ON THE TENSOR DEGREE OF FINITE GROUPS

PEYMAN NIROOMAND AND FRANCESCO G. RUSSO

ABSTRACT. We study the number of elements z and y of a finite group G such
that z®y = 1,4 in the nonabelian tensor square G® G of G. This number,
divided by |G|?, is called the tensor degree of G and has connection with the
exterior degree, introduced few years ago in [P. Niroomand and R. Rezaei,
On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335-343].
The analysis of upper and lower bounds of the tensor degree allows us to find
interesting structural restrictions for the whole group.

1. COMMUTATIVITY, EXTERIOR AND TENSOR DEGREES

In the present paper all the groups are supposed to be finite. Brown and others
[4] wrote an influential contribution on a generalization of the usual abelian ten-
sor product of abelian groups. Following their terminology, the nonabelian tensor
product G® H of two groups G and H is the group generated by the symbols g®h
with defining relations zy ® h = (y* ® h*)(z® k) and 2 @ hk = (@ h)(z" ® k") for
allz,y € Gand b,k € H (as usual, y° = z~'yz). In case G = H and all actions are
by conjugation, G ® G is called the nonabelian tensor square of G. [4, Propositions
1,2,3] describe the main calculus rules in G ® H, which are:

(11) (z7'@h)" = (z®h)! = @®h7H;  (¥@k)™*(z®h) = (z@h)(yOK)";
y® (R*h!) = (z@h)¥(z@h)™Y;  (z(z))®y=(z®h)((z® R,
(®k) "M = (y @ k)™M,  [c@h,y@K] = (z(z7)*)(k¥k7Y).
They allow us to conclude that
K zQYEGRG— k(z®y) =[x,y € G’

is an epimorphism of groups such that ker k = J>(G) is a central subgroup of G®G.
Furthermore, V(G) = (z ® z | ¢ € G) C J2(G) and J5(G) is important from the
point of view of the algebraic topology (see [4]). We recall that the nonabelian
exterior square of G is defined by
GAG=(G®G)/V(G)=((z®y)V(G) |7,y € G)
and, due to the fact that an element (z®y)V(G) of (G®G)/V(G) may be denoted
by z Ay, we have
GAG=(zAy]|x,yeG).
On the other hand, we can observe from [4, 16] that
K:zAyeGACGH K (zAy)=[r,9]€C
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is an epimorphism of groups and that the following are two central extensions:
1 — LG — G®G —“5 ¢ —— 1
(1.2)

1 — 3 M(G) — GAC —“ 5 ¢ — 1
Here M(G) = H3(G,Z) is the Schur multiplier of G, that is, the second integral

homology group of G. This may motivate the use of homological methods.
The exterior centralizer of x € G is the set |

Cé\-‘(x) = {a €Glanz= chc}y
which turns out to be a subgroup of G (see [14]), and the ezterior center of G is
the set
ZNG)={9€C|15pc =gAy€GAG,Vye G} = (| C&(z)
r€G
which is a subgroup of the center Z(G) of G (see [14]). We mention that the interest
in studying C4(z) and Z"(G) is due to the fact that they allow us to decide whether
G is a capable group or not, that is, whether G is isomorphic to E/Z(E) for some
group E or not. In analogy, we may consider the tensor centralizer
C&(z)={a€CG|a®z =15},
of r € G and it turns out to be a subgroup of G (see [3, Theorem 3.1]), and the
tensor center
Z%(G) = {9 € G | loes =9®Yy€G®G, Yy € G} = [ | C&(x),
z€CG
which is a subgroup of Z(G) (see (3, Corollary 3.3)).
A combinatorial approach, in order to measure how far we are from Z*(G), has
been investigated in [15], introducing the ezterior degree of G

k(G
{z,9) eGxGClany=1,.} 1 & |ch)

IGP2 e ; [Ca ()’

dNG) =

where k(G) is the number of conjugacy classes of G and the second equality is [15,
Lemma 2.2]. It is in fact clear that d*(G) = 1 if and only if G = Z*(G) so that
the exterior degree represents the probability that two randomly chosen elements
commute with respect to the operator A. On the other hand, d*(G) has been
connected with the commutativity degree

_ k(G)
so)= e e Cxglleal =1 L > Ca(e

of G, studied by Gustafson and others [6, 7, 9, 11, 12, 18]. The reader may refer
also to [8, 10, 16, 17] for recent studies on the topic. Of course, d(G) = 1 if and
only if G is abelian. On the other hand, among groups with exterior degree equal
to 1, we find all cyclic groups, but not necessarily all abelian groups (see [1, 3, 15]).
Then, roughly speaking, d"{G) gives a measure of how far is G from being cyclic.
It js interesting to note that

d"(G) < d(G),
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by (15, Theorem 2.3]. Here we introduce the tensor degree

I{(zry) €eGxG l IQy= lc@a}l
IGI?

evaluating the distance of G from being equal to Z®(G), since d®(G) =1 if and
only if Z®(G) = G. On the other hand, one may easily check that d®(G) = 1 if
and only if G is trivial, by using [5, Proposition 18].

We note that there are several examples of abelian groups with exterior degree
different from 1 and here we show, not only examples of abelian groups with tensor
degree different from 1, but also examples of abelian groups with different values
of tensor and exterior degrees. In fact, the study of d®(G) will present a new
perspective of investigation of specific subclasses of nilpotent groups. We will prove
restrictions on d®(G) of numerical nature, which will influence the structure of G,
and relations among d®(G), d"(G) and d(G).

d®(G) =

2. FUNDAMENTAL INEQUALITIES FOR THE TENSOR DEGREE
In a group G, C4(z) and C@(z) are normal subgroups of Ce(z) (see (3, 14]).
Lemma 2.1. Let x be an element of a group G. Then
ICa(z) : C2@)| < 1(G).
Furthermore, |Cg(z) : C&(z)| <] M(G)| [V(G)I.
Proof. The map
¢ : yC&(z) € Ca(x)/CE(z) — y @z € J5(G)

satisfies the condition p(abC&(z)) =ab®@z = (e @) (b®z) = (a®z) (b®z) =
p(aC2(x)) p(bCE(z)) for all a,b € Cg(x), where (1.1) have been applied. Further-
more, kerp = {yC2(z) | y® z = lggc} = CE(z). Then ¢ is a monomorphism
and |Cg(z) : C&(z)| <| J2(G)|- On the other hand, we know from [4] that the
map 7 :a®b € Jo(G) =» anb e M(G) is an epimorphism of groups such that
J2(G)/ kerm = J2(G)/V(G) =~ M(G). Thus |Cg(z) : CE(z)| <| M(G)| IV(G)|. O

The above bound shows that the section Cg(z)/CE(z) depends on the size of
J2(G), or, equivalently, from that of V(G) and M(G). This agrees with the central
extensions in (1.2). The following lemma deals with different aspects and correlates
the tensor centralizers with the tensor degree.

Lemma 2.2. Let z1,...,%Zxc) be a system of representatives for the conjugacy
classes of the group G. Then

o 1 21080
L@ =151 X ol

Proof. The iden of (15, Proof of Lemma 2.2} may be adapted here. Let C1, ..., Cic)
be the conjugacy classes of G and z; € C; for i = 1,2,...,k(G). For every y € C;
there exists a g € G such that y = z?. This implies |C§(y)| = |C& ()|, hence

k(G) k(G)
IGI12d2(G) = > 1C&€(@) = 3 D IC&(=:)l = Y |G : Col(=:)lICE(zs)]
r€G i=1 z€C; i=1
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k(G)

=161)
i=1

C&(z:)
Cc (J,‘,') :

We may compare commutativity and tensor degrees in the following way.

Theorem 2.3. Let G be a group and p be the smallest prime divisor of |G|. Then

dG) [2°@) (, 1 o (. 1\ (12(G)| - Z°()
FACTE] (1 |J2(G)|)5“G)5d‘c’ (1 p)( e )

Proof. The idea of [15, Proof of Theorem 2.3] may be applied, thanks to the prelim-
inaries which we have done. Let 2 ¢ Z®(G). From Lemma 2.1, |C&(2)|/|Cc(z)| >

1/|J2(G)|. From Lemma 2.2 and the equality d(G) = El%glz' we deduce

k(G)

® 1 CE(i)| ® KG) - 12%(G)|
PO =g 2 |Comy| > a0 ('Z e N FATE)] )

_ KO 1Z2@)I(,_ 1 \_ 4G ,|Z°©G) [, _1
BTN RATS e (‘ |J2(G)|) FAE e (l |Jz(c)|)‘
Conversely, |G : C€(z)| > p implies that

KG)

149 08| _ 129(6) |, 1 (IZG) -1 Z5(C)) . KG) - 12(6)
) =161 2 |Get@ | S TG0 - (EEHEEN) O
L p=1 (126 -1 2%(G)]
=d6) - ( Ie] )

O

Theorem 2.3 has analogies with {15, Theorem 2.3]. On the other hand, the
literature on M (G) is richer than the literature on J5(G) and it may be useful to
rewrite the lower bound of Theorem 2.3 in the following way.

Corollary 2.4. Let G be a group. Then
d(G) 41226 (1 _ 1 )
IM(G)IV(G)| G| IM(G)IV(G)|
Another interesting consequence of Theorem 2.3 is the following.

1Gl-1

Corollary 2.5. An abelian group G salisfies ]-c—,r elcea < @G <! 5+ ,:_

with p smallest prime divisor of |G|. Moreover, if |G| — co, then 0 < d®(G) < ,1,

< d®(G).

Proof. From {5, Proposition 18], an abelian group G has trivial Z®(G). This means
that the term l—z-?c-(,-lgﬂ (1 - Tle_?ﬁ) vanishes in the lower bound of Theorem 2.3;
J2(G) = G® G, d(G) = 1; the term w—%m becomes equal to ﬂl%)ll’—l
Then the first part follows clearly from Theorem 2.3.

Now we concentrate on the second part of the statement, that is, if |G| = oo,
then 0 < d®(G) < Il, From the condition d®(G) < % + #I:CTII it is clear that
d®(G) < ;1; when |G| = oco. Then we give explanations only on the lower bound.

276



Since G ® G is an usual abelian tensor square, |G| €| G ® G|, and, if |G| — oo,
then also |G ® G| — oo. Passing to the limits,

lim (1 —EI———)= lim —1~+ lim —l—'—_l—
IGl= \ |G| * |GlIG ® G| [Cl-+o0 |G| 1615 |GG ® G|

. G- 1) ( ) 1 )
= L-ibuiy ) =041 i
0+ (|c3|“-‘»‘m iar ) \dmgea) ~ 0t dm 1ceal |G® e
0
The well-known notion of Schur cover, which can be found in {2, 4], gives a

condition of equality among the tensor degree and the commutativity degree.

Proposition 2.6. Let G be a perfect group and G* be a Schur cover of G. Then
d®(G) = d(G*).

Proof. By the definition of Schur cover, there is an exact sequence
194G 535G,

in which A & M(G). From [4, Proposition 7}, we have a homomorphism £ : G®G —
G* given hy £(g ® h) = [g1, h1] such that 7(g;1) = g,7(h;) = h. Since GRG ~ G*
by using {4, Corollary 1], we have

[{(9:h) € G x G | g®h = 1cec}IM(G)| = [{{g1,h1) € G" x G* | [g1,l1] = 1},

as required. O

The following example shows that Proposition 2.6 may be useful for computing
the tensor degree and the commutativity degree of a Schur cover.

Ezample 2.7. We know that the Schur cover A} of the alternating group on 5 ele-
ments Ag is SL(2,5). On the other hand, it is known that the size of the conjugacy
classes of SL(2, 5) is 9 and so

d(SL(2,5)) = d(Az) = 9/120 = 3/40.
From Proposition 2.6, we may conclude that
d®(As) = d(SL(2,5)) = 3/40.
Another fundamental relation among d(G), d*(G) and d®(G) is listed helow.
Theorem 2.8. Let G be a group. Then d®(G) < d"(G) < d(G).

Proof. d™(G) < d(G) follows from [15, Theorem 2.3]. Let z ¢ Z®(G). We have
g € C4(z) if and only if g Az = 1gag if and only if (¢ ® £)V(G) = V(G) if and
only if ¢ ® z € V(G). This condition is weaker than the condition ¢ ® = = lggge,
characterizing the elements of C&(z). Then C€(z) C CA(z) € Cs(z). From this
fact, Lemma 2.2 and {15, Lemma 2.2], we conclude

(I:)
Ce(z:)

L(G)

1 Chai
LO=g |z Gatz)

7 | Ca(z:)

= dMG).
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From (15, Theorem 2.3} and Theorem 2.8, G is unidegree, or right unidegree,
if the upper bound d"(G) = d(G) is achieved. A group G is called unicentral if
ZMNG) = Z(G). Unicentral groups have been studied in [2] and [15, Corollary
2.5] shows that right unidegree groups are unicentral. Now we say that G is left
unidegree if the lower bound d®(G) = d(G) is achieved. Finally, G is said to be
left and right unidegree if it is both left and right unidegree. By the concept of
left unidegree introduced here, this condition and Theorem 2.7 imply that of right
unidegree. A complete classification of groups, whose center is equal to its tensor
center, is not available, to the hest of our knowledge, against the classification of
unicentral groups in (2].

Corollary 2.9. If G is left unidegree, then Z(G) = Z®(G). Furthermore, if G is
left and right unidegree, then G is unicentral and Z(G) = Z®(G).

Proof. If d®(G) = d(G), then Z(G) = Z®(G) by the upper bound in Theorem
2.3. Furthemore, if d*(G) = d(G), then we apply [15, Corollary 2.5] and the result
follows. ]

3. SHARPENING UPPER AND LOWER BOUNDS FOR THE TENSOR DEGREE

The present section is devoted to improve the numerical restrictions on the tensor
degree and to find relations among quotients and subgroups. {15, Proposition 2.6
has analogies in the context of the tensor degree.

Proposition 3.1. If N is a normal subgroup of a group G, then d®(G) < d®(G/N).
The equality holds, if N C Z®(G).

Proof.
IG? d®(G) = Y IC&@) = Y. 3 [C&(n)l
#€G ZNEG/N neN
.Yy ICGIJJ\E/T)M IC8En)NNI < S ST ICE N ()| IC8(zn) N |
xNEG/N neN zNEG/N neN
= Z | G/N(IN){ Z |Cg(zn)ﬁN|
«Ne€G/N neN
SINE D" ICE n(aN)| = |G? d®(G/N).
=NeG/N

For each central subgroup N of G, [4, Proposition 9] ensures the exactness of
the sequence (G ® N) x (N ® G)-5G ® G-24(G/N) ® (G/N) —> 1 for suitable
homomorphisms o and 8. This is our case. Furthermore, if N C Z®(G), then
Ima=1,,, and G/N ® G/N ~ G ® G so that d®(G) = d®(G/N). O

The next corollary explains better the conditions of equality in Proposition 3.1.

Corollary 3.2. Let N be a normal subgroup of a group G. Then the following
statements are equivalent:
(i) N € Z®(G);
(i) d®(G) = d®(G/N),
(i) G®G=G/N ®G/N.
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Proof. (i) implies (i) by Proposition 3.1. Conversely, d®(G) = d®(G/N) implies
that N C C&(z) for all z € G, then N C Z®(G). Finally, the equivalency of (n)
and (iii) are obtained directly from [5, Proposition 16].

The next result is going to improve the upper bound in Theorem 2.3.

Proposition 3.3. Let G be a group, p the smallest prime divisor of |G| and = ¢
Z(G) such that C&(z) # Ca(z). Then
—| Z® -
dQ(G) < d(G) _ (1 _ %) ('Z(G)l ||Z| (G)| 1) .

In particular, if Z®(G) = 1, then d®(G) < d(G) - (1 - ’-,) l‘zl(c‘—:';-n

Proof. We may apply the same argument, which has been used to prove the upper
bound of Theorem 2.3. The first inequality may be specified as

d®(G) < |

ZQ(G)I 1Z(G)| -1 Z2%(G)\ , 1 | k(G)-1Z(G)| -1
e ( Gl ) e [
=2 ((1-1)|ze 1_ l _
= 1G] ((1 p) |Z°(G)| + (p 1) |Z(G)| + = + K(G) 1)
_ _ |Z(G)| -| Z®(G)| —1
=4~ (1-3)( c] )
The rest is clear and the result follows. ]

The extremal case of Z®(G) = 1 is described by the next result and has analogies
with (15, Theorem 2.8]. There are also analogies for the commutativity degree in
6,9, 11, 12, 18).

Theorem 3.4. Let G be a nonabelian group with Z2(G) = 1 and p be the smallest
prime divisor of |G|. Then d®(G) < %.

Proof. First we claim that, if Z(G) NG’ $# 1, then there exists an x € Z(G) such
that C8(z) # Cg(z). Assume that CE(z) = Cg(z) for all z ¢ Z(G). Since
Z(G)C N C&z)and G'C () C&(z), we have G' N Z(G) C Z®(G). This
=€Z(C) »€Z(G)
implies Z(G) N G’ = 1, which is a contradiction. The first claim follows.
The second claim is that d(G) < 1 5+ ( ) ng.l".ll Arguing as in Theorem 2.3,

we find
|Cq(z)l 1Z(Ge) |, IGI-1Z@G)) _ 1 _ 1Y 12(G)]
4= Ze;.- |G ~,,( T/ Te] )_p+(l p)"|G|'

The third claim is that d(G) < %, provided G is nonabelian with Z(G)NG' = 1.

This can be found in {15, Proposition 2.7].

Now we may proceed to prove the result and there is no loss of generality to
assume Z(G) NG’ # 1, by the third claim and Theorem 2.8. Now the first and the
second claims, combined with Proposition 3.3, imply

a
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4. COMPUTATIONS FOR ELEMENTARY ABELIAN AND EXTRASPECIAL p—GROUPS

The present section is devoted to compute the tensor degree for some classes of
p-groups, widely studied in literature. We follow the phylosophy of [17], where the
case of the exterior degree has been studied. As usual, Cp« denotes the cyclic group
of order p™. The tensor degree of elementary abelian p-groups is described by the
next result.

Proposition 4.1, IfG~Cp,x...xCp, = C,(,") is the direct product of n > 1 copies
of Cp, then d®(G) = 2L,

Proof. We claim that C€(z) = 1 for all nontrivial z € G. In our case, G®G is the
usual abelian tensor product of two abelian groups. Then

GR®G~CMeCH ~Ci.

If we write G = (a1) x. .. (as), then G®G = [[i, [T}, (ai®a;) so that a;®a; # 1
for all i # j. Since a; ®a; # 1 for all i = 1,...,n, we have CZ(a;) = 1 for all
i=1,...,n. Then

1 1 . . 2" -1
4®(C) = 1z 2 IC8E) = o (" + (" - 1)-1) = ”pz,, .

T€G

O

The following p-groups have big sections which are elementary abelian and have

interest in several areas of group theory. Let
Ey=(a,bcla? =0 =" =1,(a,c] = [bc]=1,a,b] = ¢)
be the extra-special p~group of order p? and of exponent p,
Dy = (a,b|B? =a® ' =1,b"lab=a"1)
be the dihedral 2-group of order 2" and
Qo = {a,b | 82 = a7 b7lab= a7 1)

be the generalized quaternion 2-group of order 2". We note that Qgu/Z(Qan) =
D3n/Z(Dan) =~ C"™V for alln > 1.

Lemma 4.2. Let H be an extraspecial p-group. Then Z®(H) = Z(H) = H', when
H % E\,Qg, Dg. Furthermore, Z®(E,) = Z®(Dg) = Z®(Q3) = 1.

Proof. This follows from [13, Example 3.1]. O

We are going to calculate the tensor degree for the groups in Lemma 4.2.

Theorem 4.3. Let p be a prime and m > 1.

(i) d®(Qan) = 4241 for glin > 3 and d®(Q) = & forn = 3.

(ii) d®(Dgn) = E242""4 for gll n > 3 and d®(Dg) = & for n = 3.

(i) d®(Ey) = 2oap=2,
(iv) Let H be an extra-special p—group of |H| = p?
E1,Qs,Ds. Then d®(H) = 221,

™M+l gnd not isomorphic with
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Proof. (i). We need to have in mind the presentation of @2« and some computations
in [4, Section 4]. Let a and b be two generators of Q2» and 1 # 2 ® b € Q2+ ® Qan.
For all { > 1, [4, Equations 4.3 and 4.5) imply

b®a = (b®a) (e®a)¢ Y, d@b=(a®b) (a®a)lV
so that the condition
b®al = (b®a) (a®a)t-D = (a ®b) @®a)V=agb
is satisfied if and only if
(t®a) = (a®b)

for all { > 1. This cannot happen, because [4, Equation at p.190, line +10] implies
(a®b)! =1 for all L > 1, and, in particular, a®b = 1, which is a contradiction. We
conclude that b ¢ ngﬂ (a*) for any choice of { > 1. In a similar way, [4, Equations
4.7 and 4.8 imply

bak ® al = (b@ a)l (a ® a)lk:-H(l-—l) al ® bak = (a ® b)l (a ® a)lk+l(k.—1)

for all , k > 1 and we find again ba* ® a! = a! ® ba* if and only if (h®a)! = (a®b)',
which is a contradiction. Then ba* ¢ CG’?,_ (a") for all I,k > 1. We conclude that
ng_ (a*) is formed only by powers of a. Now an explicit computation (or looking
at [4, Equation 4.5]) shows that only even powers of a commute with a?**! with
respect to ®. Then C§  (a?**!) = (a?) and C® . (@%*) = (a). Furthermore, for
alli =0,1,2,...,2""! we may also deduce C Q’" (a‘b) = 1, after all we have said.
Then

d®(Qan) = T IQ 7 > IC8,. (@)

2EQan

- i" (2" + 272 (@) + (2°2 - (@) + (2" = 1) - 1+ 1)

_ 1 (2n + 2n—2 . 211—2 + (27:—2 — 1) . 2u—l + 27:—1)
T "

_ 4 +2n—2 +2(2n—2 - 1) +2 _ 211-3 +2n—4 +1
- on+2 - on .
The case n = 3, that is, Qg can be solved by using GAP [19] and shows d®(Qs) = }.

(ii). Exactly the same argument of (i) may be applied for Dp. when n > 3 and
we find d®(Dan) = d®(Qqn) (see [4, Section 4]). Similarly, GAP [19] allows us to
conclude d®(Dg) = & in case n = 3.

(iii). Bacon and Kappe [1] described the nonabelian tensor square of certain
p-groups in which we can find E;. Having in mind the previous presentation of Ej,
one can see that E,; is of the type in [1, Theorem 2.4, (2.4.1)]. Therefore we may
apply {1, Theorem 4.3] and get

E\®E = (6)
More specifically, [1, Proposition 3.5] allows us to write

EIQE ={(a®a)x (a®b) x{(a®c) x (b®c) x (b®a) x (b b).
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Applying (1, Proposmon 3.5] again, we get for all 1 < ¢ < p that Cg (¢) = ¢' and
forallz € Ey ~ {1,¢,c?,...,cP" 1} that Cg (z) = 1. Then

d®(Ey) = IE 7 > ICE ()]
z€E)

1 -
= = [#* +1C2. (1 +1CR (@) +... +1CE (") + 6° - p)

2°
(p—1)—times
1,, 3 2’ +p-2
= — + -1 »+ - = —_—
P +e-1p+p -p) 5

(iv). From Proposition 3.1, we note that the tensor degree of a group is the
same if we factorize through its tensor center. This and Lemma 4.2 imply d®(H) =
d®(H/Z®(H)) = d®(H/H’). Since H/H' ~ C&™,

2p™ -1

m

O

It is instructive to compare the results of the present section with some of 6, 9,
11, 12, 15, 17}]. We will confirm not only Theorems 2.3, 2.8 and 4.3, but will verify
that exterior degree, tensor degree and commutativity degree are different group
invariants. To conveniece of the reader, we have appended a list helow.

Corollary 4.4. The following inequalities are true:

(i) d®(By) = 21’—"’13—_—2 dMNEy) = H—ﬂ’;;- dNE)) = u{."— In particular,
d®(Ey) < d"(El) < d(E\) are proper for all primes p > > 2.

(1) d%(Qz) = EHEEL and 2t = @(Qy) = d(Qzr) for all n > 3,
Moreover, d®(Qs) = } and 3 = d"(Qs) = d(Qs) in case n = 3. In
particular, d®(Qq+) < dA(sz ) =d(Q2) for all n > 3.

(iii) d®(Dyn) = —1-22—7- and d(Dyn) = d(Dya) = —2’13 for alln > 3.
Moreover, d®(Ds) = & and d"(Ds) = d(Dg) = 3incasen = 3. In
particular, d®(Dan) < dA(Dgn) =d(Dan) for alln > 3.

(iv) d@(C’(,n)) = 21;7':!:—1; dA(C,(,n)) = ‘L“,’f:—_-}‘—‘; d(C,(,")) = 1. In particular,
d®(Cct) < dNCY™) < d(C™) are proper for alin > 1 and for all primes
p>2.

Proof. (i). See Theorem 4.3 (ii), [17, Theorem 2.2}, and [7, Theorem A]. (ii) and
(ili). See Theorem 4.3 (i), [15, Examples 3.1 and 3.2], [12, Remark 4.2]. (iv). See
Proposition 4.1 and [15, Example 3.3]. a
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