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Abstract

Let ex(m, C<n) denote the maximum size of a graph of order m
and girth at least n + 1, and EX(m,C<y) be the set of all graphs
of girth at least n + 1 and size ez(m,C<n). The Ramsey number
R(C<n, Km) is the smallest k such that every graph of order k con-
tains either a cycle of order ! for some 3 < ! < n or a set of m
independent vertices. It is known that ex(2n,C<n) = 2n + 2 for
n > 4, and the exact values of R(C<yn, Kmm) for n > m are known.
In this paper, we characterize all graphs in EX(2n,Cg<s) for n > 5,
and then obtain the exact values of R(C<n, Km) for m € {n,n+1}.
Keywords: Girth; Eztremal graph; Plonar graph

1. Introduction

For a simple graph G with the vertex set V(G), edge set E(G), and S C
V(G), G|[S] denotes the subgraph induced by S in G, and G \ S is the
subgraph induced by the set V(G) — 8. For v € V(G), define N(v) = {u:
u € V(G) Auwv € E(G)}, d(v) = |N(v)|, and N[v] = N(v) U {v}. &(G)
and A(G) are the minimum and maximum degree of G, respectively. A
set of vertices I C V(G) is called independent if G[I] contains no edge.
The independence number a(G) is the largest cardinality |I| among all
independent sets in G. K, is the complete m x n bipartite graph, Pj is
a path on k vertices, and Cj is a cycle of length k. C<n is a set of cycles
of length at most m, and girth g(G) is the length of the shortest cycle in
G. We refer to the regions defined by an embedding of a planar graph as
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its faces. A face is said to be incident with the vertices and edges in its
boundary. The length of a face is the number of edges with which it is
incident. If a face has length r, we say it is an r-face. For a planar graph
G, let f denote the number of its faces.

We use ex(m, C<,) to denote the maximum size of a graph of order m
and girth at least n+1. A graph of girth at least n+1 and size ex(m, C<,)
is called an extremal graph, and let EX(m,C<,) denote the set of all
corresponding graphs. It is well known that ex(m, {C3}) = [-”;—2 |, and the
extremal graph in this case is the complete bipartite graph K|m/2},tm/21-
Garnick, Kwong and Lazebnik [5] obtained the exact values of ex(m, C<4)
for all m < 24, and some lower bound constructions for m < 200. Garnick
and Nieuwejaar [6] determined the exact values of ez(m,C<4) for 25 <
m < 30. Lazebnik and Wang (7] proved that ex(2n +2,C<,) = 2n + 4 for
all n > 12. Abajo and Diédnez [3] presented the exact values of ex(m, C<p)
forn>4and m < [Qe-'—’s_—lszj without proofs. They also determined all
the values of the girths that extremal graphs in this interval can have. For
integers m > 4 and n > m + 1, Abajo and Diénez [2] obtained the bounds
for n € {5,6,7} and, in several cases, even the exact values. Recently, they
proved that ex(m,C<n) = m + k, where m = m(k,n), and 1 < k < 7 or
k = 15 [1]. From their results, we know that ez(2n,C<,) = 2n + 2 for
n > 5, and we will present all graphs in £X(2n,C<,) in Theorem 1.

The Ramsey number R(C<n, Ky,) is the smallest k& such that every
graph of order k contains either a cycle of order ! for some 3 <l <nora
set of m independent vertices. A (C<n, Km; k)-graph is a graph of order k,
girth greater than n and not containing any independent sets of m vertices.
Spencer [9] obtained a lower bound R(C<yn, Kyn) > ¢(m/log m)®»—1(n=2),
Erdés, Faudree, Rousseau and Schelp [4] proved that R(C<p, Kpn) = 2m—1
forn > 2m -1, and R(Cgpn, Km) = 2m for m < n < 2m — 1. For the
literature on small Ramsey numbers, we refer to [8] and relevant references
given in it. In this paper, based on all graphs in EX(2n,C<,), we extend
the results of R(C<n, Km) to the cases m € {n,n + 1} in Theorems 2 and
3.

Theorem 1. For alln > 5, if G is any graph in EX(2n,Cx,), then
(a) If n is odd, then G € F, U Fs,

(b) If n is even, then G € Fy,

where the graph sets F1 and F2 are as in Definition 1.

Theorem 2. Forn > 5,

_f 2n, for odd n, and
R(Cg<n, Kn) = { 2n+1, for even n.
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Theorem 3. For odd n > 5, and even n > 16,
R(C<ny Kn41) =2n+3.

Definition 1. For n > 2, the graph sets F;, 1 < { < 2, are defined on 2n
vertices, and each of them is a planar graph with four (n + 1)-faces. We
describe these graphs in detail as follows.
(1) For any graph Fy € F1, A(F1) = 3, and it is defined on vertices
{vi,w},w}w},wiwhwf : 1 <i<41<j<B1<k<y1<IL
£,B < <&} such that

(@) B+v+€=n—-2, and

(i) € < [252].
In Fy, d(v;) = 3 for 1 < i < 4, and the other vertices have degree 2, see
Figure 1(a). Observe that each (n + 1)-face of Fy is a subgraph induced
by three vertices v;, B vertices w} (or w?), v vertices w} (or w}), end €

vertices w} (or wf).

L7

(a) Family of graphs 7, (b) Family of graphs 72
Figure 1: Structure of graphs in F; and F3

(2) For any graph F» € F3, A(F2) = 4 and n is odd. F;, is defined on

vertices {v;, w§ : 1<i<2,1<;< %, 1<k<4}. InF, d(v;) =4 for

1 < i < 2, and the other vertices have degree 2, see Figure 1(b). Observe
n

that each (n + 1)-face of Fy is a subgraph induced by two vertices v, —;—1

vertices 'w;-‘, and ’-‘-2'—1 vertices w;- for1<kl<4andk#Il

Let G(B,+,£) denote a graph in Fy, where 3,y and § are the corre-
sponding numbers in Definition 1(1). We will show that these graphs are
in EX(2n,C<,). Some of the known results which will be used in our
proofs are summarized in the following.

Theorem 4.[2, 3] Let n > 4, and 0 < k < 4 be integers, then
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ex(v,C<n) = v+ k for each v € [vx(n), vks1(n)), where

vo(n) =n+1,
vi(n) = [3n/2] +1,
v2(n) = 2n,

_ J [9n/4], if nis even, and
va(n) = { \9n/4), if n is odd,
_ J [(8n—2)/8], if nis even, and
wi = { o 23l e o
3"’_27 1rf 'R#G, and
vs(n) = { 17,  ifn=6
and v4(5) = 14.

If v = 2n — 1, then v € (vi(n),vz(n)) for n > 5, we have k = 1, so
ez(2n — 1,C<n) = 2n. Similarly, the exact values of ez(2n,C<,), ex(2n +
1,C<n) and ez(2n + 3,C<,) can be determined by Theorem 4. Hence, we
have the following corollary.

Corollary 1. Forn > 5,

(a) ex(2n - 1,C<,) = 2n,

(b) ex(2n,C<pn) =2n + 2,

(c) ex(2n +1,C<n) = 2n + 3, for even n, and
2n+8, forn=35,

(d) ex(2n +3,C<n) = 2n+6, for 6<n<13 orn=15, and
2n+5, forn=14 orn > 16.

2. Proof of Theorem 1

Lemma 1. Let G be a graph of girth at least n + 1, then
(a) If n 2 5, and |V(G)| = 2n, then G is planar, and
(b) If n > 16, and |V(G)| = 2n + 3, then G is planar.

Proof. Assume that G is nonplanar, then by Kuratowski’s Theorem,
G would contain a subgraph that is a subdivision of K5 or K33. If G
contains a subgraph that is a subdivision of K5, then since g(G) > n + 1,
each triangle of K is subdivided by at least n — 2 vertices. Hence each
edge of K is subdivided by at least "T‘z vertices on average, and thus
V(G)| 2 fle"T‘z]-l-S = [192=3]. Similarly, if G contains a subgraph that
is a subdivision of K3 3, then since g(G) > n+1, each quadrilateral of K3 3 is
subdivided by at least n —3 vertices. Hence each edge of K3 3 is subdivided
by at least "T"a vertices on average, and thus |V(G)| > [9 x '—‘Z—s] +6 =
[2252]. If n > 5, then |V(G)| > 2n, a contradiction. If n > 16, then
[V(G)| > 2n + 3, a contradiction. Hence, G is planar with the hypothesis
of (a) or (b), and the lemma holds. o

Proof of Theorem 1. If G € EX(2n,C<y), then |E(G)| = 2n + 2 by
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Corollary 1(b). Since C; € G for 3 <! < n, G is planar by Lemma 1(a). By
Euler’s formula, f = |E(G)| — |[V(G)] + 2 = 4. Note that |E(G)| = 2n+ 2,
so we have g(G) = n + 1.

If 6(G) > 3, then |E(G)| > 2n + 2 for n > 5, a contradiction. If
d(G) <1, let v be a vertex of degree §(G), then G\ {v} is a graph of order
2n—1 and |E(G\ {v})| = 2n+ 1, which contradicts Corollary 1(a). Hence,
we can assume that 6(G) = 2.

If A(G) = 2, then G has 2n edges, a contradiction. Suppose that
A(G) 2 5, let v be a vertex of degree A(G) and N;(v) be the neighborhood
of v at distance . Assume that w! € Ni(v) for 1 <i<k,1<j<5, and
wiw), , € E(G) for 1 < s <k~ 1. Since G contains no Cy for 3 <1< n
and 6(G) = 2, we have k > [231]. Hence [V(G)| > [257}] x 5+ 1 > 2n,
a contradiction, and thus 3 < A(G) < 4. For 2 < i < 4, let n; denote the
number of vertices of degree i, so ng + ng + ng4 = 2n. There are two cases
depending on A(G).

Case 1. Suppose that A(G) = 3, then ng + ng = 2n. Since 3n3 + 2ny =
4n + 4, we have n3 = 4. Since every graph G can be constructed from a
3-regular planar multigraph of order 4 and 4 faces by subdividing its edges
until g(G) becomes as large as desired, we first consider such multigraphs.
It is easy to show that there are exactly two such multigraphs MG; and
MG, see Figure 2, where all edges of MG, (or MG,) are subdivided by
z; vertices respectively in order to construct G, 1 < <6.

T2

Tl

e T4

(o) MG, (b) MG,
Figure 2: The 3-regular planar multigraphs of order 4
Assume that G is a subdivision of MG;. Since g(G) =n +1,
Ty+zr2=n-1,
Tz +24=n-1,

T+ Te+zT5+T6="1—3,
To+x3+zT5+x6=1n—3.
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It follows that x5 + ¢ = —2, a contradiction. Now assume that G is the
subdivision of M G>. Similarly,

Ty+z3+Te=1n-—2,
Ty +Ty+2Ts=n—2,
Lo+ a3+ =n—2,
To+Tqg+Te=n—2.

It follows that z; = 75, 73 = 4 and 25 = Tg. Assume that z; < z3 < z5.
Since g(G) =n+1, we have ) + 22 + 3 + T4 > n — 3, that is

To+zT3+T5=n—2,
2(zg +z3) 21 —3.

Hence, z5 < | 251].

Setting f = z1,v = z3 and € = x5, the theorem holds. Taking n = 5,6
as examples, the extremal graphs in EX(2n,C<,) with A(G) = 3 are
shown in Figure 3.

0101010

(e) G(0,1,2) () 6(1,1,1) (e) G(0,2,2) (d) G(1,1,2)

Figure 3: The graphs in EX(2n,C<,) with A(G) =3 for n = 5,6

Case 2. Suppose that A(G) = 4. Since 2n3 + 3n3 + 4ny = 4n + 4, we have
ng +2n4 = 4. 1)

Let v; be a vqrtex of degree A(G) and N;(v;) be the neighborhood of v; at
distance 3, w] € Nj(v;) for 1 <i <k, 1< <4, and wiw?,, € E(G) for
1< s <k~ 1. Similar to the proof for A(G) < 5, we have k > [251]. If
k> [ 2-17 then |V(G)| > 1+4 x ([252] +1) > 2n, a contradiction. Hence
k= f""l] If n is even, |V(G)| > 1+ 4 x [251] > 2n, a contradiction,
Hence n has to be odd, that is, k = 251. Notice that there are 2n — 2
vertices w{ forl1 <i< Bz2 "“ y1 €7 £ 4, so we have n3 =0 and nq = 2 by
equality (1). Hence each vertex w’ for 1 < j < 4 has to be adjacent to the
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other vertex of degree 4, denoted by v. Thus the theorem holds for odd
n. Taking n = 5,7 as examples, the extremal graphs in EX(2n; C<n) w1th
A(G) = 4 are shown in Figure 4.

(a)n=5 Gn=7

Figure 4: The graphs in EX(2n,C<,) with A(G) =4 forn =5,7

Lemma 2. Forn > 5, if G is any (C<n, Kn;2n)-graph, then G € FUF3.

Proof. Since ex(2n,C<y) = 2n + 2 by Corollary 1(b), we have §(G) < 2.
If §(G) € 1, let v be a vertex of degree 6(G) and H = G[V(G) \ N[v]],
then |V(H)| > 2n — 2. Since R(C<n, Kn-1) = 2n — 2 (4], the appropriate
n — 1 vertices of V(H) together with v would be an independent set of n
vertices in G, a contradiction. Hence, §(G) = 2. By the same argument
as in the proof of Theorem 1, we have A(G) < 4. If A(G) = 2, then since
9(G) > n+1, we have G =2 C,,, a contradiction with «(G) < n—1. Hence
3I<AG)<L4.

Since G has order 2n and girth at least n + 1 for n > 5, G is a planar
graph by Lemma 1(a). Therefore, since §(G) = 2, each vertex of G has to
lie on at least one cycle. Let r; denote the length of the cycle forming the
boundary of the i-th face for 1 < i < f. Since each cycle is of length at
least n + 1,

f
2E(G)| =) _ri 2 f(n+1),
i=1

and by Euler’s formula,
= |B@) - f+22 Lt~ s4+2=Ln-1)+2,

that is, g(n —1)+2 < 2n. Hence f < 4. Since G ¥ Cy,, we have
f>2 If f =3, then G is a theta graph. Let v be a vertex which
belongs to every cycle of G. Since G \ {v} is a tree of order 2n — 1 and it
contains an independent set of at least [%] vertices, we have a(G) > n,
a contradiction. Hence f = 4, and thus |E(G)| > 2n + 2. Note that
ex(2n,C<n) = 2n + 2, so |E(G)| = 2n + 2. By Theorem 1, we have
Ge FUF. (m]
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3. Proof of Theorem 2

For even 3, v and £, we will determine the independence numbers of
G(B,7,£) of order 2n in the following lemma,

Lemma 3. If B, v and £ are even, then a(G(B,7,£)) =n —1.

Proof. Let G = G(B,7,£) and S be an independent set in G, and
§ = {v1,v2}U{wj, wi,..., wiu{w}, i, ..., wi_ }u{w},vj,..., wd_5}u
{wf, wi,...,wi_j}u {wg,wi,...,wg :5<j <6}, then |S|=2+&x2+
(3-1)+3+5%x2=n-1 Hence o(G) > n—1. We will prove that
a(G) < n—1. Assume that a(G) > n, and I is a maximum independent
set of G, then [I| > n.

Let Ty = {vi,w{,wg,...wé,: 1<i<41<j<2tand Ty =
{w{,w%,...,w?; :3<5< 4}U{w{,wg,...wz 15 < j <6}, then V(G) =
ThUT,. Let I; = INT; for i =1 and 2. Since G[T3] is isomorphic to
2Ps4+2 and a(P;) = [£], we have [I1| < B+ 2. If |I1] < B+ 2, then
|I2| > v+ & + 1. However, since G[Ty] & 2P, U 2P, it contains an inde-
pendent set of at most -y + £ vertices, a contradiction. Hence |I;| = 8 + 2.
Note that G[T}] & 2Pg,2, there is at least one vertex from {v;,v3}, and
one vertex from {vz,v,4} in I;. By symmetry, there are three cases:

Case 1. Suppose that v; € I for 1 <4 < 4. Let X = {w3, w§, w}, w}, wi,
wi, wi, wl}, and H = G[T; — X]. Since H & 2P, 5 U 2P;_,, we have
afH) =7+ —4, and thus |I| = 8+ v+ £ — 2 =n — 4, a contradiction.

Case 2. Suppose that v; € ) for1 <i < 3. Let X = {w3, wf, wi, w}, wi, wf},
and H = G[I> — X]. Since H = Py,_5U Py_; UP;_, U P;_;, we have
a(H)=v+€-2, and thus |I| = B+ v+ £ = n — 2, a contradiction.

Case 3. Suppose that v; € I; for 1 <4 < 2. Let X = {w3,w$, w}, w}}, and
H= G[Tg —X]. Since H = P7_2UP,Y U2P€_1, we have a(H) =y+£-1,
and thus [I| =8+ v+ € +1=n—1, a contradiction.

Cases 1-3 imply that a(G) < n — 1, and thus the lemma holds. m}
Proof of Theorem 2. (1) R(C<n, Ky) = 2n +1 for even n > 6.

For odd %, the graphs G(0,% — 1,5 — 1) show that R(C<n, K,) >
2n +1 by Lemma 3. For even 3 , the graphs G(2,§ — 2,3 — 2) show
that R(C<n,Kn) = 2n 4+ 1 by Lemma 3. Assume that there exists a
(C<ny Knj2n+1)-graph G for even n. If §(G) > 3, then |E(G)| > 2n+3, a
contradiction with Corollary 1(c). If §(G) < 2, let v be a vertex of degree
§(G), then |V(G) — Nv]| > 2n — 2. Since R(C<n, Kn—1) = 2n — 2 [4], the
subgraph G[V(G) — N[v]] contains an independent set of n — 1 vertices.
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These n — 1 vertices together with v would be an independent set of n
vertices in G, a contradiction. Hence R(C<y, K,) < 2n+1 for even n > 6,
and the theorem holds.

(2) R(C<n, Kn) = 2n for odd n > 5.

a(Con-1) = n — 1 shows that R(C<n, K,) > 2n. We will prove that
R(C<n, K,) < 2n. Assume that there exists a (C<n, Kn; 2n)-graph G for
odd n. By Lemma 2, we have G € F; U F2. Let S be an independent set
in G.

Case 1. Suppose that G € F;. Since B++v+¢£ is odd, there are two subcases
depending on their parities.
Case 1.1. Suppose that all of 3, v and £ are odd. Let § = {wf,w§,..., w§:
1<k <2} U{wh,wh, ..., wk:3 <k <4}u{w,uf,...,wf:5<k<6),
then |S| = ([81+ 3] +[§]) x2=n+1, that is, »(G) 2 n + L.
Case 1.2. Suppose that there is exactly one of 8,7 and £ which is odd.
Without loss of generality, let £ > 1 be odd, and both 8 and 7 are even.
Let S = {vz,vs}U{w§, wf,..., wh:1 <k <2}U{wh,wf,...,wk:3<k<
4}u{ws, ws,... ,wg_l}u{w‘f,wg, .. ,'wg}, then |S| = 2+B+’y+|_§_|+f§'| =
n, that is, a(G) = n.
Case 2. Suppose that G € F3, and thus A(G) = 4. Note that j = 9%, see
Figure 1(b). For even j, let S = {v;} U {wf,wf,..., w} : 1 < k < 4}, then
|S] =2j +1=n. For odd j, let S = {w'f,'w:’,‘,...,w;-‘ : 1 < k < 4}, then
IS} = 4 % [{] =n+ 1. Hence, &(G) > n.

Cases 1 and 2 imply that a(G) > n, a contradiction with G being a

(C<ny Kn; 2n)-graph. Hence R(C<n,Kn) < 2n for odd n > 5, and the
theorem holds. ]

4. Proof of Theorem 3

Let G'(0,2,4,4,&, &) be a graph of order 2n+2 and girth at least n+1,
which is similar to the structure of G € Fj, and it is defined on vertices
{vi,w?, wi, wi,wp,wf : 1 <i<41<5<21<k<y,1S1<E67<
§,7+ & =n—2} as in Figure 5.

By the same argument as in the proof of Lemma 3, we can obtain the
following lemma.

Lemma 4. If vy and € are even, then a(G(0,2,7,7,§,£)) = n.
Proof of Theorem 3. (1) R(C<n, Kn4+1) =2n+ 3 for odd n > 5.
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w§ vy wi

Figure 5: Structure of G'(0,2, 3, 8,¢&,€)

For odd 2f1, let H = G(0, 2 — 1, 2L — 1) with order 2n + 2, then
a(H) =nby Lemma 3. For even -—'t‘—- let H G(2, L -2, 25 2} with
order 2n+2, then a(H) = n by Lemma 3. Hence R(C’S,,,K,H.l) > 2n+3 for
odd n > 5. We will prove that R(C<n, Kn+1) < 2n+3. Assume that there
exists a (C<n, Kn41;2n+ 3)-graph G. If §(G) > 3, then |E(G)| > 2n+8, a
contradiction with Corollary 1(d). If §(G) < 2, let v be a vertex of degree
6(G) and H = G[V(G)\ N[v]], then |V (H)| > 2n. Since R(C<n, K»n) = 2n
for odd n > 5 by Theorem 2, H contains an independent set of n vertices.
These n vertices together with v would be an independent set of n + 1
vertices in G, a contradiction. Hence R(C<p,Kn4+1) < 2n + 3 for odd
n > 5, and the theorem holds.

(2) R(C<n, Kn41) = 2n + 3 for even n > 16.

Forodd %, let H = G'(0,2,2-1,% -1, %—- ,%—1) then a(H) = n by
Lemma 4. For even %, let H = G'(O, 2,3-2,5-2,%,3), thena(H)=n
by Lemma 4. Hence R(C<n,Kn41) = 2n + 3 for even n > 6. We will
prove that R(C<p,Kn41) < 21+ 3 for even n > 16. Assume that there
exists a (C<n,y Knt1; 2n + 3)-graph G. If §(G) > 3, then |[E(G)| > 2n+5, a
contradiction with Corollary 1(d), and thus 6(G) < 2. Let v be a vertex of
degree §(G), and H = G[V(G) — N[v]]. If §(G) < 1, then |[V(H)| > 2n+1.
Since R(C<n, Kn) = 2n + 1 for even n > 6 by Theorem 2, the appropriate
n vertices of V(H) together with v would be an independent set of n + 1
vertices in G, a contradiction. Hence §(G) = 2, and H is a (C<pn, Kn;2n)-
graph. By Lemma 2 and n being even, we have H € F;. Notice that
V(G) =2n+ 3 and n > 16, so G is a planar graph by Lemma 1(b). Hence
N[v] has to lie in one of four (n + 1)-faces of H. Therefore, since §(G) = 2,
each vertex of N(v) is adjacent to at least one vertex which is incident
with this face. In any case, we have g(G) < n + 1, a contradiction. Hence
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R(C<n,Kn4+1) < 2n + 3 for even n > 16, and the theorem holds. ]
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