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Abstract

We consider the relationship between the minimum degree §(G) of a graph
and the complexity of recognizing if a graph is T-tenacious. Let T > 1
be a rational number. We first show that if §(G) > Tfl, then G is T-
tenacious. On the other hand, for any fixed ¢ > 0, we show that it is
N P-hard to determine if G is T-tenacious, even for the class of graphs with

5(G) 2 (755 — e)n.
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1. Introduction

We consider only graphs without loops or multiple edges. Our terminol-
ogy will be standard except as indicated; a good reference for any undefined
terms is [2]. We use V(G), a(G), and w(G) to denote the vertex set, in-
dependence number and number of components in a graph G, respectively.
We consider only finite undirected graphs without loops and multiple edges.
Let G be a graph. We denote by V(G), E(G) and | V(G) | the set of ver-
tices, the set of edges and the order of G, respectively. The concept of
tenacity of a graph G was introduced in (4,5], as a useful measure of the
"vulnerability” of G. In (5] Cozzens et al. calculated tenacity of the first
and second case of the Harary Graphs but they didn’t show the complete
proof of the third case. In [18] we showed a new and complete proof for

1School of Computer Science, Institute for Research in Fundamental Science (IPM),
P.O.Box 19395-5746, Tehran, Iran.

2Center of Excellence in Geometric Engineering and Disaster Management.
* Corresponding author. E-mail: dmoazzami@ut.ac.ir

ARS COMBINATORIA 131(2017), pp. 11-21



case three of the Harary Graphs. In [12], we compared integrity, connectiv-
ity, binding number, toughness, and tenacity for several classes of graphs.
The results suggest that tenacity is a most suitable measure of stability or
vulnerability in that for many graphs it is best able to distinguish between
graphs that intuitively should have different levels of vulnerability. In [3 -
27], the authors studied more about this new invariant. The tenacity of a
graph G, T(G), is defined by T(G) = min{IHZCE=5}, where the mini-
mum js taken over all vertex cutsets S of G. We define 7(G — S) to be the
number of the vertices in the largest component of the graph G — S, and
w(G — S) be the number of components of G — S. A connected graph G
is called T-tenacious if | S | +7(G — S) > Tw(G — S) holds for any subset
S of vertices of G with w(G — S) > 1. If G is not complete, then there
is a largest T such that G is T-tenacious; this T is the tenacity of G. On
the other hand, a complete graph contains no vertex cutset and so it is
T-tenacious for every T. Accordingly, we define T(Kp) = oo for every p

(p21). Aset §CV(G) is said to be a T-set of G if T(G) = LZLEHESS,

The Mix-tenacity T,,(G) of a graph G is defined as

. |A|+7(G - A)
@)= 8" we-a )
where 7(G — A) denotes the order (the number of vertices) of a largest
component of G — A and w(G — A) is the number of components of G — A.
Cozzens et al. in [4], called this parameter Edge-tenacity, but Moazzami
changed the name of this parameter to Mix-tenacity in [16]. It seems Mix-
tenacity is a better name for this parameter. T(G) and T,,,(G) turn out to
have interesting properties.

After the pioneering work of Cozzens, Moazzami, and Stueckle in [4,5],
several groups of researchers have investigated tenacity, and its related
problems. In [20] and [21] Piazza et al. used the T;,(G) as Edge-tenacity.
But this parameter is a combination of cutset A C E(G) and the number
of vertices of a largest component, 7(G — A). It may be observed that in
the definition of T,,,(G), the number of edges removed is added to the num-
ber of vertices in a largest component of the remaining graph. Also this
parameter didn’t seem very satisfactory for Edge-tenacity. Thus Moazzami
and Salehian introduced a new measure of vulnerability, the Edge-tenacity,
Te(G), in [16]. The Edge-tenacity T.(G) of a graph G is defined as

Al +7(G - &)
L= mn —e—a

where 7(G — A) denotes the order (the number of edges) of a largest com-
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ponent of G — A and w(G — A) is the number of components of G — A.
This new measure of vulnerability involves edges only and thus is called
the Edge-tenacity. Since 1992 there were several interesting questions. But
the question ” How difficult is it to recognize T'-tenacious graphs? ” has
remained an interesting open problem for some time. The question was
first raised by Moazzami in [11]. Our purpose in [19] was to show that
for any fixed positive rational number T, it is NP-hard to recognize T-
tenacious graphs. To prove this we showed that it is N P-hard to recognize
T-tenacious graphs by reducing a well-known N P-complete variant of IN-
DEPENDENT SET.

Any undefined terms can be found in the standard references on graph
theory, including Bondy and Murty [2].

2. Main Results

We begin by considering the following problem. Let T > 1 be any rational
number.

Not T-TENACIOUS
INSTANCE: An undirected graph G.
QUESTION: Does there exist X C V (G) with w (G — X) > 1 such
that Tw (G — X) > | X|+ m (G - X)

Theorem 1. Not T-TENACIOUS is N P-complete.

To prove this, we will reduce the following problem, which is known [1] to
be NP-complete for any fixed 8,0 < 8 < 1.

INDEPENDENT 3-MAJORITY
INSTANCE: An undirected graph G on n vertices.
QUESTION: Is a (G) > 8n?

Proof of theorem 1. We reduce INDEPENDENT S-MAJORITY to Not
T-TENACIOUS. Let T = ¢ > 1 for positive integers a and b, and fix
where 0 < 8 < 1. Let G be a graph with vertex set {v,va,...,vn} and let
k = [Bn]. Construct G’ from G as follow. First we add a set A includes n
complete graphs A, ..., A, with

IV(A)|=h=[Tn] —n+k i=1...n,

to G and join v; to any vertex in A;,1 < ¢ < n. Then add another set C
of br independent vertices to G, where » > 2 is an integer. Now add a set



Figure 1: Construct Graph G’ from G

B of ar — 2 vertices which induces a complete graph, and join each vertex
of B to every vertex of V (G) U AU C. It suffices to show that & (G) > k if
and only if G’ is not T-tenacious.

First suppose that G contains an independent set I with |I| = k. Define
X' CV(G)by X' =(V(G)—I)UB. Then

w(G@-X)Y=n+|C|=n+br
|X'|=n—k+|Bl=n—k+ar—2
m(G -X)Y=h+1=[Tn]-n+k+1
\:
Tw(G'-XY=Tn+ar > ([Tn]-1)+ar
= ([Tn]l-n+k+1)+(n—-k+ar—2)
= m(G@ —X')+|X|

Therefore G’ is not T-tenacious.



Conversely, suppose G’ is not T-tenacious. Then exists X’ C V (G’) with
w(G’' - X') > 1 such that Tw (G' — X') > |X'| + m(G' — X'). Clearly
BCcXx.

Claim 1. | X'|+m (G' — X') > |X' = (AUC)|+m (G’ — (X' - (AUC))).

Proof. Suppose X" = X' — (AUC) and M (G’ — X") is a largest compo-
nent of G'— X" . Then M (G’ — X")—(X' — X") is a component of G' — X"’
and

IM (Gl _ XII) _ (Xl _ Xf/)l

|M (G' _ X//)l _ |X' _ Xul

m(GI _ X") _ ;Xll + IX”i

m(G' - X')

v v

= | X'|+m (G -X") 2 | X"+ m (G - X")

We may also assume X' N (AU C) = ¢; otherwise

Tw(G — (X' - (AUC))) > w(C -X')
> |X|+m(G - X'
> X' —(AUC)|+m (G — (X' — (AUC)))

And we could use X’ — (AUC) instead of X'.

Let
X=X'nV(G), z=|X|, 2’ =|X/|
m=m(G'-X"), w=w(G-X), v =w(G -X)
Then
g = z+|Bl=z+ar—2
w = wHz+|Cl=w+z+br
m' > h+1

Claim 2. [Tn]—z—-m'+12>0.

Proof.
w<n+|Cl=n+br

g +m' <Tw <T(n+br)=Tn+ar
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- Tn+ar—2'—m/'>0

- [Tn+ar—z'—m'12>1

- [Tn]l4+ar—z'—m' =120
- [Tn]l-z-m'+120

Tw >z’ +m'

> Tw+Tz4ar>z+ar—-24+m

1
Tw > z-Tz+m' -2
= (T-1)([Tn]-z-m'+1) - (T-1)([Tn]l-m'+1)+m' -2
> —(T-1)([Tn]l-m' +1)+m' -2
= Tm'—(T—-1)[Tn] =T -1
> Th+1)—(T-1)[Tn]-T-1
= T([Tn]-n+k+1)=(T=1)[Tn] -T -1
= [Tn]-Tn+Tk-1
> Tk-1
- 1
w > k_T
w > k

Since it is possible to form an independent set in G by choosing one vertex
from each component of G — X, we conclude o (G) > k.

O

Define §2(r) to be the class of all graphs with § (G) > rn, where n =
|V (G)|. We prove the following two results for any rational number T' > 1.

Theorem 2. Let G be a graph in Q (7{—1) Then G is T-tenacious.

Theorem 3. For any fized € > 0 it is NP-hard to recognize T-tenacious
graphs in §) (Tr-i-_l' - s).



Proof of theorem 2. Let X C V (G) such that w(G—X) >1and Z C
V (G) be the vertex set of a component of G — X having the fewest number
of vertices.

Let
n=lV(©, z=IX|, z=12|, w=w(G-X)
Then T
n—-z n-z
—_—n<o<n-— < <
TrinsSésn-l zs——s—
Henceif we Z,d(w) £ z+ 2 —1, Thus
6<z+z-1
Therefore
§ < z+2"Z.1
n—zx n+z—-2
< -] = —— —
6 < z+ 5 1 5

Claim3. T+1<z.

Proof.

T+1n565n—1 - T+1<n

T n+zr-—-2 T-1
<fgc —= <
Trinsis— > Fqntise

4
T-1 T-1
= e < <
T+1 T+1(T+1)+2_T+1n+2_:v

We must show that
Tw<z+m(G-X)

we instead show that
Tw<zx

We consider the following two conditions:
1) nT<2z(T+1)
- Tn—z)<=z

wsn-z, Tw<Tn-z)<z
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2)z(T+1)<nT
Claim3 — z(T+1)(z—(T+1))<nT(z—(T+1))

1 1
— < =
- (T+1)_nT(T_|_1 :c)
nT T
—_T-1<
— :c+z T 1_T+1n
T T n—-zx
il — —-1< <9< -1
- x+x(n z) 1_T+1n_6_x+
T
- Tw<z

O

Proof of theorem 3. Given ¢ > 0 and T = § > 1, choose § such that
0 < 8 < 1, and then choose 7 sufficiently large such that

ar —2 S r
(a+bd)r+n(Tn—n+pn+3) T+1

T
(e(a+b)-r> (T+1 —e) xn(Tn—n+ﬂn+3)+2)
The reduction described in the proof of Theorem 1 yields a graph G’ with
V(G = n(h+1)+|B|+|C|

= (a+b)r—2+n([Tn]—-n+[Bn]+1)
< (a+b)r+n(Tn—n+pn+3)

£ (1)

and
0(G')=|B|=ar—-2

By (1) it follows that
0(G') = ar-2

> (T::l—s)((a+b)r+n(Tn—n+ﬁn+3))
T :
> (T—_H—E)W(Gﬂ

T
, — —
- G e ( T+ 1 € )
This establishes that it is NP-hard to recognize T-tenacious graphs in this
class.

a
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