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Abstract

In this paper, we investigate the basis number for the wreath
product of wheels with paths. Also, as a related problem, we con-
struct a minimum cycle basis of the same.
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1 Introduction

In the article the basis number of Cartesian product of some graphs, Ali
and Marougi [1] gave an upper bound of the basis number of the Cartesian
product of two graphs in terms of the factors. Also in the article the basis
number of the powers of the complete graph, Alsardary and Wojciechowski
(3] proved that the basis number of the d times Cartesian product of the
complete graph is bounded above by 9. Jaradat [14] and Jaradat and
Alzoubi [15] treated the problem of finding the basis number for the lex-
icographic product by presenting an upper bound in terms of the second
factor. In [10] and [11] upper bounds for the basis numbers in terms of
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the factors are obtained for the direct product of two bipartite graphs and
strong product of a graph with a bipartite graph. In a related problem,
Imrich and Stadler [9] constructed minimum cycle bases for Cartesian and
strong products of graphs, in terms of minimum cycle bases of the factors.
Berger (4] and Jaradat [12] solved the same problem for the lexicographical
product. Hammack (7] constructed a minimum cycle basis for the direct
product of two bipartite graphs. In [6, 8] minimum cycle bases for the
direct product of complete graphs is constructed. Recently, Bradshwa and
Hammack, constructed a minimum cycle bases of the direct product of cycle
with a graph. The problem of finding the basis number and constructing
a minimum cycle basis for the wreath product appears to be more compli-
cated. The problem has been solved for some special cases see [2,13]. In
this paper, we mainly prove that the basis number of the wreath product
of wheels with paths is bounded above by 4 and we construct a minimum
cycle basis for the same. Our proof is the first step towards giving a general
upper bound of the basis number of a graph with a path and constructing
a minimum cycle basis of the same.

For a given graph G, we denote the vertex set of G by V(G) and the edge
set by E(G). The set £ of all subsets of E(G) forms an |E(G)|-dimensional
vector space over Z with vector addition X ® Y = (X\Y) U (Y\X) and
scalar multiplication 1- X = X and 0- X = @ for all X,Y € £. The cycle
space, C(G), of a graph G is the vector subspace of (£, ®, -) spanned by the
cycles of G. Note that the non-zero elements of C(G) are cycles and edge
disjoint union of cycles. It is known that the dimension of the cycle space
is the cyclomatic number or the first Betti number

dim C(G) = |E(G)| - [V(G)I +r (1)

where r is the number of components.

A basis B for C(G) is called a cycle basis of G. A cycle basis B of G is
called a d-fold if each edge of G occurs in at most d of the cycles in B. The
basis number, b(G), of G is the least non-negative integer d such that C(G)
has a d-fold basis. The length, |C|, of the element C of the cycle space C(G)
is the number of its edges. The length [(B) of a cycles basis B is the sum
of the lengths of its elements: {(B) = Y- oc5|C|. A minimum cycle basis
(MCB) is a cycle basis with minimum length. Further, M(G) is defined to
be the length of the longest element in a minimum cycle basis of G.

The first important result concerning the basis number is the lemma of
MacLane [17] when he proved that a graph G is planar if and only if the
basis number of G is less than or equal to 2. Later on Schemeichel [18]
utilized the ideas of MacLane and defined the basis number of a graph in
its recent form. In fact, Schemeichel proved that for any integer r there
is a graph with basis number greater than or equal to r. Moreover, he
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investigated the basis number of certain important classes of non-planar
graphs, specifically, complete graphs and complete bipartite graphs.

The cycle space is a weighted matroid where each element C has weight
|C|. Hence the Greedy Algorithm [19] can always be used to extract
an MCB. For completeness, we give the following two definitions: Let
G = (V(G),E(G)) and H = (V(H),E(H)) be two graphs. The Carte-
sian product GOH has the vertex set V(GOH) = V(G) x V(H) and the
edge set E(GOH) = {(u,v1)(u2,v2)|vaue € E(G) and vy = vg, or v1v2
€ E(H)and u; = up}. The wreath product GpH has the vertex set
V(GpH) = V(G)xV(H) and the edge set E(GpH) = {(u1,v1)(u2, v2)lu1 =
ug and v1v; € E(H), or uyup € E(G) and there is o €Aut(H) such that
a(vl) = 'Uz}

One can note that GOH is a spanning subgraph of GpH. Also

|E(GOH)| = [V(G)IEH)| + |V(H)||EG)]-

In the rest of this paper, fgz(e) stand for the number of elements of B
containing the edge e and E(B) = UcepE(C) where B C C(G).

2 The Basis Number of W,pP

In this section, we investigate the basis number of the wreath product of
paths with wheels. Let {vq,v2,...,Um} be a set of vertices and P, =
V1V2...Um. Then the automorphism group of Py, consists of two elements
the identity, I, and the automorphism « which is defined as in the following:

a(vj) = Vm—j+135 =1,2,...,m.

Let {uj;,ug,...,un} be the vertex set of the wheel W, with dw, (u;) =
n—1and W, - u; = Cn_1 where Cn.1 = ustz...unuz. Then Wy,pP,, is
decomposable into

(WﬂDPm) U (U?.—:llMﬂiui-H) ) (U?=3Mu|u") U (Muzuu)
where My, is the graph with the edge set
{(.’l?, Uj)(yv vm—j+l), (xa vm—j+l)(ya 'Uj)‘j = 11 2) LEER] [_m/2j }'

Thus
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[EWopPr)| = |E(WaDPm)| + Z |5]+ 22 17]+2[3
= (@n—Dm+n(m—1)+2(n—1) [%J +2(n - 2) [%J
+2(3]
= 3mn-—2m-—n+4n-—1) [%J .
Hence,

dim C(WppPp) = 2mn — 2m — n + 4(n ~ 1) [%J +1.

Now, for any two edges la,ab and a path lab of order 3 and for any j, we
recall the following cycles of [12]

R«‘z]z? = (a, V5 )a, Vj+1 )(b, vm—j)(b, Um—j+1 )a, Uj),
NE = (a,95)(5 m—341)(@ Um—j11) (b, v;) (@, v5),

’CS,) = (a,v5)(b, v;)(b, vj+1)(a, vj41)(a, v;),

and
Z (a 'UlmJ)(a,vtmj_*_l)(b,’Ul%]_*_l)(a"vl%])_

Also, we introduce the following cycles:

US) = (1,v5)(a, v;) (b, v)(L, v5),

and .
Cl(:l): = (l’ 'Uj)(a, vm—j-l-l)(b, VUm—j+1 )(la 'Uj).

Let

+ _ 8 ) - 8 ()
Rab - Uj=2 and j is evenRab ’ Rab = Uj=1 and j is oddRab )

+ - () - ~1 (9)
K ab — Um_2 and j is even}Cab ’ K ab = U;’-‘—l and j is oddK:ab ’
c um, Cl(g,),, if m is even,
lab = () :
a U:r;l and j;é[%]-l—lclab’ if mis odd, °
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where
5= 21, if m is odd,
- 2| -1, ifmiseven,

Nas l’i‘_l (J)_

_7—]

and

Also, let

Lemma 2.1. The set C},, is linearly independent. Moreover, any linear
combinations of cycles of CJ,, contains at least one edge incident with a
vertex of the form (l,v;) where 1 <j <m.

Proof: Note that each of Cyap,Carp and Cpq consists of pairwise edge dis-
joint cycles. Thus, each of which is linearly independent. To show that C},,
is linearly independent, it suffices to show that any non trivial linear com-
bination of cycles of C},, is non empty. Let C be the linear combination of

cycles of Z = {21, 23,...,2x} € Cfp,- Then we consider the following three
cases:
Case 1. The set Z contains at least one cycle from Cpar, say 21 = ,53

Note that ({,v;)(e,v;) € E (zl) and it does not appear in any other cycle of
Clop- Thus, (I,v;)(e,v;) € E(@ z) = E(C).

Case 2, The set Z does not contam any cycle from Cpq; but contains at least
one cycle of Cap, say 21 = Ca,b. Then as in Case 1, (I,v;)(b,v;) € E(C).
Case 3. The set Z consists only of cycles from Ciqp. Since Ciqp is linearly
independent, as a result E(C) # @. Since E(Ciap) — {(1,v;)(b, ¥m—j+1)|1 £
Jj < m} is an edge set of a forest and since the linear combination of a
linearly independent set of cycles is a cycle or a union of edge disjoint cycles,
as a result C must contain at least one edge of the form (I, v; }(b, ¥m—j+1)-
From Cases 1, 2 and 3, C must contains an edge adjacent with a vertex of
{(lv;):1<j<m}. A

The following proposition will be needed in the forthcoming result:
Proposition 2.2 (Jaradat et al. [16]) Let A and B be two linearly
independent sets of cycles such that E(A)N E(B) is an edge set of a forest.
Then AU B is linearly independent.

Note that

(Wa — unu2) pPm = Wy pPr — (E(Myyy,, ) U E(unue0V(Py))) .
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Thus,

dim C((Wy, — unuz) pPrm) dim C(W,pPn) — 2 l%J —m

= m-3m-n+4n-2|T]+2(T]+1

To address the problem of finding the basis number of W, pP,,, we first
find a basis for (W, — ugu,)pPr, then we extend it to a basis for W, pPr,.
Let

* * - (LF]+1 (L5 ]+1)
B4 = Culuzua Ucu;ugzu U R‘:-g‘ua U Ruauz UN“zus Uuﬂ'izzjua ) Uu“'l.t?;'!ua
UK‘M] up U ’Culus U ’Cuauu

if m is odd, and

34 = C‘l:|u2u3 UC:|u3u4 U Rizua U R;auz UN“‘I“:! U Z“Q“S U K“l“’) U
K'u;ua U ,Cu3u4 ]

if m is even. Then we have the following result.

Proposition 2.3: The set B, as described above is a 4-fold basis for C(W, -
U2U4)me.

Proof. First, suppose m is odd, Note that each set of Rf ,.,R;,,, and
Nu,u, is linearly independent because each of which consists only of pair-
wise edge disjoint cycles. Since E(R},,,)NE(R,,,,) =2, R}, UR,..,
is linearly independent by Proposition 2.2. It is clear that any linear combi-

nation of cyclesof R} , UR, ., contains an edge of {(ug, v;)(uz,vj4+1)|1 <

j < m — 1} which does not occur in any cycle of N,,,,. Hence, R}, U
Roaaus YU Nuyu, is linearly independent. Now, by Lemma 2.1, any linear

combinations of cycles of Cy ,,,, contains an edge incident with a vertex
of the form (u1,v;) for 1 < j < m which is not a vertex of any cycle of

R4 YR sau; UNugus . Thus, C o URE L URG.,,UN,,u, is linearly inde-

u2u3 UIUL
pendent. Since the cycle L(ﬂ,?;{;:l) contains (u;, Vg +1)(u2, Vg +1) Which

*

does not occur in any cycle of C;;, ., URT,,, URS, ., U Nuguy, o gy U
Rt s YRS wy YU Nuguy U ULELD is linearly independent. Observe that
each cycle of K7, UK} . contains an edge of the form (u1,v;)(u1,v41)
for 1 < j <m —1 and no other cycle of C; ,,,,, UR} ., URZ, ., UNyyu, U
Ll&};{.tl) UK;, ., UK, have such edge. Hence C; ,,,,, URY, ., URS,., U

Nugug U U,‘,%.?;J,Il) UK; ., UK ., is a linearly independent set. Similarly,

each cycle of K} ,, UK ., contains an edge of the form (ug, v;)(uz,v;41)

244



for even 1 < j < m — 1, or an edge of the form (u3,v;)(us,vj4+1) for odd
1 € j < m — 1. Since non of the previous two edges appears in any other

=41
cycles of Cf, uyuy U R 4y U R,y UNiguy UUSELEY I_J)IC.,,,,2 U Koy We
J+1

conclude that C} ... URY . URL ,, UNyyu, UU.(‘E@.‘S UKy, uz .UI'C.,,ua is
linearly independent. Note that Cj ..., and C},,,.,, are symmetric in roles.
Then, any linear combination of cycles of C;, .., contains an edge incident

with a vertex of the form (u4,v;) for j < m, by lemma 2.1. Since no cycle

% 1+1
Of C uyug URE us URE, uy UNiugus UUS: it Y UKy UKy, hes an edge

incident with such vertex, we have that C}} ,,,,, UC} .0, URT, 4, URL,,, U
Nugus U U&E;J.[:l) U Ky, u; U Ky,u, is linearly independent. Now, clearly
that any linear combination of cycle of K,,,, contains an edge of the form
(uq,v;)(uq,vi41) for 1 < j < m — 1 which is not an edge of any cycle of

By — i,liif” UKugu,. Hence, By — .EI;Z“:JJI) is linearly independent. Fi-

L{ﬂzhl) contains the edge (ul""[%]+l)(u4’v[%lj+1) and

no cycle of By — ,(,,l:z;‘:l) contains such edge. Therefore, By is linearly

independent. Now,

nally, the cycle

1%
|B4| = |ct:gu2u3| + IC;1u3u4| + Z |’R‘gz)u3| +

j=1 and j is even
1)

%]
. . ( m +l)
S RO S NGO+ R+

j=1 and j is odd 7=1

(\%]+v
LT 1l + K] + K

= 3(m—1)+3(m—1)+[%J+[%J+1+1+3(m—1)
= 9m+2[1;-J—7
= 10m -8

dim C((W4 - U2U4)me).

Then, By is a basis for C(W, —ugu4)pPp. To complete the proof, we have to
show that for any edge e € E((Wy—uau4)pPrm), fo,(€) 4. 1)Ife € My, u,,
then e appears only in C} ,,,,. And so, fg,(€) = fe: ., .. (e) =2.2) If
e € My,u,, then e appears only in C} ,,u,, RY,u, URL,,, and Nyyu,. And
so, f,(e) = fes s (e)+ f'thus URipus (€)+ fNuyn, (€) =2+1+1. 3) Ife €
Mgy, then e appears only in Cj ., - Andso, fg,(€) = fe; ..., (e)=2. 4)
If e € My,y,, then e appears only in C ,,,,,, and C;, ,,..,,. And so, fg,(e) =
f¢;l“2“3 (e) + fc;_luau‘ (e) =2+ 2. 5) If e € My, 4,, then e appears only in
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C usu,- And so, fp,(e) = fe: . (e) = 2. 6) If e € u;[0P,,, then e appears
in Kuyu, and Ky,u;- And so fp, (€) = fx.,.,(e) + fx,,.,(e) =1+ 1. 7) If
e € up[1Pp,, then e appears in Ky,., and ’R'?“2 URg,u,- And so fp(e) =

TKuyup (€) + fr (e)=1+1. 8)Ife € u3[0Pp,, then e appears in

ugug3 “1"3
K'U|‘Il3a ]Cusua a'nd Ru uy U R;g‘us And 80 de (e) fmuxug (e) + fxu Jug (e)
RE (e) =1+41+1. 9) If e € u40OPp,, then e appears in K,,,,,. And

. "f::(e) w”fx:. sug(€) = 1. 10) If e € wyue0OV (P, — Vg]+ +1)» then e ap-
pearsin Ky, y, and C3 .. Andso fp,(e) = fx,,., (e)+f¢“]“2ud (e) < 2+1.
11) If e e ugu3 OV (P, v[%‘JH) then e appears in C; ,,,,.. And so
fe.(e) = fe; .., (€) = 1. 12) If e € uguOV(Pp, v['"J+1) then e ap-

pears in K,,,, and Ci usu,r And so fg,(e) = f,c“.“) (e) + fe- (e) <

Hwpugug

241 13) If e € vyusAQV (P — g J+1) then e appears in K,,,,; and
Ciiusus- And so fg,(e) = fr.,.,(e) + fe: () <241 14)Ifec€

iUy
u1u4EIV(Pm v[‘-z“J+1)’ then e appears in C;,,.,,. And so fg,(e) =

(e) = 1. 15) If e = (ul’v[%J+1)(u2’v[‘-i*J+l)’ then e appears

u| n3ug

m +l
in ULELY Kures And 50 fi,(0) = £ (10 (®) + Frupy(6) < 142

AR T
, 1
16) If e = (uZ’UL%JH)(u&”[%JH)’ then e appears only in U, ,(,!'uﬂj,: ),

And so fg,(e) = f ‘|.‘H+"(e) =1 17 Ife = (u3’v|_%'j-J+l)(u4’v[%J+l)’
upugity
then e appears in U, .‘,,Lu,,.f”,lcuau4. And so fg,(e) = f ‘['ﬂ*”(e) +
'lu3ll‘

feugu(€) S 1+2. 18) If e = ul’v['i'JH)(us’vl_%*J“) then e appears
+1
ut(l!.t?;i‘ ) yKu,us- And so fg,(€) = (l_!_J“)(e)+f;c"l 5 (€)=1+2.19)
'l"l 2'|Kd
Ife= (u”vl_-'é‘_l"'l)(u"‘v[‘é‘]“)’ then e appears only in LI.‘,L,,SJH) And so
fe,(e)=f ‘[‘?J*')(e) = 1. The argument is the same for m is even. B

LR IR

We will define a cycle basis for (Wi —uaun)pPp, inductively, beginning with
the case (W, — uau4)pPm addressed in Proposition 2.3. In preparation for
that for each k > 5 we let

* +1) . .
Bk = cu.uk 1Bk Uu"(‘l;;ij 1%n U Kuk—luk’ if mis odd. (2)
cun.zg 1Uk U K:uk 1Uk? if m is even.

By using a similar argument to those in Proposition 2.1 and 2.3 and by
counting the number of cycles containing e where e € E(B), one can get
the following remark:
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Remark 1: By our construction of Bj, we have the following:

1) By is linearly independent.

2) Any linear combination of cycles of elements of B, contains an edge
incident with (un,v;) for some j.

3) If e € E(My,u,_,) or € € E(My,_,4,) or e € E(My,y,), then
fa.(e)=2.

4) If e € E(ug—1u1ux0OV(Pr)) or e € E({ug—1,ux}0Pn), then fs,(e)
=1.
5) If e € E(uk—1uk0V (Pr)), then fp,(e) < 3.

_J 4k -3, if m is odd,
6) 1Bx| = { 4k —1, if m is even.

Proposition 2.4. Let B, be as described ahead of Proposition 2.3, and for
n > 5 let B, be as in (2). Then B((Wn — ugtun)pPm) =BoUBr1 U ..U
Bs U B, is a 4-fold basis for C((Wpn — uatn)pPp).

Proof. As in Proposition 2.3, we prove the case where m is odd and
similarly we can prove the case m is even. We use induction on n to
show that B((W, — uau,)pP,,) is a basis for C((W, — ugun)pPm) when
n > 4. By Proposition 2.3, By is a 4-fold basis for C((Wy4 — uous)pPm). Let
n > 4 and suppose B* = B, UBr_2 U...UBs U B, is a 4-fold basis for
C((Wy—1 —ugun—_1)pP,,). We now show B,UB" is a 4-fold basis for C((W,, —
UUn )pPy). This is equivalent of showing that |B, U B*| = dim(C((Wr —
UgUn )pPr)) and that B* U B, is a 4-fold linearly independent set. Observe
that B, and B* are disjoint because each elements of B, contains an edge
incident with (un, v;) for some j and no elements of B* have such edges. So
|Bn, UB*|=|B,| + |B*|. By the inductive hypothesis, |B*| = dim(C((Wn-1—
UUn_1)pPm))= 2nm — 6m — n + 4(n — 2)| 3] + 3. By (6) of Remark
1, it follows that |B,| = 4n — 3, so |B, UB*|= 2nm — 6m — n + 4(n —
2)[3] +3+4m -3 = 2nm — 2m — n + 4(n — 2)| 3] which is equal to
dim{C((Wr — ugup)pPp)). Next we show B, U B* is linearly independent.
The set B* is linearly independent by the inductive hypothesis. As we
indicated above B,, is linearly independent. We must thus only show that
Span(B*) N Span(B,) = {0}. To see this is true, suppose O € Span(B,) N
Span(B*). Since O € Span(B,), either O = 0 or O contains an edge
incident with a vertex of V (u,0{v1,v2,...,vn}). But since O € Span(B*),
O can have no such edges, so O = 0. To complete the proof, we show that
B((W,, —uaup)pPy,) has fold 4. Note that E(B*)NE(B,) = E(My,u,_,)Y
(u1up—10V (Pr))U(up—10Py,). Thus, ife € E(B*)NE(B,), then e appears
only in cycles of B,_; and B,. Hence, by Proposition 2.3 and Remark 1,
SB(Wn—uzun)oPn)(€) = fB._,(€) + fB.(€) < 2+ 2. Also, if e € E(Bs) —
E(B*)NE(By), then by Remark 1 fg(w,, —usu.)pP..)(€) < 3. Finally, if e €
E(B*) — E(B*)N E(B,), then by the inductive step fg((w, —uzu,.)oP.)(€) =
fo-(e) <4. 1
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Let
Buzu.. = Cuyunu, Ul uyu,- (3)

Then, one can remark the following:

Remark 2: By our construction of B,,u, , we have the following:
1) If e € E(My,u,) or ¢ € E(My,u,) or e € E(M,,,,) or e €
E(u1uo0V (Pp)) or e € E(uau,0OV(Py,)), then SBuyu, (€) = 1.
2) If e € E(u1un0V(Py)), then fg,,, (e) =2.
_ | 2m—1, i m is odd,
3) |Buzu, | = { 2m, if m is even.

Theorem 2.5: The set B(W,pPn) = B((Wn — uaup)pPn) U Byyu,, is @
4-fold basis of C(W,pP,,) where B,,,,, is as in (3).

Proof. We show the case where m is odd. The cycle u,‘,’,’,,,u,, contains
(u2,v5)(un,v;) for each j which does not appears in any other cycle of
B((W,, — ugun)pPm) U Uy,u,u,. Hence B(W, — ugu,,)pl"m) U Uy ugu,
is linearly independent. Similarly, for each j the cycle C,(‘ﬂ)u"u, contains
(u2, v )(%n, Ym—j4+1) and no other cycle of B(W,pPy) has such edge. Thus,
B(W,pP.,) is linearly independent. Now,

[B(WnpPp)| = |B((W, - UgUn)pPm)| + 1Buzu|
= 2nm - 2m—n+4(n—2)[%] +2m-—-1

= 2nm—2m—n+4(n—1)[%_| +1
= dimC(WnpPy).

Hence, B(W,pPy,) is a basis for C(W,pPp,). Now, we show that B(W,pP,,)
is a 4-fold basis. Note that E(Buy,u, )N E(B((Wrn—ugun)pPp)) = E(My,4,)U
E(u1u20V(Pn)) U E(v1un0V(Py)). Now, let e € E(W,pPx). Then we
consider the following cases:

Case 1: e € E(By,u,) N E(B((Wy — uau,)pPn)). Then we have the
following:

1) If e € E(My,v,), then e appears only in Bu,u, and By, and so by
Remark 2 and (1) of proposition 2.3 fsw,.p..)(€) = fB..,., (€) + f5,(e) <
1+2.

2) If e € E(uyu00V (Py,)), then e appears only in B,,,, and B4 and so
by Remark 2 and (9) and (14) of proposition 2.3 fgw, op..)(€) = f5. un (8)F
fe.(e) <3+1.

3) If e € E(u u,00V (Pn)), then e appears only in B,,,, and B, and so
by Remark 1 and Remark 2 fgw,.op,.)(€) = fB,,., (€) + f5.(e) <1+2.

Case 2: e ¢ E(By,u,.) N E(B((Wy,, —uaupn)pPnm)). Then by Proposition
2.4 and Remark 2, fgw, p,.)(e) < 4. A
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Theorem 2.6. For any n > 4 and m > 2, 3 < b(W,pP,) < 4.

Proof. By Proposition 2.5, it suffices to show that b6(W,pPr) = 3. Sup-
pose that b(W,pPp) < 2. Then C(Wy,pPp) has a 2-fold basis, say B. Since
the girth of Wy, pP,, is 3,

2|E(WnpPm)l = 3IB|
2(3nm—2m—n+4(n—1)|_221-J+1) > 32nm-2m-n+
4n -] +1)
Im+n > 4(n—1)[%]+1
2m+n > 2(n-1)(m+1)
dm > 2nm+n-—2.
But n > 4, thus
4dm > 8m + 2,

which is a contradiction. B

3 Minimum cycle basis of W, pP,

A related problem to the basis number is the construction of a minimum
cycle basis, to address such problem for W, pP,,, we construct it for (W, —
UsUy, )pPp then we extended it for W, pP,,, as we did in the previous section.
Let

B, = Ci.

fruses UG s U (VR UG, ) UEAEL
( L’JRS.L,) U Kurug U Kuag UKugu
if m is odd and
B = Cluusns UChunne U (WU, ) 0 (WS R, ) 0
(Vi B ) U s U (Uins) ~ (U305 )

if m is even.
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Proposition 3.1: The set B; which described above is a basis of
C (W4 — uouq)pPr).

Proof. We prove the theorem for the case where m is odd and simi-
larly we can do it for the case where m is even. To show that C .., U

( l'TJ 1.(3124 ,u,) is linearly independent, it suffices to show that each cy-

1 .
cle of ULTJ+ é’l)um is independent of the cycles of C} , ... For some
j < [-2—J, suppose that U$), m{ is the linear combinations of the cycles of
Z ={z1,2,...,2¢}. Since L{u,uzu,; contains edges e; = (uy,v;)(u2,v;),e2 =

(ug,vj)(ug,v,) and ez = (u1,v;)(us,v;) which appear only in C;(,Z‘uzifl),

C{mitY) and C{Tit Y | respectively, as a result C{dtY, ¢lm-it) gnd
Clnnts?) € 2, say ;= CRRiY = cTGILY, and 2 cf.':‘u:i:”.
Now, since e4 = (u1,v;)(u3, Vm—j+1) € E(zl 22D z3) and e4 ¢ E(Uu,uzus)
and smce e4 belongs only to z; and Cu,uzm, as a result Cu,u,uz € Z, say
z4 = Cu,u,ua Slmllarly, since e5 = (u3, v;)(U1, Ym—j+1) € E(zlﬂazz(BzgeBz4)
and es ¢ E(L{uluwa) and since e; belongs only to 2, and Cuauzul, we get
C,,su,u, € Z, say z5 = Cuwm, Finally, since es = (u1, Um—j4+1)(u2,v;) €
E(z1 & 2z (D z3 ® z4 b 2z5) and es ¢ E(Uu,uzua) and since eg belongs only
to z2 and C.,,u,us, we have Cu,.,,u, € Z, say zg = C,(,,)u,ua To this end,
E(ulugu;;ullﬂvm_]“) C E(Z] M2 ® 23 B 24 25D Zs) and the edges
uluzmvm_j+1,U2U3DUm_j+1 and uju3lvm_j41 belong only to Cf,i)u?u,,
Cu,u,.,, and Ci(ii)ulu;“ respectively. Therefore,

E(uiuguguiOvm—j41) C E(@ z)=0
=1

This is a contradiction. By continuing employing the same arguments as in
the proof of Proposition 3.1, we can show that B is linearly independent.
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Now,

[#]+1 (3 )+
IB‘Il = { |u2u3| + ,C‘:l] u3u4| + § : Iu&:?ugtml + lu U UIU4 |
=1

12] .
+ Z IRStJ])u)I + I’Cul‘u'z[ + Ilcu'zusl + I’Cua‘uai
= 3m-1)+3m-1)+ || +1+1+|T]| +3m-1)

= 9m+2 [%’-J —7
10m -8
dim C((Wy — ugus)pPm).

Thus, By is a basis for C(Wy — uous)pPn. B

Now for each k > 5 we let

. +1 e
- ol e, if m is odd
k = ;m . .
Gy Y By UKup_jup — {IC.lz,:‘:",uk if m is even.

(4)
Using the same argument as in Proposition 2.4, one can easily prove the
following result:

Proposition 3.3. Let B} be as described in Proposition 3.2, and for n > 5
let B}, be as described in (4). Then B*((W, — uzun)me) B.uB;,_,U
. UB: U B} is a basis for C((Wyn — ugun)pPy). B

Theorem 3.4. Let B*((W, — uaun)pPp) and By,., be as described
in Proposition 3.8 and in (8), respectively. Then the set B*(Wy,pP,) =
B*((Wn — u2up)pPpn) U By, s @ minimum cycle basis of C(W,pPp).

Proof. We start where m is odd: By employing the same arguments as
in the proof of Proposition 2.6, one can easily prove that B*(W,pPp,) is
a basis for C(W,pPp,). Now we show that B*(W,pPy,) is minimal. Let
N = WypP,, — V(P,)OP,,. Note that, from the construction of B} and

BI:’ for each k Z 5 B*(Wnppm) = (U?=ZC;|u.'ui+1) U ( lTJ+1u1(tJl)uzus) U
(u?_aui,LZ,J.i‘,)) ( [TJ RY), ) (Vs Kuiuist )UBusu,.. Also, each cycle

of BN) = B*(WnpPrm) — (Ur1Kusuerr) U ( ulZlRg (’)uz) is of length 3.
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Moreover, one can easily see that dim C(NV) = |[B(N)| and so B*(W,pPp) —
(VP Ky )U U}jlj RY),, ) is a basis of the graph . Observe that any

cycle containing any edge of V(P,)OP,, is of length at least 4. Therefore,
B(N) is a maximum linearly independent set of C(W,pP,,) consisting of

3-cycles. Since (U, Ku,u,,,) U UJ[;‘T]J R, ) is a set of 4-cycles and the

cycle space is a matroid, as a result B(W,pP,,) is minimum.
To treat the even m we follow, world by word, the proof of the odd case
taking into the account that

- »n|-1 ; n =
B (WnPPm) - (U};IJ Rt(fu)uz) U (Ui=1 (’Cumew - ,C‘Iz-'-{‘-‘“))

is a cycle basis for Wy,pPy, — V(P,)0 (Pm _ulfﬂu[‘-ﬂ‘“) and it is a

maximum linearly independent set of C(W, pP;,) consisting of three cycles.
[ |

13nm — 16n — 25| 2|, if m is odd,

Corollary 3.5. [(WnpPn) = 13nm —14n - 25[%| +4, if m is even,

and A(WppPp)=4. B
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