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Abstract: For a (molecular) graph G, the general sum-connectivity in-
dex Xo(G) is defined as the sum of the weights [d, + d,]* of all edges
uv of G, where d, (or d,) denotes the degree of a vertex u (or v) in G
and a is an arbitrary real number. In this paper, we give an efficient for-
mula for computing the general sum-connectivity index of polyomino chains
and characterize the extremal polyomino chains with respect to this index,
which generalizes one of the main results in [Z. Yarahmadi, A. Ashrafi, S.
Moradi, Extremal polyomino chains with respect to Zagreb indices, Appl.
Math. Lett. 25 (2012): 166-171].
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1. Introduction

All graphs considered in this paper are simple and connected. Let
G = (V,E) be a graph, with vertex set V' and edge set E. The degree
of a vertex u € V is the number of edges incident to u, denoted by dg(u),
or d,, when no confusion is possible. For other undefined terminology and

notations from graph theory, the readers are referred to [1].
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A topological index is a numerical descriptor of the molecular structure
derived from the corresponding molecular graph. There are numerous topo-
logical descriptors that have found some applications in theoretical chem-
istry, especially in quantitative structure-activity relationship (QSAR) and
quantitative structure-property relationship (QSPR) researches [8]. Among
these useful topological descriptors, we will present several ones that are
relevant for our work.

The first indices presented here are the Zagreb indices, which have
been introduced more than thirty years ago by Gutman and Trinajstié, [2].
They are originally defined as follows:

M(G)= ) d,
weV(G)
MG)= D dud,.
e=uv€EE(Q)

Here M;(G) and M3(G) denote the first and the second Zagreb indices,
respectively. These two topological indices reflect the extent of branching
of the molecular carbon-atom skeleton [8]. The first Zagreb index can be
also expressed as a sum over edges of G,

Mi(G)= 3 [du+d].

e=uv€E(G)

For the proof of this fact and more information on Zagreb indices we en-
courage the interested reader to [6).

Later, in 1975, Randié proposed a molecular structure descriptor in
studying the properties of alkane (7] which he called the branching index,
and is now called the Randi¢ index. It is defined as the sum over all edges
of the (molecular) graph of the terms {d,d,]"?, i.e.,

RG) = Y [duds) %
e=uv€EE(G)

This index is also called as the product-connectivity index of G.
Recently, a closely related variant of the Randié index called the sum-

connectivity index was introduced by Zhou and Trinajstié [14] in 2009,
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which is denoted by x = x(G) and originally defined as:

x@) = > ldu+d] 7t
e=w€E(Q)
These two molecular descriptors are highly intercorrelated quantities; for
example, the value of the correlation coefficient is 0.99088 for 136 trees
representing the lower alkanes taken from Ivanciuc et al. [3].
The ordinary Randié index has been extended to the general Randié¢
index by Li and Gutman, which is defined as {5]:

Ra(@) = ) [duds)®,
e=uv€E(G)
where a is an arbitrary real number. The properties of the general Randi¢
index can be found in [e.g., 5, 13].
Motivated by the above definition, Zhou and Trinajstié proposed the

general sum-connectivity index [15], which is defined as:

Xa(G) = z [du + d.]%,
e=uveE(Q)
where o is an arbitrary real number. They obtained some properties, es-
pecially lower and upper bounds in terms of other graph invariants, of this
index.

Evidently, x_ 3 is the ordinary sum-connectivity index and x; is the
first Zagreb index. Thus, the general sum-connectivity index generalizes
both the ordinary sum-connectivity index and the first Zagreb index.

Zeng et al. [16] distinguished the extremal polyomino chains on k-
matchings and k-independent sets. Xu et al. studied the PI index of
polyomino chains, [9]. Later, Yang et al. continued this problem to the
Randié index and sum-connectivity index, respectively, see [10, 11]. Re-
cently, Yarahmadi et al. [12] studied this item to the Zagreb indices. In this
work, we continue this program to calculate the general sum-connectivity
index of polyomino chains, and determine the extremal polyomino chains
with respect to this index, which generalizes one of the main results in [12].
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2. Preliminaries

A polyomino system is a finite 2-connected plane graph such that each
interior face (or say a cell) is surrounded by a regular square of length one.
In other words, it is an edge-connected union of cells in the planar square
lattice. This figure divides the plane into one infinite external region and a
number of finite internal, all internal region must be squares. Polyominoes
have a long and rich history, we convey for the origin polyominoes, [4]. A
polyomino chain is a polyomino system, in which the joining of the centers
of its adjacent regular forms a path ¢;c; - - - ¢,,, where ¢; is the center of the
i-th square.

Let B, be the set of polyomino chains with n squares. For B, € B,,, it
is easy to see that |V (B,)| = 2n + 2 and |E(B,)| = 3n + 1. If the subgraph
of B, induced by the vertices with degree 3 is a graph with exactly n — 2
squares, then B, is called a linear chain and denoted by L,,. If the subgraph
of B, induced by the vertices with a degree bigger than two is a path with
n—1 edges, then B, is called a zig-zag chain and denoted by Z,. Fig. 1(a)
and (b) illustrate Ls and Z7, respectively.

(a) (b)

Fig. 1. (a) The graph Ls; (b) The graph Z.

For calculating the general sum-connectivity index of a polyomino chains,
we introduce some conceptions in a polyomino chain. A kink of a poly-
omino chain is the branched or angularly connected squares. A segment
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of a polyomino chain is a maximal linear chain in the polyomino chain,
including the kinks and/or terminal squares at its end, the segments of Z7
are shown in Fig. 2. The number of squares in a segment S is called its
length and is denoted by [(S). For any segment S of a polyomino chain
with n > 2 squares, 2 < I(S) < n. Particularly, a polyomino chain is a
linear chain if and only if it contains only one segment; a polyomino chain

is a zig-zag chain if and only if the length of each segment is 2.

Sy
, “—"-Ir-" s,
' i
ST s
‘35_'5_'_';"L
1 }
|
}

Fig. 2. The segments of Z~.

A polyomino chain with n squares consists of a sequence of segments
S1,8s,--+ ,Sp,r > 1, with lengths I(S;) = l;,i=1,2,-.- ,7, where l; + Iy +
el =n4r -1

3. The general sum-connectivity index of polyomino chains

In this section, we give an explicit formula for computing the general
sum-connectivity index of polyomino chains. We first define two parameters
a(S;),1 <i<r, and ¢(a,r) as follows:

1 ;=2
a(S,)={0 l,‘>2,
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0 a=1
$la,7)=¢ 1 a>landr=1
0 a>landr>1,

where a > 1 is an arbitrary real number.

For example, the simple polyomino chain with three segments S;, S,
and S3 illustrated in Fig. 3 satisfies that o(S;) = a(S93) = 0,a(S2) =1
and ¢(a, 3) = 0, for arbitrary real number o > 1.

Fig. 3. A simple polyomino chain with three segments $1, Sz and Ss.

B ]
THEE T

(a) (b)

T
I
1

Fig. 4. (a) The edges of E;; (b) The edges of E».

Theorem 3.1. Let B, be a polyomino chain with n squares, n > 3, and
consisting of r segments S, Sz, -+, S, 7 > 1, with lengths {,l3,-- , I,
respectively. Let o > 1 be an arbitrary real number. Then

Xa(Bn) =4(r —1) - 7* + (3n — 6r + 1) - 6* + 2[3 — ¢(a, )] - 5*

r—1 r-—-1
+2) [B+a(S))*—(4-7* -8 -3-6%) ) a(S))

i=2 i=2

— (7% =26 +5%) [a($1) + o(S,)] + 2 4%

Proof. We partition the edge set of B, into two subsets. The subset E,
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contains, all edge e = uv which is cut across by straight dashed line passed
through the centers of squares S; for 1 < ¢ < r, Fig. 4(a).

Suppose FE3 = E(B,) \ E), the elements of E, are shown in Fig. 4(b),
by straight dashed lines. Then if » = 1, by direct calculation,

Xa(Bn) =(3n—5)- 6% +4-5% +2-4°

If » > 1, by definition
xXa(Ba)= Y ldutd]®

e=uv€EE(G)
= 3 ldutd] + Y [du+d)™
e=uv€E, e=uve b,

For the first summation, one can see that:

> [dutd)= Z > [de+dl

e=uveE, i=1 e=uveE\NE(S;)

In what follows, each summation is evaluated, separately. For 1 < < r,
we have:
Y [t d) =l —3) 6% +2- 7[5+ a(Sim)]®
e=uv€ENE(S;)
+ 5+ a(Sig1)]* — (2-7% — 8% —6%) - (i),

3 [dutd]® = (1 —2) 6%+ 7+ [5 4+ a(S)]” + 4%,
e=uwv€ E1NE(S)

Z [du +dy)* = (b — 2) - 6% + 7% + [5 + a(Sr—1)]* +4*.
e=uvE E\NE(S,)
Therefore,

r r—1
S ldutdo]® =6 L+2) [B+afS))*+2r—1) 7% +2-5%

e=uveE, i=1 i=2
r—1
—(2-7*—8°—6%))_ S;) - (3r—2)-6°
=2
+2-4%,
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On the other hand, we have

dooldtdr = Y [du+d)

e=uv€ E, i=1 ex=uvEE,NE(S;)

Fori<i<r,

D [dutdy]) = (2l —6)- 6% +2-7% — 2(7° — 6°) - a(S5),
e=uv€E;NE(S;)

> [du+dy)* =(2l —6)-6%+7*+6%+2.5°
e=uv€EyNE(S))

— (7% —26% +5%) - a(Sy),
> [du+di]* =(2 —6)-6%+7° +6°+2.5%
e=uveE,NE(S,.)
— (7% = 2-6% +5%) - a(S,).
Thus,

-1

> [du+dy]*=2- 6"‘21 —2(7* - 6°)Za (Si) +2(r—1)-7°

e=uvEE, =1 i=2
-~ (7"‘ —2:6%+5%)[a(S1) + a(S,)]

—2(3r—1)-6* +4.5>
By the above demonstration one can see that:

xa(B,,)=4(1'—1)-7“+(3n—67'+1)-6"+6-5°‘+2-4°‘
r—1

+2) [B+a(S)— (47" -8 3. 6“)2
i=2
— (7" = 2-6% +5%) [a(S1) + a(S,)] .
Hence forallr > 1and a > 1,

Xo(Bn) =4(r — 1) 7%+ (3n —6r+1)-6* +2{3 — ¢(c, 7)] - 5*

+2Z[5+a(s,)]°‘ (4-7%—8%-3. 6“)20:(5)
=2 =2
— (7% = 2.6%+5%) [aS1) + (S,;)] +2-4%. W

Note that x; = M, the following corollary is obtained straightforwardly
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from Theorem 3.1.

Corollary 3.2. (Theorem 2.1, [12]) Let B, be a polyomino chain with
n squares, n > 3, and consisting of r segments Sy, S,,-++ , Sy, 7 = 1, with

lengths {1,{2,-- - , i, respectively. Then

M, (Bn) =18n +2r — 4.

As an immediate consequence of Corollary 3.2, we obtain the following

result.

Corollary 3.3. The first Zagreb indices of linear and zig-zag chains are

computed as follows:
(i) My(Ly) = 18n -2,
(i) My (Z,) = 20n — 6.

We also get the following:

Corollary 3.4. The general sum-connectivity indices of linear and zig-zag

chains with n > 3 squares are computed as follows:
(i) Xo(Ln) =(3n —5) - 6% +4-5% +2.4%,
(ii) Xa(Zpn) =(n—3) - 8* +2-7*+2(n—2)- 6% +4-5% + 2. 4%

Proof. If a = 1, then the desired result holds by Corollary 3.3; If o > 1,
then the desired result follows directly from Theorem 3.1. W

4. Extremal polyomino chains with respect to general sum-

connectivity index

In this section, we will characterize the extremal polyomino chains with

respect to general sum-connectivity index. We first give two lemmas which
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will be used repeatedly in our proof.
Lemma 4.1. If > 1, then 4- 7% — 6%+1 4 2.52 > 0.

Proof. Let g(a) =4-7* — 6>*! 4+ 2.5% Then,
g(a) =4[7* — 6°] — 2[6° — 59
=40t ! — 20m~?
=2a£%"! 4 20[¢*" — >~ 1] > 0,

where 5<n<6<é<7. M

By the similar method used in the above proof we get the following.
Lemma 4.2. Ifa > 1,then 8 —2-7*4+2.6* -5% > 0.

We also need the following result.

Lemma 4.3. (Corollary 2.3, [12]) For any B, € B,,, we have
My(Ln) < My(Br) £ Mi(Zy),

with left (right, respectively) equality if and only if B,, = L,(B, & Z,,

respectively).
Now we present our main result.

Theorem 4.4. For any B,, € B,,, if n > 3 and a > 1, then we have

Xa(Ln) < Xa(Br) < xa(Za),

with left (right, respectively) equality if and only if B, & L,(B, & Z,,

respectively).
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Proof. If o = 1, then the desired result follows by Lemma 4.3. Hence
we assume « > 1 in the following. For convenience, we let fi(r)maz and
fi(T)min denote the maximum and minimum values of the function f;(r)
of parameter 7, ¢ = 1,2,3, 4, respectively. Let A=(3n+1)-6%-4.-7* +
6-5>+2.4%. Then by Theorem 3.1,

r—1
f(r) = Xa(Bn) =A+ (4-7% = 6**1)r + 2[5 + o(5)]"
i=2
r—1
—(4-7%—8%—3-6%) ) a(Si) — 2¢(a,7) - 5°
=2

— (7% =26 +5%) [a(S)) + (S;)]
We distinguish the following two cases to discuss.

Case 1. Each l; > 2, for i =1,2,--- ,7. Note that in this case, 1 £ r <
"T‘l, sincen+7r—12>3r. Thenifr > 1,
filr) :==A+(4-7* = 6°F)r + 2(r — 2) - 5%
=A+(4-7% -6t 1 2.5%)r — 4.5
Ifr=1,
fi(r) ==A+(4-7* —6°t1).1-2.5%
=(3n—5)-6%+4-5%4+2-4°
By Lemma 4.1,

fl(r)max=A+(4‘7a—6a+1+2-5°‘)-n;1 —4.5%

=(2n—6)-7*+4-6%+ (n+1)-5% +2.4%,

f1(")min = (37 —5) - 6% +4-5% +2-4%,

Case 2. There is at least one segment with length at most 2. Without
loss of generality, we assume that there exist k segments Sj,, Si,," - , Siy,
such that l;,,4;,, -+ ,l;, <2.Clearly, 1 <k<rand2<r< "—‘-21,—“’—", since
n+7 —1> 3(r — k) + 2k. Then we consider the following three cases.
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Subcase 2.1. {S1,8:} € {Si;, 54, , S, }. In this case, 3 < r < 2=1tk
and2<k<r.
fo(r) :=A+ (4-7* —6°tV)r +2(k - 2) - 6% + 2(r — k) - 5°
—(k—2)(4-7% — 8% —3.6%) —2(7* — 2. 6% + 5%
=A+(4-7 -6t 4+ 2.5%)r 4+ (k—2)-8 — (4k — 6) - 7°
+ (5k — 6) - 6% — (2k +2) - 5°.
By Lemma 4.1,

Falrhmas =A+ (4-7% 65 12.5%). TR Lk g) g0

— (4k — 6) - 7% + (5k — 6) - 6* — (2k +2) - 5
=(k-2)-8+2n—2k)-7*+(2k—-2)-6°
+(n—k+3)-5%+4+2-4%, 1)
f2(P)min =A+(4-7% —6°F1 42.5%) .3 4 (k- 2) . 8%
— (4k — 6) - 7* + (5k — 6) - 6% — (2k + 2) - 5
=(k—2)-8% + (14 — 4k) - 7* + (3n + 5k — 23) - 6%
+ (10 — 2k) - 5% + 2. 4%, ’
The equality (1) is easily transformed into fo(r)mes = (8% — 2 7% +
2.6*—-5%k—-2-8*4+2n-7*—2-6%+ (n+3)-5% + 2. 4%, which is an
increasing function of & on the interval (2, 7] by Lemma 4.2. Thus f2(r)mazx

attains the maximum value when k = r. Combining this with r = 2=1+&

we obtain k=r=n—-1. So
fo(M)maz =(n—3)-8*+2-7"+2(n—2)-6%+4.5%4+2.4%,

Note that fy(r) attains the minimum value when r = 3, this implies
k = 2 since n is generally larger than 4. Thus

F2(T)min = 6-7% + (3n — 13) - 6% + 6 - 5% + 2. 4°,

Subcase 2.2. {S1,S:} N {Si,Si;, -+, 5.} = 0. Evidently, in this case
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3<r<altk 1 <k <r—2andn>5. Then

fa(r) :=A+(4-7* -6 ) 42k - 6%+ 2(r —k —2) - 5%
—k(4-7* -8 ~3.6%)

=A+(4-7*-6°*1 £ 2.5%)r + k-8 — 4k -7 + 5k - 6%

— (4 +2k) - 5°.
By Lemma 4.1,

n—-1+k

f3(F)maz =A+ (4-7% — 6%t +2.5%). :

+ 5k - 6% — (4 + 2k) - 5%
=k-8*+ (2n -2k —6) -7 + (4 + 2k) - 6%
+(n—k+1)-5%+2.4%,
f3(P)min =A+ (47 —6°t1 +2.5%).3 + k.8 — 4k - 7°
+ 5k - 6% — (4 + 2k) - 5*
=k-8* + (8 — k) - 7* + (3n + 5k — 17) - 6>
+ (8 —2k) -5 +2-4°.

+k- -8 —4k-7°%

(2)

The equality (2) is easily transformed into f3(r)mez = (8% —2-7*+2-
6> -5k +(2n—6)-7*+4-6*+ (n+1)-5%+2-4%, which is an increasing
function of k on the interval [1,7 —2] by Lemma 4.2. Thus f2(7)maz attains
the maximum value when k = r — 2. Combining this with r = "—".}_ﬂ we

obtainr=n-3and k=n—5. So

F3(T)mag = (R —5) - 8% +4-7% +2(n—3) - 6% +6- 5% +2- 4.

Note that f3(r) attains the minimum value when r = 3, then k =1 by

the hypothesis. Thus
f3(P)min =8%+4-7*+3(n—4) - 6% +6-5%+2-4°.

Subcase 2.3. |{S1,Sr} N {Si;,Sig,»Si } = 1.
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Say S1 € {Si,,Siss- -+ ,Si, }. Obviously, in this case 2 < r < 2=1+k and
1<k<r-1.Then
fa(r) :=A4(4-7* - 6> )yr + 2k —1) - 6° +2(r —k —1) . 5°
~(k—1)-(4-7* —8*—3.6%) — (7 — 2-6% + 5%)
=A+(4-7% —6°F 1 2.5%)r 4 (k— 1) 8%+ (3 — 4k) - 7%
+ (5k — 3) - 6% — (2k + 3) - 5°.

By Lemma. 4.1,
-1+k
Fa(T)maz =A+ (4-7% — 6*1 +2.5“)."—2L +(k—1)-8°

+ (3 — 4k) - 7% + (5k — 3) - 6% — (2k + 3) - 5%
=(k—1) 8%+ (2n — 2k —3) - 7% + (2%k + 1) - 6
+(n—k+2)-5%+2-4°, 3)

fa(P)min =A+(4-7* - 611 £ 2.5%) . 24+ (k—1) -8
+ (3 —4k) - 7% + (5k — 3) - 6% — (2k +3) - 5%
=(k —1)-8* + (7 — 4k) - 7 + (3n + 5k — 14) - 6°
+(7—2k)-5% +2.4°,

The equality (3) is easily transformed into f4(r)mar = (8*—-2-7*+ 2.
6% —5%)k—8%+(2n—3)-7*+6%+(n+2)-5%+2-4%, which is an increasing
function of k on the interval (1,7 —1] by Lemma 4.2. Thus f3(7)maz attains
the maximum value when k = r — 1. Combining this with r = 2=1£k we

obtainr=n-2and k=n-3. So
fa(M)maz =(n—4)-8* +3-7+(2n —5) - 6% +5-5% +2.4°,

Note that fy(r) attains the minimum value when r = 2, then k = 1 by
the hypothesis. Thus

Fa()min = 3-7% +3(n — 3) - 6% +5.5% +2.4°, ‘

In order to find out the maximum and minimum values of the function

f(r), we need to compare these values fi(r)maz and fi(r)min, i = 1,2, 3,4,
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respectively. First, we determine the maximum value.
fo(*)maz — f3(r)maz =2 -8 —2-7* +2.6% ~2.5% ()
=2[8% — 7%] + 2[6* — 5%
=2a£*"! + 20n*"! > 0,
where 5<np<6and 7< € <8
Therefore, fo(r)maz > f3(T)maz.
f3(r)maz = f1(T)maz =(n — 5) - 8% + (10 — 2n) - 7% + (2n - 10) - 6°
+ (5 —n)- 5%
=(n-5)8*—-2-7*+2.-6%-5% >0,
since n > 5 in Subcase 2.2 and by Lemma 4.2.
Therefore, f3(T)maz > f1(")maz-

Hence, f2('r)ma= > fS(T)max > fl(r)maz-
On the other hand,

f2(r)‘maz - f4(7')maz =8% -7 +6%—-5%> 0,

the reason is the same as Eq. (4). Therefore, fo(7)maz > f4(7)maz-
Hence, f2(r)maz attains the maximum value among all values of f(r)

of the parameter 7. Note that » = n — 1 in this case, so B, & Z,.

Next, we determine the minimum value.
fa(P)min — f1(T)min =3 -7 —4- 6% + 5% (5)
=3[7% — 6%] — [6% — 5%]
=20£%71 + a[¢*! — ™1 > 0,

where 5<n<6<{<T.
Therefore, f4(r)min > fl(r)min-

f3(r)77u'n - f4(r)min =8 + 7% - 3.6% + 5%
=[8& — 6a] + [7Ct — 60] — [Ga —_ 5&]
=2a£“_l + a[na—l _ Ca—l] > 0,
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where 5<{<6<n<T7and6<¢<8.
Therefore, f3(r)min > f4(")min-
Hence, f3(r)min > fa(P)min > f1{7)min-
On the other hand,
J2(r)min = fi{T)min =6 -7 —8-6% +2. 5
=2[3-7% ~ 4.6 +5% >0,
the reason is the same as Eq. (5). Thus f2(r)min > f1(")min-
Hence, f1(7)min attains the minimum value among all values of f(r) of
the parameter r. Note that in thiscase r =1, s0 B, = L,,.
This completes the proof of Theorem 4.4. W
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