lg = —Ly4 = {3,-2}, L¢ = {1,2 - ¢}, Ls = {-3,1},
Lyo={4-§2}, Ly ={-£,5-¢}, Lia={-1,1-¢€}, Lis = {1,-1}.

According to (1) and (2) of Lemma 4, we know that 2 € CZ, 3 € C?
and 5 € C2. And because of ¢ —1 € C3, 1 < ! < &, it is easy to check
that |L;(NC?| =1,0 <14 <29, k=0,1. Hence, AA satisfies the following
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properties: It does cover every element in Z, x Zsg \ ({0} x Z30) exactly
once, and each element of {0} x Z30 is not covered.
So A forms a 2-CP({3,4,7},1,{3,3,3}; 30p). a

3.2 The case: p = 43,67, 163,403, 547,667, 187, 283, 307,
523,643, 787 (mod 840)

Lemma 6. Suppose that p = 43,67,163,403,547,667, 187,283, 307, 523,
643,787 (mod 840) is a prime. Then A={C%-Ay; : j = 1,2,3} forms a
2-CP({3,4,7},1,{3, 3, 3};30p), where

Az = {(1,0),(2,0),(3,7),(-3,19),(0,21), (6, 25),(5,29)},

Az 2 = {(0,0),(2,14),(1,17),(5,20)}, A2 3 = {(1,0), (0, 15), (4, 28)}.

Proof According to (3) and (4) of Lemma 4, we compute the difference
lists Ly, 0 < ¢ < 29 from Ajg,1, Az2 and Ay 3 as the proof of Lemma 5. It
is not difficult to see that A forms a 2-CP({3,4,7},1,{%,1,1};30p). O

3.3 The case: p = 211,331,379,499,571, 739, 19, 139, 451,
619,691,811 (mod 840)

Lemma 7. Suppose that p = 211,331,379, 499, 571, 739, 19, 139, 451, 619,
691,811 (mod 840) is a prime. Then A={C%-A3;:j=1,2,3} formsisa
2-CP({3,4,7},1, {%, %, %}, 30p), where

Asy = {(0,0),(2,0),(1,7),(4,19), (~2,21), (3,25), (~1,29)},

Asz = {(0,0),(1,14), (5,17), (4, 20)}, A3 3 = {(2,0), (0, 15), (3, 28)}.

Proof According to (7) and (8) of Lemma 4, we compute the difference
lists L;, 0 < i < 29 from As,;, Az 2 and A3 3 as the proof of Lemma 5. It
is not difficult to see that A forms a 2-CP({3,4,7},1,{},3,3}30p). O

3.4 The case: p = 23,263,407,527,743,767 (mod 840)

Lemma 8. Suppose that p = 23,263,407,527,743,767 (mod 840) is a
prime. Then A={C} Aa;:j=1,2,3} forms a 2-CP({3,4,7},1,{3, 3,3}
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30p), where
Asn = {(9,0),(5,0),(7,7),(0,19), (6,21), (4, 25), (8,29)},
A4,2 = {(O) 0)) (2’ 14)v (8s 17)7 (7a 20)}: A4,3 = {(1, 0)» (0’ 15)’ (2’ 28)}'

Proof According to (5) of Lemma 4, we compute the difference lists
L;, 0 < i < 29 from Ay, Agz and Aga. It is not difficult to see that

Ly = —L3g_s, 16 < 3 < 29 as the proof of Lemma 5. It is not difficult to
see that A forms a 2-CP({3,4,7},1,{3, 3, 3}:30p). O

3.5 The case: p = 47,143,167,383, 503,647 (mod 840)

Lemma 9. Suppose that p = 47,143,167,383,503,647 (mod 840) is a
prime. Then A={C} As;:j=1,2,3} forms a 2-CP({3,4,7},1,{}.3, 3}
30p), where

As1 = {(9,0),(5,0),(7,7),(0,19), (6, 21),(2,25),(8,29)},

As 2 = {(0,0), (2, 14), (8,17), (—10,20)}, As 3 = {(1,0), (0, 15), (2,28)}.

Proof According to (6) of Lemma 4, we compute the difference lists
L;, 0 <7 <29 from As,1, As,2 and As 3 as the proof of Lemma 5. It is not
difficult to see that A forms a 2-CP({3,4,7},1,{3, 3, 3 }; 30p). O

3.6 The case: p = 79,151,319,631, 751, 799, 31, 199, 271,
391,439,559 (mod 840)

Lemma 10. Suppose that p = 79,151, 319,631, 751, 799, 31, 199, 271,
391,439,559 (mod 840) is a prime. Then A={C¢-Ag;:j =1,2,3} forms
a 2-CP({3,4,7},1,{3, 3, 3}; 30p), where

As1 = {(2,0),(0,0),(1,7),(6,19),(—3,21),(3,25), (5,29)},

As2 = {(0,0),(4,14),(5,17),(3,20)}, 4¢3 = {(2,0),(0,15),(1,28)}.

Proof According to (9) and (10) of Lemma 4, we compute the difference
lists L;, 0 < i < 29 from Ag,1, As,2 and Ag 3 as the proof of Lemma 5. It
is not difficult to see that A forms a 2-CP({3,4,7},1, {%, %, %}, 30p). O
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3.7 The case: p = 107, 323, 347, 443, 683, 827 (mod 840)

Lemma 11. Suppose that p = 107,323, 347,443, 683,827 (mod 840) is a
prime. Then Cop-Ad;, A={C%-A7;:j =1,2,3} forms a 2-CP({3,4,7},1,
{%,-;-,-31-};30;)), where

Az ={(9,0),(5,0),(8,7),(0,19), (7,21),(6,25), (4,29)},

A7z = {(0,0),(1,14),(3,17),(4,20)}, A7 = {(2,0),(0,15), (3, 28)}.

Proof According to (11) of Lemma 4, we compute the difference lists
L;, 0 <1< 29 from A7,1, A72 and Az 3 as the proof of Lemma 5. It is not
difficult to see that A forms a 2-CP({3,4,7},1,{3, , 1}; 30p). ]

3.8 The case: p = 83,227,467, 563,587,803 (mod 840)

Lemma 12. Suppose that p = 83,227,467, 563,587,803 (mod 840) is a
prime. Then A={C§-Ag;:j =1,2,3} forms a 2-CP({3,4,7},1,{%,1,1};
30p), where

As1 = {(9,0), (5,0),(8,7),(0,19), (7,21), (6,25), (4,29)},

As2 = {(0,0),(1,14), (3,17),(4,20)}, As 3 = {(4,0), (0,15),(3,28)}.

Proof According to (12) of Lemma 4, we compute the difference lists
L;, 0 <4< 29 from Ag, As2 and Ag3 as the proof of Lemma 5. It is not
difficult to see that A forms a 2-CP({3,4,7},1,{3, 3. 3 }; 30p). o

3.9 The case: p=11,179,491,611,659,779 (mod 840)

Lemma 13. Suppose that p = 11,179,491,611,659,779 (mod 840) is a
prime. Then A={C§- Ao ;:j=1,2,3} forms a 2-CP({3,4,7},1, {3 %3}
30p), where

Ag, 1 ={(3,0),(8,0), (4,7),(0,19), (9, 21),(7,25), (2,29)},

Ag2 = {(0,0),(1,14),(2,17),(4,20)}, 4g,3 = {(1,0), (0,15), (3, 28)}.

Proof According to (13) of Lemma 4, we compute the difference lists
L;, 0 <9< 29 from Ag;, Ag 2 and Ag 3 as the proof of Lemma 5. It is not
difficult to see that A forms a 2-CP({3,4,7},1,{3, %, 1};30p). O
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3.10 The case: p = 59,131, 251,299,419, 731 (mod 840)

Lemma 14. Suppose that p = 59,131,251,299,419,731 (mod 840) is a
prime. Then A={C2-Ayo;:j=1,2,3} forms a2-CP({3,4,7},1,{}, 3,1}
30p), where

Ao, = {(8,0),(8,0), (4,7),(0,19), (9, 21), (7,25), (2,29)},

A2 = {(0,0),(2,14), (3,17), (5,20)}, A10,3 = {(0,0), (2,15), (4,28)}.

Proof According to (14) of Lemma 4, we compute the difference lists
L;, 0 < i< 29 from Ay, Aro,2 and Ajo,3 as the proof of Lemma 5. It is
not difficult to see that A forms a 2-CP({3,4,7},1,{}, 5, 3 }; 30p). a

3.11 The case: p = 127,247,463, 487, 583, 823 (mod 840)

Lemma 15. Suppose that p = 127,247,463,487, 583,823 (mod 840) is a
prime. Then A={C}-Ay1;:j =1,2,3} forms a2-CP({3,4,7},1,{3,3, 3}
30p), where

Ana ={(7,0),(4,0),(6,7),(9,19), (12,21), (2, 25), (5,29)},

Ay 2 = {(3,0),(0,14),(1,17), (4,20)}, A11,3 = {(3,0),(0,15),(1,28)}.

Proof According to (15) of Lemma 4, we compute the difference lists
L;, 0 <7< 29 from Ajy,1, A11,2 and Aj,3 as the proof of Lemma 5. It is
not difficult to see that A forms a 2-CP({3,4,7},1,{3, 5, 3}:; 30p). a

3.12 The case: p = 103,223, 367,607, 703, 727 (mod 840)

Lemma 16. Suppose that p = 103,223, 367,607,703, 727 (mod 840) is a
prime. Then A={C%-A1z;:j =1,2,3} forms a2-CP({3,4,7},1,{%, 4,4}
30p), where

Ajzq = {(7,0), (4,0),(5,7),(9,19),(2,21), (6,25), (12,29)},

A2 = {(1,0),(0,14),(5,17),(-1,20)}, A123 = {(1,0),(0,15), (2, 28)}.

Proof According to (16) of Lemma 4, we compute the difference lists
L;, 0 <i<29from Ajg1, Ai22 and Ajz 3 as the proof of Lemma 5. It is
not difficult to see that A forms a 2-CP({3,4,7},1,{}, 3. 5}; 30p). a
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We are now in a position to prove Theorem 1.

Proof of Theorem 1 For each prime p = 3 (mod 4), and p > 7, a
2-CP({3,4,7},1,{3, §, 4}; 30p) exists from Lemmas 5-16. For p = 7, let
A = {{0,1,3,7,12, 20, 30}, {0, 14, 35, 50, 66, 88, 120}, {0, 24, 49, 75, 108,
142,170}, {0, 37,76, 119}, {0, 41, 83,138}, {0, 44, 100, 145}, {0, 46, 94},
{0,47,107}, {0,57,130}}.
Then, A forms a 2-CP({3,4,7},1, {%, %, %};210).

By Lemmas 2 and 3, we obtain an optimal 2-CP({3,4,7},1,{3, 4, 1};30p)s
for any prime p = 3 (mod 4) and p > 7, and the corresponding optimal
VWOOC are obtained. This completes the proof of Theorem 1. 0

4 Proof of Theorem 2

In this section, we will prove Theorem 2. For each prime p = 3 (mod 4),
and p > 11, it is clear that gcd(33,p) = 1, and hence Z3, is isomorphic to
Zp X Zag.

4.1 The case: p = 71,191,239, 359,431,599, 311, 479, 551,
671,719,839 (mod 840)

Lemma 17. Suppose that p = 71,191, 239, 359, 431, 599, 311, 479, 551,
671,719,839 (mod 840) is a prime, £ = min{z : x € Cyp}. Then
B={C¢-B;:j=1,23,4} forms a 2-CP({3,4,7},1,{2,1,1};

33p), where

By,1 = {(0,0),(5,0), (1,1),(&,3),(3,5),(2, 9),(4,20)},

B1,2 ={(0,0),(3,6),(1,14),(2,21)},

Bl,3 = {(LO)! (0, 7)’ (2: 17)}:

B4 = {(1,0),(0,10),(-2,21)}.

Proof We compute the difference lists L;, 0 < 7 < 32 from By,1, B1,2,
B,,3 and B 4. It is not difficult to see that Ly = —La3z_,, 17 < s < 32. So
we only need to compute the difference lists L; for 0 < i < 16.
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Lo={5-5}, L1 = Li3={1,-4}, Ly = {3— £, — 1}, Ls = {€ - 5,¢},
Ly=—-Lg=Lyo={2,—1}, Ls = —Lg = Ly = {3,-2}, Ls = {3,2 - &},
Ly = Lig = {1,-1}, L1; = {-2,2}, L1a = {-3,1}, L1 = {€{ — 4, —1}.

According to (1) and (2) of Lemma 4, we know that 2 € CZ, 3 € c?
and 5 € C2. And because of § — 1 € C2, 1 <1<, it is easy to check
that [L;((C?| =1,0 < i < 32, k =0,1. Hence, AB satisfies the following
properties: It does cover every element in Z, x Zs3 \ ({0} x Za3) exactly
once, and each element of {0} x Z33 is not covered. So B forms a 2-
CP({3,4,7},1, {721'1 '}i’ %' ; 33p). O

4.2 The case: p = 43,67,163,403, 547,667,187, 283, 307,
523,643, 787 (mod 840)

Lemma 18. Suppose that p = 43,67,163,403,547,667, 187, 283, 307,
523,643,787 (mod 840) is a prime. Then B={C%-B;; : j = 1,2,3,4}
forms a 2-CP({3,4,7},1,{2, §, §};33p), where

Bz, = {(1,0),(2,0),(-3,1),(0,3),(6,5),(5,9), (3,20)},

B2,2 = {(0’0)? (la 6): (—2, 14)a (4» 21)}’

32,3 = {(1’0)’ (01 7)a (2’ 17)}:

By 4 = {(2,0),(0,10), (5,21)}.

Proof According to (3) and (4) of Lemma 4, we compute the difference
lists L;, 0 < ¢ < 32 from By 1, B2 2, B2,3 and By 4 as the proof of Lemma 17.
It is not difficult to see that B forms a 2-CP({3,4,7},1, {%, %, %}; 33p). O

4.3 The case: p = 211, 331, 379,499, 571, 739, 19, 139, 451,
619,691,811 (mod 840)

Lemma 19. Suppose that p = 211,331, 379, 499,571, 739,19, 139, 451,
619,691,811 (mod 840) is a prime. Then B={C% . By; :j =123, 4}
forms a 2-CP({3,4,7},1, {%—, 311} 33p), where

Bs,l = {(1,0), (3v 0)? (2) 1)1 (4’ 3)1 (5,5)v (6,9), (0,20)}:

Bs2 = {(0,0),(1,6),(4,14),(5,21)},
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B3,3 = {(la 0)? (0’ 7): (5’ 17)}:
BS,4 = {(1’0)$ (0: 10)9 (4’ 21)}'

Proof According to (7) and (8) of Lemma 4, we compute the difference
lists L;, 0 < ¢ < 32 from Bs,), Ba 2, B33 and Bj 4 as the proof of Lemma 17.
It is not difficult to see that B forms a 2-CP({3,4,7},1,{%,%,4}:33p). O

4.4 The case: p = 23,263,407, 527,743,767 (mod 840)

Lemma 20. Suppose that p = 23,263,407,527,743,767 (mod 840) is a
prime. Then B={C-By; : j = 1,2,3,4} forms a2-CP({3,4,7},1,{2,1,1};
33p), where

By, = {(91 0), (5,0),(7,1), (0, 3), (4,5), (6,9), (8, 20)}:

By2 = {(0,0),(5,6),(6,14),(2,21)},

B4,3 = {(“’1’0)’ (Oa 7)’ (4» 17)}:

By,4 = {(6,0), (0,10), (5,21)}.

Proof According to (5) of Lemma 4, we compute the difference lists
L;, 0 <i <32 from By, By, B3 and By 4 as the proof of Lemma 17. It
is not difficult to see that B forms a 2-CP({3,4,7},1,{2,%,1};33p). O

4.5 The case: p = 47,143,167, 383,503,647 (mod 840)

Lemma 21. Suppose that p = 47,143,167, 383,503,647 (mod 840) is a
prime. Then B={C§-Bs,; : j = 1,2,3,4} forms a2-CP({3,4,7},1,{2,1, 1};
33p), where

BS,I = {(9, O)' (5:O)v (Ov 1)’ (7’ 3), (8a 5)s (2’ 9)1 (61 20)}»

Bs,» = {(0,0),(5,6),(1,14),(6,21)},

B5,3 = {(—1’0)1 (0, 7)! (1’ 17)},

Bs.4 = {(6,0),(0,10), (5,21)}.

Proof According to (6) of Lemma 4, we compute the difference lists
L;,0<1<32from Bs, Bs 3, Bs3 and Bs4 as the proof of Lemma 17. It
is not difficult to see that B forms a 2-CP({3,4,7},1,{%,§,5};33p). O

218



4.6 The case: p = 79,151,319,631,751, 799, 31,199, 271,
391,439,559 (mod 840)

Lemma 22. Suppose that p = 79,151,319, 631, 751, 799, 31, 199, 271,
391,439,559 (mod 840) is a prime. then B={C%-Bs,; : j = 1,2,8,4} forms
a 2-CP({3,4,7},1,{%, 3,3}

33p), where

Bﬁ,l = {(2v 0): (0, 0): (_3’ 1)’ (61 3), (51 5),(3,9),(1, 20)}:

Bs,2 = {(0,0),(3,6), (5,14), (4,21)},

Bgz = {(Oa 0),(1,7),(4,17)},

36,4 = {(3v 0), (0, 10), (2 21)}-

Proof According to (9) and (10) of Lemma 4, we compute the difference
lists L;, 0 < ¢ < 32 from Bg,1, Bg,2, Bs,3 and Bg 4 as the proof of Lemma 17.
It is not difficult to see that B forms a 2-CP({3,4,7},1, {%, -}, ;1;}; 33p). O

4.7 The case: p = 107, 323, 347, 443, 683, 827, 83, 227,
467,563, 587,803 (mod 840)

Lemma 23. Suppose that p = 107,323, 347, 443, 683, 827, 83, 227,
467,563, 587,803 (mod 840) is a prime. Then B={C? By ;:j =1,2,3,4}
forms a 2-CP({3,4,7},1, {%, %, 1}:33p), where

By = {(5’ 0)’ (1,0),(4,1), (3,3),(8,5), (0,9), (2, 20)}:

Br2 ={(0,0),(3,6),(1,14),(4,21)},

Br3z = {(1,0),(0, 7),(4,17)},

B, 4 ={(1,0),(0,10),(3,21)}.

Proof According to (11) and (12) of Lemma 4, we compute the differ-
ence lists L;, 0 < i < 32 from By,1, By,2, By,3 and By 4 as the proof of Lem-
ma 17. It is not difficult to see that B forms a 2-CP({3,4,7},1, {2, 1, 1}; 33p).

O
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4.8 The case: p =11,179,491,611,659, 779 (mod 840)

Lemma 24. Suppose that p = 11,179,491,611,659,779 (mod 840) is a
prime. Then B={C§-Bs; : j = 1,2,3,4} forms a2-CP({3,4,7},1,{2, 1, 1};
33p), where

Bs,1 = {(4,0),(9,0),(5,1), (8,3),(10,5),(1,9), (3,20)},

38,2 = {(07 0): (la 6)v (57 14)s (4a 21)},

BB,3 = {(2: 0), (0’ 7)’ (3r 17)}7

Bs,4 = {(1,0),(0,10),(3,21)}.

Proof According to (13) of Lemma 4, we compute the difference lists
L;, 0 <i < 32 from Bg,1, Bs,2, Bs,3s and Bg 4 as the proof of Lemma 17. It
is not difficult to see that B forms a 2-CP({3,4,7},1,{2%,4,%};33p). O

4.9 The case: p = 59,131,251,299,419,731 (mod 840)

Lemma 25. Suppose that p = 59,131, 251,299,419, 731 (mod 840) is a
prime. Then B={C§-By,; : j = 1,2,3,4} forms a2-CP({3,4,7},1,{2,1,1};
33p), where

Bg,l = {(4’ O)a (9,0), (5a 1)’ (8a 3)’ (10’ 5)1 (1, 9)» (3: 20)}’

B2 = {(01 0), (2’ 6), (5, 14), (4, 21)};

By = {(2,0),(0,7),(3,17)},

By, = {(1,0),(0,10),(3,21)}.

Proof According to (14) of Lemma 4, we compute the difference lists
L;, 0 <4 <32 from Byg,;, Bg,2, Boz and Bg 4 as the proof of Lemma 17. It
is not difficult to see that B forms a 2-CP({3,4,7},1,{2,1,1};33p). O

4.10 The case: p = 127,247, 463,487, 583,823 (mod 840)

Lemma 26. Suppose that p = 127,247, 463, 487,583,823 (mod 840) is a
prime. Then B=(C§-Bio,; : j = 1,2,3,4} forms 0 2-CP({3,4,7},1,{2, 4, }};
33p), where

By, = {(5,0),(2,0),(0,1),(7,3),(3,5),(4,9),(10,20)},

Byo,2 = {(0,0),(5,6), (3,14), (4,21)},
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BIO,3 = {(1’ 0)’ (0’ 7)1 (8: 17)};
Bjo,4 = {(1,0),(0,10), (4,21)}.

Proof According to (15) of Lemma 4, we compute the difference lists
L;, 0 < i < 32 from Bio,1, Bio,2, Bio,3 and Big,4 as the proof of Lemma 17.
It is not difficult to see that B forms a 2-CP({3,4,7},1,{%,,5}:33p). O

4.10.1 The case: p = 103,223,367, 607,703,727 (mod 840)

Lemma 27. Suppose that p = 103,223,367,607,703,727 (mod 840) is a
prime. Then B={C2-By1; : j = 1,2,3,4} forms a2-CP({3,4,7},1,{%, }, 1}
33p), where

Bll,l = {(7v 0)’ (4,0), (9’ 1)v (2s 3): (5’5)’ (61 9)’ (0’ 20)}:

Bn,2 = {(0! 0), (5,6), (3, 14)? (4: 21)}:

B,z = {(1,0),(0,7),(3,17)},

By,4 = {(5,0),(0,10),(3,21)}.

Proof According to (16) of Lemma 4, we compute the difference lists
L;, 0 < i< 32 from Byy,1, Bi1,2, Bi1,3 and By 4 as the proof of Lemma 17.
It is not difficult to see that B forms a 2-CP({3,4,7},1,{%,3,4};33p). O

We are now in a position to prove Theorem 2.

Proof of Theorem 2 For each prime p = 3 (mod 4), and p > 11, a
2-CP({3,4,7},1,{%, 1, 1) 33p) exists from Lemmas 17-27.

Let
B; = {{0,14, 35, 50, 66, 88, 112}, {0, 33, 72, 106}, {0, 61, 124}, {0, 64, 129},
{0,68,149}, {0,1, 3,7, 12, 20, 30}, {0, 40, 84, 127}, {0, 45, 92, 140},

{0, 49,105}, {0, 55,113}, {0, 57, 116}, {0, 25, 51,79, 111, 148, 189} }.

B = {{o0,1,3,7,12,20, 30}, {0, 14, 35, 50, 66, 88,112},
{0,25,51,79,111,144,178}, {0, 114, 248}, {0, 105, 214}, {0, 49, 106,167},
{0, 58,122,193}, {0, 43, 85, 125, 166, 205, 242}, {0, 63,138, 211},

{0, 72,155,233}, {0, 84,174}, {0, 113, 223}, {0, 91, 186}, {0, 96, 200},
{0,97,204}, {0, 101, 209}, {0, 70, 235, 304}, {0, 87, 220}, {0, 94, 226},

{0, 44, 89,136, 191,239, 307} }.

Then, B, forms a 2-CP({3,4,7},1, {%, b %};33})) for p=17,11.

221



for

By Lemmas 2 and 3, we obtain an optimal 2-CP({3,4,7},1,{3, 4, 1};33p)
any prime p = 3 (mod 4) and p > 7, and the corresponding optimal

VWOOC are obtained. This completes the proof of Theorem 2. O
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